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I. DETAILED DERIVATION OF THE COLLECTIVE COORDINATE REDUCTION

This section provides the full derivation of the reduced mesoscopic model introduced in the main text. Our goal is
to identify stationary cyclops and two-cluster states in the full heterogeneous oscillator network described by Eq. (1)
of the main paper and construct their approximate representations using a collective coordinate reduction.

The stationary state of system Eq. (1) for nonidentical oscillators can be conveniently analyzed in a rotating
reference frame. We define the relative phases as φn = θn − Ωt, where Ω is the common rotational frequency of the
system and n = 1, . . . , N . We fix the phase of the Nth (solitary) oscillator as the reference point, choosing φN = 0.

To simplify notation, we introduce the phase difference relative to the solitary oscillator:

φn = θn − θN , n = 1, 2, . . . , N − 1. (S.1)

This substitution effectively eliminates the absolute phase of the solitary node, anchoring the system and reducing
the analysis to relative phase dynamics.

Substituting (S.1) into Eq. (1) in the main text and subtracting the equation for the Nth oscillator from each of
the others yields the following system for n = 1, 2, . . . , N − 1:

mφ̈n + φ̇n = ωn − ωN +

2∑
q=1

εq
N

[
N−1∑
k=1

(
sin
(
q(φk − φn)− αq

)
− sin

(
qφk − αq

))
− sin(qφn + αq) + sinαq

]
. (S.2)

To express the system in terms of intrinsic frequency mismatches, we introduce the detuning parameters:

∆n = ωn − ωN , (S.3)

which quantify the deviation of each oscillator’s natural frequency from that of the solitary node.
To facilitate further analysis, it is convenient to rewrite the system in complex form. Using the identity sin(ϕ) =

Im
[
eiϕ
]
, we transform Eq. (S.2) into the following equivalent representation:

mφ̈n + φ̇n = ∆n +

2∑
q=1

Im

[
εqe

−iαq

N

(
N−1∑
k=1

eiqφk + 1

)(
e−iqφn − 1

)]
, (S.4)

where n = 1, 2, . . . , N − 1.
For compactness, we introduce the vector notation

φφφ = (φ1, φ2, . . . , φN−1), (S.5)

and define the nonlinear right-hand side as

Φn(φφφ,∆n) = ∆n +

2∑
q=1

Im

[
εqe

−iαq

N

(
N−1∑
k=1

eiqφk + 1

)(
e−iqφn − 1

)]
. (S.6)

This allows the system to be expressed compactly as

mφ̈n + φ̇n = Φn(φφφ,∆n), (S.7)

which we will use as the starting point for the reduction via collective coordinates.
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The stationary solutions of Eq. (S.7) correspond to uniformly rotating states of the original system (1). These
solutions are defined by the set

φφφ∗ = (φ∗
1, φ

∗
2, . . . , φ

∗
N−1), (S.8)

which satisfy the nonlinear algebraic system

Φn(φφφ
∗,∆n) = 0, n = 1, 2, . . . , N − 1. (S.9)

To analyze the linear stability of the stationary solution (S.8), we introduce small perturbations δφn(t) and linearize
Eq. (S.7) around φφφ∗, which yields the variational equation:

mδφ̈n + δφ̇n =

N−1∑
k=1

∂Φn
∂φk

∣∣∣∣
φφφ∗
δφk, n = 1, 2, . . . , N − 1. (S.10)

Assuming solutions of the form δφn(t) = Dne
λt, the linearized system reduces to the eigenvalue problem

MPMPMP D = ΛD, (S.11)

where D = (D1, D2, . . . , DN−1)
T , Λ = mλ2 + λ, and MPMPMP = ∂ΦΦΦ

∂φφφ

∣∣∣
φφφ∗

is the Jacobian matrix evaluated at the stationary

solution.
The eigenvalues Λk (k = 1, . . . , N−1) obtained from Eq. (S.11) yield the corresponding set of dynamical eigenvalues

λk (k = 1, . . . , 2N − 2), which determine the linear stability of the stationary state (S.8). Directly identifying such
stationary states to be used in the linear stability analysis in large heterogeneous oscillator networks is computationally
demanding and often elusive.

