

View

Online


Export
Citation

RESEARCH ARTICLE |  FEBRUARY 03 2025

Spectral principle for frequency synchronization in repulsive
laser networks and beyond 
Mostafa Honari-Latifpour; Jiajie Ding; Igor Belykh   ; Mohammad-Ali Miri 

Chaos 35, 021101 (2025)
https://doi.org/10.1063/5.0251322

Articles You May Be Interested In

The application of cosine similarity measures with Laplacian energy to q-rung orthopair fuzzy graphs in
decision-making problems

AIP Advances (May 2024)

Optimization of synchronization in complex clustered networks

Chaos (January 2008)

The Laplacian spectrum of weighted composite networks and the applications

AIP Advances (March 2024)

 06 February 2025 15:18:34

https://pubs.aip.org/aip/cha/article/35/2/021101/3333445/Spectral-principle-for-frequency-synchronization
https://pubs.aip.org/aip/cha/article/35/2/021101/3333445/Spectral-principle-for-frequency-synchronization?pdfCoverIconEvent=cite
javascript:;
javascript:;
javascript:;
https://orcid.org/0000-0002-5683-0754
javascript:;
https://orcid.org/0000-0003-3247-4596
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0251322&domain=pdf&date_stamp=2025-02-03
https://doi.org/10.1063/5.0251322
https://pubs.aip.org/aip/adv/article/14/5/055132/3294447/The-application-of-cosine-similarity-measures-with
https://pubs.aip.org/aip/cha/article/18/1/013101/923495/Optimization-of-synchronization-in-complex
https://pubs.aip.org/aip/adv/article/14/3/035229/3272419/The-Laplacian-spectrum-of-weighted-composite
https://e-11492.adzerk.net/r?e=eyJ2IjoiMS4xMiIsImF2IjozMzYxNTcyLCJhdCI6MTA0NTAsImJ0IjowLCJjbSI6NDE2NzY3NzcxLCJjaCI6NjExNDcsImNrIjp7fSwiY3IiOjQ3NjAxMjA0NSwiZGkiOiI0NDNmZDNiY2QyOTA0M2I5OWEzZGNhNWRkMjNiNDA4ZiIsImRqIjowLCJpaSI6IjdjMjBjNzRjNDI1YzQ1MjU5NzhiOGUzMWMxMmE3MjgzIiwiZG0iOjMsImZjIjo2NTA4NjUyOTksImZsIjo2MTkxODEwMjksImlwIjoiMjAuODEuMzQuMTc3IiwibnciOjExNDkyLCJwYyI6MCwib3AiOjAsIm1wIjowLCJlYyI6MCwiZ20iOjAsImVwIjpudWxsLCJwciI6MjQwMDM3LCJydCI6MSwicnMiOjUwMCwic2EiOiI1NiIsInNiIjoiaS0wNzgyYTZmMGYyMjAxMTZhMCIsInNwIjo2MDQ0MTEsInN0IjoxMjg4MTc1LCJ1ayI6InVlMS1jNjU5Yjk1NTU5NWU0ZTg2YmU1YzU5MmE5N2E3ZmVmMSIsInpuIjozMDczNzAsInRzIjoxNzM4ODU1MTE0MDE1LCJnYyI6dHJ1ZSwiZ0MiOnRydWUsImdzIjoibm9uZSIsInR6IjoiQW1lcmljYS9OZXdfWW9yayIsInVyIjoiaHR0cHM6Ly9wdWJsaXNoaW5nLmFpcC5vcmcvcHVibGljYXRpb25zL2pvdXJuYWxzL3NwZWNpYWwtdG9waWNzL2NoYW9zLz91dG1fc291cmNlPXBkZi1kb3dubG9hZHMmdXRtX21lZGl1bT1iYW5uZXImdXRtX2NhbXBhaWduPUhBX0NIQV9TVCtPcGVuK2ZvcitTdWJzX1BERl8yMDI0In0&s=RuRJjlj03Gl3-3OnX6ysjLjFmvM


Chaos ARTICLE pubs.aip.org/aip/cha

Spectral principle for frequency synchronization
in repulsive laser networks and beyond

Cite as: Chaos 35, 021101 (2025); doi: 10.1063/5.0251322

Submitted: 1 December 2024 · Accepted: 11 January 2025 ·
Published Online: 3 February 2025 View Online Export Citation CrossMark

Mostafa Honari-Latifpour,1,2 Jiajie Ding,1,2 Igor Belykh,3,a) and Mohammad-Ali Miri1,2,b)

AFFILIATIONS

1Department of Physics, Queens College, City University of New York, New York, New York 11367, USA
2Physics Program, The Graduate Center, City University of New York, New York, New York 10016, USA
3Department of Mathematics and Statistics & Neuroscience Institute, Georgia State University, P.O. Box 4110, Atlanta,

Georgia 30302-410, USA

a)Electronic mail: ibelykh@gsu.edu
b)Author to whom correspondence should be addressed: mmiri@qc.cuny.edu

ABSTRACT

Network synchronization of lasers is critical for achieving high-power outputs and enabling effective optical computing. However, the role
of network topology in frequency synchronization of optical oscillators and lasers remains not well understood. Here, we report our sig-
nificant progress toward solving this critical problem for networks of heterogeneous laser model oscillators with repulsive coupling. We
discover a general approximate principle for predicting the onset of frequency synchronization from the spectral knowledge of a complex
matrix representing a combination of the signless Laplacian induced by repulsive coupling and a matrix associated with intrinsic frequency
detuning. We show that the gap between the two smallest eigenvalues of the complex matrix generally controls the coupling threshold for
frequency synchronization. In stark contrast with attractive networks, we demonstrate that local rings and all-to-all networks prevent fre-
quency synchronization, whereas full bipartite networks have optimal synchronization properties. Beyond laser models, we show that, with a
few exceptions, the spectral principle can be applied to repulsive Kuramoto networks. Our results provide guidelines for optimal designs of
scalable optical oscillator networks capable of achieving reliable frequency synchronization.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0251322

Understanding how network topology shapes synchronization
in oscillatory systems is a fundamental question with profound
implications. While extensive research has developed powerful
methods to predict synchronization thresholds in networks with
attractive coupling—leveraging spectral properties of the con-
nectivity matrix1,2 and connection graph topology3—networks
with repulsive coupling remain far less understood. The prin-
ciples governing attractive systems often fail to apply to repul-
sive ones, leaving the role of network structure in achieving
frequency synchronization—where oscillators align to a com-
mon frequency despite intrinsic differences—an open question.
This paper tackles this challenge using repulsive laser oscil-
lator networks as a model, introducing a spectral principle
to predict the onset of frequency synchronization. This prin-
ciple reveals that, unlike attractive networks, fully bipartite
structures are optimal for synchronization in repulsive sys-
tems, while local or global connections can prevent synchro-
nization entirely. These findings establish a new framework for

understanding frequency synchronization in repulsive oscillator
networks, including Kuramoto models, and offer insights with
broad applicability.

I. INTRODUCTION

Frequency synchronization when coupled photonic oscilla-
tors with different natural frequencies synchronize to a common
frequency is a critical requirement for unconventional computing
using optical oscillators and lasers4–8 as well as for communica-
tion, sensing, and metrology.9 Frequency synchronization implies
phase entrainment with non-stationary yet bounded relative phases.
Such average frequency locking without phase locking accompa-
nies resonance-assisted synchronization in coupled lasers.10 While
phase synchronization is crucial for coherent beam combining in
high-power laser systems,11,12 frequency synchronization is essential
in applications where optical oscillators with initially different
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emission frequencies need to operate coherently. In particular,
in optical computing architectures and photonic neural networks,
arrays of lasers with intrinsic frequency detuning perform complex
computations through interference and modulation.13 Frequency
synchronization ensures that the computational elements interact
coherently, maintaining the integrity of the computational pro-
cesses. In optomechanical systems, optical oscillators with different
frequencies interact with mechanical resonators,14 where frequency
synchronization enhances the system’s sensitivity and performance.
Similarly, in optical frequency combs used for precision measure-
ments and metrology, frequency synchronization across the comb
lines is vital.15,16 Trapped Bose–Einstein condensates that simu-
late the classical spin degrees of freedom in the XY Hamiltonian
require frequency synchronization for properly operating the XY
simulator.17