To overcome this obstacle, we introduce a reduction approach based on the collective coordinate framework [1–6].
This method approximates the phase dynamics of clustered states using a low-dimensional ansatz that captures the
essential structure of cyclops and two-cluster configurations. As we demonstrate below, this reduction not only enables
efficient computation of candidate solutions but also yields reliable predictions for the stability.

We now apply the collective coordinate method to approximate the dynamics of cyclops states. This approach is
based on constructing a liner ansatz φ̂̂φ̂φ for the oscillator phases,

φn(t) ≈ φ̂n(ΓΓΓ(t);∆n), n = 1, 2, . . . , 2K, (S.12)

where ΓΓΓ(t) is a vector of collective coordinates that evolve in time and parameterize the effective dynamics of the
cyclops state. Given that the natural frequencies ωn (and thus the detunings ∆n) are uniformly distributed, the
relative phases φn(t) within each cluster can be well-approximated by linear functions of the form:

φn(t) ≈ φ̂n(t) = ψ1(t) + χ1(t)∆n, n = 1, . . . ,K,

φn(t) ≈ φ̂n(t) = ψ2(t) + χ2(t)∆n, n = K + 1, . . . , 2K,
(S.13)

where ψµ(t) represents the collective phase of the µth cluster and χµ(t) characterizes the linear phase distortion within
the cluster due to frequency heterogeneity. The product χµ(t)∆n thus captures the deviation of the nth oscillator’s
phase from its cluster average ψµ(t), with µ = 1, 2 denoting the cluster index.

In this representation, the dynamics of the full phase difference system (S.7) are approximated by the evolution of
four collective coordinates:

ΓΓΓ(t) = (ψ1(t), ψ2(t), χ1(t), χ2(t)) , (S.14)

which together define a mesoscopic description of the cyclops regime.
To derive the reduced equations, we substitute the ansatz (S.13) into the full system (S.4), which introduces an

approximation error. The residual (or error) for each oscillator is given by

ξn = m ¨̂φn + ˙̂φn −∆n −
Q∑
q=1

Im

[
εqe

−iαq

N

(
N−1∑
k=1

eiqφ̂k + 1

)(
e−iqφ̂n − 1

)]
, (S.15)

and the full error vector is

ξ = (ξ1, ξ2, . . . , ξ2K) . (S.16)
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Following the standard collective coordinate approach [6], we minimize the error by requiring that it is orthogonal
to the tangent space of the ansatz manifold. This yields the following orthogonality conditions:

⟨ξ, ∂φ̂
∂ψ1

⟩ = 0, ⟨ξ, ∂φ̂
∂ψ2

⟩ = 0, ⟨ξ, ∂φ̂
∂χ1

⟩ = 0, ⟨ξ, ∂φ̂
∂χ2

⟩ = 0, (S.17)

where ⟨·, ·⟩ denotes the Euclidean scalar product.
The corresponding derivatives of the ansatz vector with respect to the collective coordinates are

∂φ̂

∂ψ1
=

1 . . . 1︸ ︷︷ ︸
K

0 . . . 0︸ ︷︷ ︸
K

T

,
∂φ̂

∂ψ2
=

0 . . . 0︸ ︷︷ ︸
K

1 . . . 1︸ ︷︷ ︸
K

T

. (S.18)

Substituting into Eq. (S.17) and evaluating the inner products, we obtain the following coupled equations for the
cluster-averaged phases ψµ(t) and phase distortions χµ(t):

mψ̈µ + ψ̇µ + (mχ̈µ + χ̇µ − 1)
1

K

µK∑
k=(µ−1)K+1

∆k

=

Q∑
q=1

Im

[
εqe

−iαq

N

(
1 +

K∑
k=1

eiq(ψ1+χ1∆k) +

2K∑
k=K+1

eiq(ψ2+χ2∆k)
)

×

 1

K

µK∑
k=(µ−1)K+1

e−iq(ψµ+χµ∆k) − 1

],
(S.19)

where µ = 1, 2 indexes the two clusters. For convenience, we introduce the following notation:

δµ =
1

K

µK∑
k=(µ−1)K+1

∆k, S(q)
µ =

1

K

µK∑
k=(µ−1)K+1

eiqχµ∆k , (S.20)

where δµ is the average frequency detuning within the µth cluster, and S
(q)
µ is the qth-order Kuramoto-type order

parameter describing the internal phase distribution in that cluster. Substituting these expressions into Eq. (S.19)
yields a more compact form for the projected equation onto ∂φ̂/∂ψµ:

mψ̈µ + ψ̇µ + δµ (mχ̈µ + χ̇µ − 1) =

Q∑
q=1

Im

[
εqe

−iαq

N

(
1 +KS

(q)
1 eiqψ1 +KS

(q)
2 eiqψ2

)
×
(
S(q)∗
µ e−iqψµ − 1

)]
.

(S.21)

To complete the Galerkin projection, we now consider the derivatives of the ansatz with respect to χ1 and χ2:

∂φ̂

∂χ1
=

∆1 . . . ∆K 0 . . . 0︸ ︷︷ ︸
K

T

,
∂φ̂

∂χ2
=

0 . . . 0︸ ︷︷ ︸
K

∆K+1 . . . ∆2K

T

. (S.22)

We further introduce

σ2
µ =

1

K

µK∑
k=(µ−1)K+1

∆2
k, J (q)

µ =
1

K

µK∑
k=(µ−1)K+1

∆ke
iqχµ∆k , (S.23)

where σ2
µ is the second moment of th frequency distribution in the µth cluster, and J (q)

µ is a weighted qth-order order
parameter incorporating the detuning. Projecting onto ∂φ̂/∂χµ, we obtain the second pair of equations:

δµ(mψ̈µ + ψ̇µ) + σ2
µ(mχ̈µ + χ̇µ − 1) =

Q∑
q=1

Im

[
εqe

−iαq

N

(
1 +KS

(q)
1 eiqψ1 +KS

(q)
2 eiqψ2

)
×
(
J (q)∗
µ e−iqψµ − δµ

)]
.

(S.24)



4

Solving Eqs. (S.21) and (S.24) simultaneously gives the evolution of the collective coordinates ψµ(t) and χµ(t). For
practical implementation, we rewrite them in a decoupled form as:

mψ̈µ + ψ̇µ =

Q∑
q=1

Im

[
εqe

−iαq

N

(
1 +KS

(q)
1 eiqψ1 +KS

(q)
2 eiqψ2

)(σ2
µS

(q)∗
µ − δµJ

(q)∗
µ

σ2
µ − δ2µ

e−iqψµ − 1

)]
, (S.25)

mχ̈µ + χ̇µ = 1 +
1

σ2
µ + δ2µ

Q∑
q=1

Im

[
εqe

−iαq

N

(
1 +KS

(q)
1 eiqψ1 +KS

(q)
2 eiqψ2

)(
J (q)∗
µ − δµS

(q)∗
µ

)
e−iqψµ

]
. (S.26)

Equations (S.25) and (S.26) define the reduced eight-dimensional system (4) in the main text, governing the collective
dynamics of clustered oscillators in the presence of frequency heterogeneity. Thus, the stationary solutions
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Supplementary Figure 1: Comparison of stationary phases in the full and reduced systems. (a) Phase values from the full
system (S.7) (crosses) and the reduced collective coordinate approximation (S.30) (circles) based on the solution of Eqs. (S.25),
(S.26). (b) Absolute error |φn−φ̂n| between the exact and approximated phases, which remains below 2×10−3 for all oscillators.
Parameters: N = 101, α1 = 1.57, ε1 = 1.0, ε2 = 0.03, α2 = 0.1, ν = 0.005.