Complex laser oscillator networks that expand beyond the
conventional lattice geometries based on the evanescent tail cou-
pling of the neighboring lasers can be implemented using diffrac-
tion engineering.18–20 The main types of coupling in laser networks
encompass dispersive and dissipative interactions. Dissipative cou-
pling induces the splitting of the resonant frequencies and is gen-
erally considered the superior mechanism for promoting network
synchronization.21 However, dissipative coupling can be attrac-
tive or repulsive, promoting in-phase and out-of-phase oscillations,
respectively. The significance of the repulsive coupling scenario
manifests itself in various applications, including the spin models
for unconventional computing.4,22,23 In this context, the attractive
coupling corresponds to the trivial ferromagnetic case. In con-
trast, repulsive coupling aligns with anti-ferromagnetism that can
embed hard optimization problems6,17,24 and can represent non-
trivial energy-based neural network models.25 Furthermore, it has
been suggested that anti-phase-coupled lasers can have better overall
beam combining efficiencies.26

Extensive research has been devoted to the role of net-
work structure and parameter heterogeneity on the synchroniza-
tion in oscillator networks with attractive coupling, including laser
arrays,12,27–32 and more broadly, Laplacian,1–3,33–37 pulse-coupled,38–42

amplitude-phase oscillator43–46 and Kuramoto-type networks.2,47–56

In particular, it was shown that the critical coupling for the onset of
phase synchronization in Kuraromoto oscillator networks of non-
identical oscillators is controlled by the largest eigenvalue of the
adjacency matrix.2 Complete synchronization in Laplacian networks
of identical1 or nonidentical34,37,57 oscillators is determined via the
master stability function that involves the second largest and the
largest eigenvalues of the Laplacian matrix.1

However, a significant knowledge gap remains regarding the
interplay of these factors for phase-locked rhythms or frequency
synchronization in repulsive oscillator networks. Such networks
exhibit different forms of phase and frequency synchronization,
including splay states,58 clusters,59 and cyclops states,60 whose depen-
dence on the network structure is not well understood and can be
counterintuitive. For example, globally coupled repulsive Kuramoto
networks fail to reach frequency synchronization, whereas it occurs
in locally coupled networks.61 Generally, the governing principles
for the transition to phase-locked patterns and frequency syn-
chronization in repulsive networks cannot be inferred from their
counterparts with attractive coupling.

This paper primarily focuses on frequency synchronization in
optical oscillator networks with intrinsic frequency detuning, which
is a foundational step before achieving phase-locking regimes in
many oscillatory systems.62 This paper extends our previous study of
frequency synchronization of two class-A laser oscillators with dis-
sipative coupling21 to larger networks. We reveal a general principle
that pairs frequency synchronization with the network structure and
parameter detuning in networks of class-A laser oscillators63,64 with
repulsive signless Laplacian dissipative coupling.21 This principle
indicates that the coupling threshold for frequency synchronization
is controlled by the spectral knowledge of the complex matrix com-
posed of the connectivity matrix and the matrix representing intrin-
sic frequency detuning. More precisely, the coupling threshold in
such repulsive laser networks is defined by the spectral gap between
the two smallest (non-zero) eigenvalues of the complex matrix. This
principle suggests that full bipartite networks rather than global or
local network topologies provide optimal synchronization proper-
ties. In particular, we demonstrate that dense long-range interac-
tions do not necessarily lower the synchronization threshold. We
also show that the dynamics of the amplitude-phase laser oscillators
with signless Laplacian dissipative coupling can be approximated by
the Kuramoto model with repulsive coupling. As a result, with a
few notable exceptions, the spectral network principle can also be
applied to frequency synchronization in such Kuramoto networks.
Our results may open the door to optimal designs of scalable opti-
cal computing networks that require their photonic oscillators to be
frequency synchronized to be used as analog processors.6,7

The layout of this paper is as follows. Section II introduces the
laser network model and states the problem under consideration. In
Sec. III, we formulate the spectral network principle for networks
of identical laser oscillators. In Sec. IV, we extend our results to
non-identical oscillators. In Sec. V, we demonstrate how the prin-
ciple applies to frequency synchronization in repulsive Kuramoto
networks. Section VI contains concluding remarks and discussions.