ΓΓΓ∗ = (ψ∗
1 , ψ

∗
2 , χ

∗
1, χ

∗
2) (S.27)

satisfying the nonlinear system

Fµ(ψ1, ψ2, χ1, χ2) = 0,
Gµ(ψ1, ψ2, χ1, χ2) = 0, µ = 1, 2

(S.28)

define stationary cyclops or two-cluster modes of the reduced system (S.25), (S.26).
These solutions can be used to reconstruct approximate stationary phase configurations of the full difference system

(S.7). Specifically, the collective coordinates ΓΓΓ∗ yield the approximate phase differences

φ̂∗
n = ψ∗

1 + χ∗
1∆n, n = 1, . . . ,K, (S.29)

φ̂∗
n = ψ∗

2 + χ∗
2∆n, n = K + 1, . . . , 2K, (S.30)

which follow directly from the ansatz (S.13).
Supplementary Figure 1 confirms the accuracy of the reduced model by comparing its predicted stationary phase

profile with the full system. The collective coordinate approximation derived from Eqs. (S.25), (S.26) closely matches
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the stationary solution of the full phase difference system (S.7) for a cyclops state with N = 101, α1 = 1.57, ε1 = 1.0,
ε2 = 0.03, α2 = 0.1, and ν = 0.005. As shown in Supplementary Fig. 1b, the maximum deviation between the
approximated and full phase values does not exceed 2× 10−3.

To assess the linear stability of the stationary solution (S.27), we consider small perturbations δψµ(t) and δχµ(t)
around each collective coordinate and linearize the reduced system (S.25)-(S.26) in its vicinity. This yields the
linearized equations

mδψ̈µ + δψ̇µ =

2∑
k=1

[
∂Fµ
∂ψk

∣∣∣∣∣
Γ∗Γ∗Γ∗

δψk +
∂Fµ
∂χk

∣∣∣∣∣
Γ∗Γ∗Γ∗

δχk

]
, (S.31)

mδχ̈µ + δχ̇µ =

2∑
k=1

[
∂Gµ
∂ψk

∣∣∣∣∣
Γ∗Γ∗Γ∗

δψk +
∂Gµ
∂χk

∣∣∣∣∣
Γ∗Γ∗Γ∗

δχk

]
, µ = 1, 2, (S.32)

where all partial derivatives are evaluated at the stationary point Γ∗Γ∗Γ∗. Substituting exponential perturbations δψµ =
Bµe

λt and δχµ = Cµe
λt reduces the problem to a standard eigenvalue problem:

MCMCMC(B1, B2, C1, C2)
T = Λ(B1, B2, C1, C2)

T , (S.33)

where the Jacobian matrix MCMCMC is defined as

MCMCMC =



∂F1

∂ψ1

∂F1

∂ψ2

∂F1

∂χ1

∂F1

∂χ2
∂F2

∂ψ1

∂F2

∂ψ2

∂F2

∂χ1

∂F2

∂χ2
∂G1

∂ψ1

∂G1

∂ψ2

∂G1

∂χ1

∂G1

∂χ2
∂G2

∂ψ1

∂G2

∂ψ2

∂G2

∂χ1

∂G2

∂χ2


∣∣∣∣∣
Γ∗Γ∗Γ∗

. (S.34)

The eigenvalues Λk = mλ2k + λk (k = 1, 2, 3, 4) of matrix MCMCMC provide a set of eigenvalues λk (k = 1, 2, . . . , 8) of the
stationary mode (S.27), which determine its stability.
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Supplementary Figure 2: Probabilistic emergence of cyclops and two-cluster states in the Kuramoto network (1). Probabilities
are computed from 100 trials with initial phases θn(0) drawn from two clusters centered at fixed offsets, with half-widths δ = 0.4

(a), δ = 0.6 (b), δ = 0.8 (c), and δ = 1.0 (d). Initial velocities θ̇n(0) are uniformly distributed in [−0.5, 0.5]. Blue: cyclops
states; red: two-cluster states; green: near-synchronous regimes with r1 ≈ 1. Cyclops states appear with probabilities up to
0.4, indicating spontaneous formation of a solitary oscillator from symmetric initial conditions. Parameters correspond to the
red circle in Fig. 1a.

II. ATTRACTION PROBABILITIES OF CYCLOPS AND TWO-CLUSTER STATES IN THE
KURAMOTO MODEL

Supplementary Figure 2 illustrates that both cyclops and two-cluster states induced by frequency heterogeneity
can arise with appreciable probability when the system is initialized from broad two-cluster phase distributions. In
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particular, two-cluster states dominate with probabilities up to 70% across a range of initial spreads. Cyclops states
also emerge with probabilities reaching 40%, even though the solitary oscillator is not explicitly present in the initial
conditions. This indicates that the solitary node can self-organize from symmetric configurations. While the prevalence
of cyclops and two-cluster states decreases for wider initial spreads, these results highlight that heterogeneity promotes
the spontaneous formation of such regimes over a sizable portion of phase space.

III. BEYOND PHASE MODELS: HETEROGENEITY-INDUCED STABILIZATION OF CYCLOPS
STATES IN NETWORKS OF STUART–LANDAU OSCILLATORS

Supplementary Figure 3: Stabilization of the cyclops state in a network of Stuart–Landau oscillators (S.35). (a, b) Dynamics of
the order parameter amplitude |Z(t)| together with its transient evolution. Insets: snapshots of the oscillator states An taken at
different times within the gray-highlighted interval of |Z(t)|, with clusters outlined by a grey dotted line. (a) Breather cyclops
state (P = 0.99, ν = 0.0). (b) Stabilized stationary cyclops state (P = 0.66, ν = 3 × 10−5); two-cluster states occur in the
remaining runs (P = 0.34, not shown). Probabilities P quantify the fraction of runs converging to each state, computed over
100 trials with uniformly distributed initial conditions in a small neighborhood of a single limit cycle. Parameters: N = 101,
ω0 = 0.0, γ = 10.0, ε1 = 0.07, ε2 = 0.003, α1 = 1.56, α2 = 0.1.

We further investigate whether amplitude–phase dynamics can exhibit similar heterogeneity-induced stabilization.
For this purpose, we analyze networks of Stuart–Landau oscillators with higher-harmonic coupling in the phase
dynamics and weak amplitude variations. This class of models serves as a generic normal form for Andronov–Hopf
bifurcations, capturing both amplitude and phase effects. Introducing frequency heterogeneity leads to the emergence
of stable cyclops states. These results reinforce the generality of the mechanism and indicate that the stabilizing
influence of disorder extends beyond purely phase-reduced descriptions to richer oscillator models. The presence of
amplitude dynamics does not preclude the constructive role of heterogeneity in stabilizing multi-cluster states.

We consider a system of non-identical Stuart–Landau oscillators, described by the complex amplitudes An, which
evolve according to

Ȧn = γ(1 + iωn)An − γ|An|2An +
ε1e

−iα1

N

N∑
k=1

Ak +
ε2e

−iα2

N

N∑
k=1

A2
kA

∗
n, (S.35)

where γ sets the time scale of the dynamics. The natural frequencies ωn are drawn from a uniform distribution over
the interval [ω0 − ν, ω0 + ν], with mean frequency ω0 and distribution half-width ν. The global coupling comprises
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two distinct harmonics: a linear term with strength ε1 and phase shift α1, and a nonlinear term with strength ε2 and
phase shift α2.

The degree of global synchrony is quantified by the complex order parameter

Z(t) =
1

N

N∑
k=1

Ak(t), (S.36)

whose modulus |Z(t)| measures the oscillation amplitude coherence. We now demonstrate that frequency heterogeneity
(ν > 0) can stabilize the breathing dynamics of the cyclops state. For the parameter set N = 101, ω0 = 0.0, γ = 10.0,
ε1 = 0.07, ε2 = 0.003, α1 = 1.56, α2 = 0.1, which supports a cyclops state, the system’s behavior depends critically
on ν. In the homogeneous case (ν = 0), the system evolves into a breather cyclops state: clusters undergo persistent
periodic oscillations relative to a solitary element, as seen in the dynamics of |Z(t)| (Supplementary Fig. 3a). Notably,
this regime appears from uniform phase distributions and amplitude spreads around 20% with probability close to
one [not shown]. Introducing a small frequency heterogeneity (ν = 3 × 10−5) suppresses these collective breather
oscillations. This damping effect stabilizes a stationary cyclops state, characterized by a constant order parameter
amplitude and fixed phase relationships between the clusters and the solitary element (Supplementary Fig. 3b). The
heterogeneity-induced stationary cyclops inherits the structural properties of the breathing regime and remains the
prevalent attractor under random initial conditions. As in the Winfree network (Fig. 4), two-cluster states also appear
in the remaining runs (P = 0.34, not shown).
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