II. THE MODEL

We consider a network of N dissipatively coupled lasers
described by a minimal dynamical model that involves only the
amplitude and phase of the field in each laser cavity.65 The complex
amplitude of the nth oscillator obeys

ȧn(t) =
(

−iωn − 1 + g0

(

1 − |an|2
))

an, n = 1, . . . , N, (1)

where time is normalized to the field decay rate, ωn and g0 repre-
sent the dimensionless resonant frequency and small signal gain,
respectively. This model applies to class-A lasers, where the atomic
degrees of freedom can be adiabatically eliminated due to their
much faster decay rates compared to that of the electromagnetic
field.63,64 In this regime, the laser dynamics’s description simplifies
to a single equation governing the evolution of the electric field
with an appropriate saturable gain term.66 Although semiconduc-
tor lasers are typically classified as class-B lasers—requiring models
that account for the complex dynamic interplay between the field
and population inversion67—it is noteworthy that near the oscil-
lation threshold, a class-B laser’s behavior can be approximated
using a class-A laser model.68 Moreover, the simplicity and ana-
lytical tractability of the class-A laser model make it valuable in
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FIG. 1. (a) The concept of dissipative coupling, where two resonators with mismatched resonant frequencies (ω0 + 1 and ω0 − 1) interact through a dissipative (lossy)
medium, which causes radiation leakage. (b) The general scheme for creating arbitrary coupling between spatially segmented laser oscillators (gray dots) through intra-cavity
diffraction engineering. The diffractive surfaces (three transparent meshes) steer light from individual lasers toward other lasers to implement, through transverse coupling
(red dots), an arbitrarily complex network topology within the array. (c) The equivalent connection graph of system (2).

various applications—including optical neural computing,25 quan-
tum simulations,69 and topological lasers70—which supports its use
in exploring synchronization phenomena in optical networks. From
a nonlinear dynamics perspective, the behavior of the model (1) is
analogous to that of the Landau–Stuart oscillator.

The dynamical equations governing complex field amplitudes
of the network are

ȧ(t) = −a + g0(1 − a∗ · a)a − i�a − κQa, (2)

where a = [a1, . . . , aN]T is the vector containing the laser’s com-
plex amplitudes, � = diag(ω1, . . . , ωN) is an N × N diagonal matrix
involving detuned resonant frequencies, Q is the signless Laplacian
connectivity matrix with off diagonal elements qmn = 1 for cou-
pled oscillators and qmn = 0 otherwise, and diagonal elements qmm

=
∑

m6=n qmn. Figure 1 illustrates the physical implementation of the
laser oscillator network (2). Signless Laplacian coupling in the model
(2) arises from the principle of energy conservation, which dictates
that the dissipative energy exchange between two resonators must
be treated as an additional loss mechanism for each resonator. This
approach introduces an external loss term, −κan, to the complex
amplitude equation of the nth laser for each pairwise connection. As
a result, the connectivity matrix Q takes the form of a signless Lapla-
cian. This formulation contrasts with the energy-conserving models,
which focus solely on incoming fields.21,30,71 Figure 1(a) schemat-
ically depicts the interaction of two laser oscillators through the
dissipative coupling. In this setting, the energy exchange between
two laser cavities is mediated through the surrounding medium,
where radiation leakage is inevitable. The in-phase emission of the
two oscillators in the decay channel yields the negative sign of the
coupling term −κQa in (2) with the coupling coefficient κ > 0.
As a result, it makes the dissipative coupling repulsive (see Ref. 21
for a more detailed description of the dissipative coupling’s role in
frequency synchronization of two class-A laser oscillators). Larger
networks with arbitrary connections defined by the signless Lapla-
cian matrix Q can be implemented by diffraction engineering18 as
depicted in Figs. 1(b) and 1(c).

Combining the last two terms in (2), we introduce the complex
matrix

M = i� + κQ, (3)

which accounts for the contribution of intrinsic frequency detuning
and linear dissipative coupling. In an amplitude and phase represen-
tation of the complex amplitudes an(t) = An(t)e

iφn(t), the network
(2) can be written in the form

Ȧn = −An + g0

(

1 − A2
n

)

An − κ

N
∑

m=1

qmnAm cos(φm − φn),

φ̇n = −ωn − κ

N
∑

m=1

qmn

Am

An

sin(φm − φn), n = 1, . . . , N.

(4)

When the signal gain is sufficiently large such that g0 � κ > 1, the
expression g0(1 − A2

n)An in the amplitude equation of the system
(4) becomes the leading term. Consequently, the nth laser oscilla-
tor amplitude equation simplifies to Ȧn ≈ g0(1 − A2

n)An, so all laser
oscillators’ amplitudes An(t) → 1. In this regime of large g0, the
dynamics of the system (4) can be effectively approximated by the
classical repulsive Kuramoto model with the connectivity matrix Q.
However, outside this parameter region, as we will demonstrate in
Sec. V, the dynamics of the Kuramoto model and the full system (2)
can differ significantly.

Frequency synchronization occurs in the network (4)
when 〈φ̇1〉 = 〈φ̇2〉 = · · · = 〈φ̇N〉, where 〈· · · 〉 denotes a time aver-
age. Hereafter, we will be using an order parameter

R = 2
N(N−1)

〈

∑N
i<j exp

{

−
(

φ̇i − φ̇j

)2
}〉

as a measure for the degree

of frequency coherence. According to our definition, R = 1 cor-
responds to perfect frequency synchronization that may include
phase-locked patterns with possibly stationary relative phases. Such
examples include splay states58 and cyclops states.60 Typically, fre-
quency synchronization emerges when the coupling exceeds a crit-
ical threshold value κc. For the two-oscillator network (2) with
frequency detunings ω1 = ω0 − 1 and ω2 = ω0 + 1, the threshold
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FIG. 2. The onset of frequency synchronization in the two-oscillator network (4).
(a) Below the synchronization coupling threshold (κ = 0.01 < κc), the oscilla-
tors’ amplitudes A1,2 stabilize to a constant value, while their phases φ1,2 exhibit a
relative phase drift. (b) Above the coupling threshold κ = 0.06 > κc, frequency
synchronization occurs, with both amplitudes A1,2 and phases φ1,2 indicating
anti-phase phase locking at a common frequency. Parameters areω1 = ω0 + 1,
ω1 = ω0 − 1, where ω0 = 1, 1 = 0.05, and g0 = 1.02.

coupling can be calculated analytically so that κc = 1.21 Figure 2
demonstrates the dynamics below and above the coupling threshold.

In the following, we demonstrate that not all network topolo-
gies support frequency synchronization, even for identical oscilla-
tors and infinitely strong coupling. To do so, we first derive the
spectral network principle for networks of identical laser oscilla-
tors and connect the coupling threshold κc with the spectrum of the
signless Laplacian matrix Q.

III. IDENTICAL LASER OSCILLATORS

Previous studies used energy Lyapunov-type functions to
derive conditions on the stability of frequency synchronization in
the classical Kuramoto model with non-identical oscillators and
global attractive coupling50 or local repulsive coupling.61 However,
constructing such functions for the amplitude-phase model (2) with
arbitrary repulsive coupling is elusive. Here, we use an alternative
approach to making sense of the complex matrix M’s spectral prop-
erties as a network synchronizability criterion. We view the onset
of frequency synchronization as competition between the network
eigenmodes for oscillation. This behavior can be better understood
in the transient regime of small-field intensities |a| � 1, where the
gain saturation term can be neglected, allowing the equations to be
linearized. For additional simplification, we consider identical oscil-
lators, with ω1 = ω2 = · · · = ωN = ω0. In this case, the evolution
can be linearized in the rotating frame of ω0 as

ȧ = (g0 − 1)a − κQa. (5)

The connectivity matrix Q has N real nonnegative eigenvalues
s1 ≤ s2 ≤ · · · ≤ sN. Diagonalizing (5) using the eigenmode basis of
Q, a(t) =

∑

m αm(t)vm, where αm(t) = v†
ma(t), we obtain the evo-

lution equation for the mth eigenmode, associated with the mth
eigenvector,

α̇m(t) = (g0 − κsm − 1)αm, m = 1, . . . , N. (6)

These equations describe the linear growth along the eigenvectors
in the low-intensity regime, where the nonlinear terms are ignored.
Among the eigenvectors, the one with the largest linear growth rate
(g0 − κs1 − 1) is expected to dominate, shaping the low-intensity
transient dynamics into a frequency-synchronized state associated
with its eigenfrequency. A straightforward way to evaluate this
dominance is to examine the gap between the linear growth rates
along the first two eigenvectors (m = 1, 2). Specifically, the compe-
tition between these eigenvectors is controlled by the gain difference
κ(s2 − s1). Larger gaps amplify the dominance of the fundamen-
tal eigenvector, thereby enhancing the network synchronizability.
Conversely, when the gap is zero, competition between the two
eigenvectors can arise, preventing the network from stabilizing to
a single collective frequency and achieving frequency synchroniza-
tion. This suggests that the threshold coupling, κc, for the onset of
frequency synchronization can be estimated as

κc =
b

s2 − s1

≡
b

γ
, (7)

where s1 and s2 are the first and second smallest eigenvalues of
the signless Laplacian matrix Q, and b is a scaling factor that may
depend on g0 and types of network configurations. Note that the
spectral network principle (7) for frequency synchronization in
repulsive networks (2) is in sharp contrast with the existing spectral
network conditions for phase synchronization in Kuramoto net-
works controlled by the adjacency matrix’s largest eigenvalue2 and
complete synchronization in Laplacian networks1 determined by
the connectivity matrix’s second largest and largest eigenvalues. In
particular, the spectral gap γ = s2 − s1 is zero for the globally cou-
pled network (2), so frequency synchronization cannot be achieved
even for large values of κ . On the contrary, global Kuramoto or
Laplacian networks with attractive coupling are known to have the
best synchronization properties, determined by the lowest coupling
threshold for phase and complete synchronization. At the same
time, the spectral network principle (7) agrees with the observation
that repulsive Kuramoto networks of identical oscillators cannot be
frequency-synchronized.61

Similarly, networks with the zero spectral gap, γ = 0, are
expected to be non-synchronizable. The property that guarantees
a non-zero spectral gap is the bipartineness of the graph associ-
ated with the matrix Q. It has been previously shown in the context
of spectral signless Laplacian graph theory73–75 that the more edges
need to be removed to make the graph bipartite, the larger the
smallest eigenvalue76 and the smaller the spectral gap are. There-
fore, a bipartite graph that generally is the easiest to synchronize
has its smallest eigenvalue at zero, leading to a larger spectral gap.
To support this claim and validate the predictive power of the spec-
tral network principle (7), we numerically studied the scaling of
the synchronization threshold κc as a function of the network size
in four common network topologies, ranging from sparse to dense
graphs (Fig. 3). All four types of networks discussed here are bipar-
tite graphs and, hence, synchronizable. For all these networks, the
spectral gap γ can be calculated analytically as a function of N.
For the chain graph γ = s2 − s1 = 1 − cos (π/N), which for large
N can be approximated as π 2/N2 (see Ref. 77). For the square lattice
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FIG. 3. Actual (blue circles) and predicted (red dashed line) frequency synchro-
nization threshold κc (with the order parameter R > 0.99) in common bipartite
network topologies, ranging from sparse to dense graphs. The predicted thresh-
olds are computed from the spectral principle (7) with the scaling parameter b
chosen to fit the data. Parameters are ω0 = 1 and g0 = 6.5. The fitting param-
eter b is set to 0.0295, 0.045, 0.63, and 0.75 for the chain, square, star, and full
bipartite topologies, respectively.

graph, the gap is γ = 1 − cos (π/
√

N) and for large N it is approx-
imated by π 2/N. The star graph’s gap is constant and equal to 1.
Finally, for the full bipartite graph the gap is γ = N/2 for even N
and γ = N − 2 for odd N. Figure 3 demonstrates that the spectral

FIG. 4. Frequency synchronization of scale-free networks of identical oscillators
and its relation to the spectral gap γ . The scale-free networks are generated from
an initial graph with m + 10 nodes via the preferential attachment mechanism.72

(a) The onset of frequency synchronization via the dependence of the order
parameter R on coupling strength κ . (b) The corresponding average spectral gap,
γ , for networks with different m. Each curve in (a) and point in (b) correspond to
the average of 100 randomly generated graphs of sizeN = 70withm = 1, . . . , 9.
Other parameters are as in Fig. 3. A larger spectral gap enhances network syn-
chronizability. (c). Sample scale-free networks with m = 1, 5, 9. The size of each
node is proportional to its degree.

network criterion (7) provides a reliable prediction for the scaling
of the coupling threshold. Among the analyzed network topologies,
the star and bipartite graphs show the most accurate correspondence
with the actual values of b = κcγ . For the star graph, the mean value

FIG. 5. Synchronization threshold κc for all 21 possible connected networks of five detuned oscillators. The scattered points in each violin plot represent the coupling
thresholds for 1000 random frequency distributions with ωm ∈ U(−0.5, 0.5). The corresponding network is shown under each plot. The large red circles indicate an infinite
coupling threshold corresponding to non-synchronizable networks. The networks are ordered from 1 to 21 by the spectral gap γ . The full bipartite network with index 21
has the largest γ . As a reference, the blue line shows a predicted trend from the spectral criterion for identical oscillators (7), with the scaling constant b calculated from the
lowest value of κc for full bipartite network 21.
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is µ = 0.631 25 with a standard deviation of σ = 0.024, while the
bipartite graph yields µ = 0.7249 with σ = 0.024. The chain and
square graphs exhibit less precise predictions, with the chain graph
showing µ = 0.1162 and σ = 0.1430, and the square graph having
µ = 0.1588 and σ = 0.110. However, the precision of these predic-
tions improves significantly as the network size increases (N > 20),
with the chain graph achieving µ = 0.035 and σ = 0.007, and the
square graph µ = 0.086 64 and σ = 0.02.

To further illustrate the critical role of the spectral gap γ in
frequency synchronization, we generated ensembles of uniformly
connected, Barabasi–Albert scale-free networks.72 Figure 4 shows
that more heterogeneous networks with higher node degree hubs,
in general, correspond to a larger spectral gap γ , and such networks
are easier to synchronize.

IV. EXTENSION TO NONIDENTICAL LASER

OSCILLATORS

While the criterion (7) performs remarkably well for a large
spectrum of the regular and scale-free networks depicted in Figs. 3
and 4, it is important to point to the limitations of its predictive
power. The energy landscape governing the system of repulsively
coupled identical oscillators via a hypothetical Lyapunov function
may be a non-convex function. As a result, the fundamental eigen-
mode might not necessarily be the one to win the lasing competition
or have the maximal overlap with the lasing mode. Therefore, any
mth eigenmode with the corresponding eigenvalue sm cannot be
completely ruled out as unimportant for the network synchroniz-
ability. This might become particularly important for the case of
non-identical laser oscillators where the signless Laplacian matrix
Q alone does not determine the results. In fact, in the general case,
the spectral gap that is predicted to control frequency synchroniza-
tion of non-identical laser models can be defined as the separation
between the real parts of the two eigenvalues of matrix M with the
smallest real parts, i.e.,

γM = <[λ2 − λ1]. (8)

Note that the spectral gap γM depends on the coupling coefficient κ

present in the complex matrix M. Therefore, the spectral criterion
(7) cannot be directly extended to non-identical oscillators. Instead,
the spectral gap criterion (8) for non-identical oscillators may serve
as a metric that characterizes the synchronizability of the network at
a given coupling strength k, with higher values of γM correspond-
ing to better synchronizability. For the two-oscillator network in
Fig. 2 with frequency detunings ω1 = ω0 − 1 and ω2 = ω0 + 1,

the spectral gap is γM = 2
√

κ2 − 12, yielding the above-mentioned
threshold coupling κc = 1 (see Sec. V in Ref. 21 for the details of
this linear stability analysis). Notably, the synchronization thresh-
old is marked with a phase transition in the eigenvalues of matrix M
that dictates the system’s linearized dynamics.

To verify the general approximate criterion (8) for larger net-
works, we have numerically calculated the coupling threshold κc for
all possible 21 network topologies of size N = 5 and 1000 combi-
nations of random frequency detunings. Figure 5 shows that the
networks 1, 2, and 3, similar to their identical oscillator counterparts
with the zero spectral gap γ = 0, cannot support frequency synchro-
nization for any of the chosen frequency detunings. Remarkably,

these networks include a locally coupled ring and an all-to-all net-
work representing two opposite ends of the network topology range
and are known to be frequency or phase-synchronizable in attrac-
tive phase oscillator networks.2 It is also worth noting a striking
effect that adding one link to the local chain of Fig. 3 top that com-
pletes the loop yields the unsynchronizable ring network 2 of Fig. 5.
Out of the remaining 18 networks with non-zero spectral gap γ ,
and therefore, capable of frequency synchronization according to
the spectral criterion, only one, the network 18, does not follow
the prediction. It remains unsynchronizable for any κ . This is the
case where a complex interplay between the network structure and
distributions of frequency detuning prevents each mth eigenmodes
with eigenvalue λm, m = 1, . . . , N from becoming the lasing mode.
Nonetheless, as in the identical oscillator case, the spectral criterion

FIG. 6. Phase color plots for the five-oscillator global network (graph 3) and full
bipartite network (graph 21) in Fig. 5. (a) Unsynchronizable dynamics observed
in the global network. (b) Frequency synchronization achieved in the full bipar-
tite network, forming a two-cluster synchronization state. Coupling strength
κ = 0.2, g0 = 1.02, and the oscillator frequenciesωi (i = 1, . . . , 5) are normally
distributed with a mean of 0.1 and a standard variation of 0.05.
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FIG. 7. Synchronization threshold κc for all 21 possible connected networks of five detuned Kuramoto-type phase model oscillators obtained from the phase equation (3)
by setting An = Am = 1. The notations and simulation parameters are as in Fig. 5. Note that the phase model networks generally have similar synchronization properties
determined by the spectral gap as their full model counterparts of Fig. 5, except for the locally coupled ring (graph 2) and graphs 1,18.

singles out the full bipartite network (network 21) as the optimal
network topology with the lowest synchronization threshold. Its
dynamics is contrasted to its globally coupled, unsynchronizable
counterpart in Fig. 6.

To better relate the dependence of the threshold κc to the iden-
tical oscillator criterion (7), we choose the lowest value of κc for the
full bipartite network (the lowest peak of the corresponding vio-
lin plot in Fig. 5) to identify the lowest scaling constant b which
could correspond to identical oscillators. We then use this scaling
factor via (7) for all other networks to demonstrate how this trend
compares to the actual heterogeneous oscillators (Fig. 5). Notably,
with a few exceptions, even the identical oscillator spectral criterion
can predict the general dependence on the spectral network gap γ .
The discrepancy between the predicted trend and the numerical data
is due to multiple factors, including different spectral gaps γM that
depend on the coupling κ and detuning distributions.

V. RELATION TO REPULSIVE KURAMOTO NETWORKS

The spectral gap criterion (8) for frequency synchronization
in the amplitude-phase laser model (4) also successfully identifies
the full bipartite network as the optimal network topology for fre-
quency synchronization in the Kuramoto-type model obtained from
the phase equation in system (4) by setting An = Am = 1 (Fig. 7).
Note the similarities and differences between the synchronization
properties of the full amplitude-phase model (4) (Fig. 5) and its
Kuramoto-type counterpart (Fig. 7). Remarkably, the spectral gap
criterion can, with a few exceptions, qualitatively characterize the
dependence of the synchronization threshold on the Kuramoto net-
work topology. The most notable exception is the locally coupled
network (graph 2 in Figs. 5 and 7) that is unsynchronizable in the
amplitude-phase laser network and synchronizable in the phase net-
work. This discrepancy is due to a highly heterogeneous distribution
of amplitudes An(t) in the amplitude-phase model (4) with local
coupling. We use frequency synchronization as a general term that
can account for non-stationary but bounded phase dynamics and
various phase-locked patterns, including phase clusters, as shown

in Fig. 6. As a result, the coupling thresholds for the amplitude-
phase model depicted in Fig. 5 correspond to different distributions
of non-stationary or stationary amplitudes An. Yet, the spectral gap
captures the interplay between frequency synchronization of the
phase models with uniform distributions and network topologies
relatively well.

VI. CONCLUSIONS

In this work, we revealed a general approximate principle that
relates a critical coupling threshold for frequency synchronization
in repulsive class-A laser networks to the spectral gap between the
smallest eigenvalues of the matrix combined from the signless Lapla-
cian connectivity and frequency detuning matrices. The discovered
principle demonstrates that the spectral gap of the signless Lapla-
cian, rather than mere connectivity, is a powerful indicator of the
synchronizability of such repulsive networks. Applying the spec-
tral principle, we discovered that, in stark contrast with attractive
networks, both local ring and global network structures prevent
frequency synchronization, whereas the fully bipartite network has
optimal synchronization properties. The spectral principle has lim-
itations, as it does not always rule out the synchronizability of a
complex network of heterogeneous optical oscillators. However,
it identifies topologies that can be easily synchronized and used
for scalable designs of large optical oscillator arrays. Moreover,
a maximal spectral gap of the complex matrix incorporating fre-
quency detunings could be used as a guiding principle for machine
learning approaches to designing disordered laser oscillator net-
works with optimal synchronization properties required for effective
optical computing. While phase synchronization in oscillator net-
works generally requires frequency synchronization, the reverse
is not necessarily true. Achieving frequency synchronization via
the optimal network design may create conditions conducive to
phase-locking, which is desirable in high-power laser array appli-
cations. While injection locking is a well-established technique for
laser synchronization,78 it relies on an external master laser and
can introduce complexity and scalability issues in large networks.
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Our study explores self-synchronization mechanisms inherent in
the network’s topology and coupling, which can offer advantages in
terms of robustness and scalability for applications like distributed
optical computing. Beyond optical networks, our spectral network
principle is applicable to a broader class of physical and biological
oscillators, including Kuramoto networks, which have wide-ranging
applications in neuroscience, biology, and engineering.
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