
Supplementary information:1

Disorder-induced coherent pulses in direct-current2

driven external-cavity laser arrays3

Greggory Scranton1, Kendall Golden2, Olivier Spitz1,*, Arindam Mishra1, Igor Belykh2,†,4

and Yehuda Braiman1,3,‡
5

1The College of Optics and Photonics (CREOL), University of Central Florida, Orlando, FL 32816, USA6

2Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, P.O. Box 4110,7

Atlanta, Georgia, 30302-410, USA8

3Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA9

*olivier.spitz@ucf.edu10

†ibelykh@gsu.edu11

‡yehuda.braiman@ucf.edu12

13

Single-laser dynamics with the Lang-Kobayashi models14

The peculiarity of pulsing within the framework of this study is that it requires a network of emitters to be triggered. This15

process can be optimized with adequate disordered frequency detuning, as highlighted in the main text. Yet, our model can16

also be studied in the context of a single laser subject to external optical feedback, and in this case, it does not show pulsing17

dynamics. Details about the nonlinear dynamics that can be observed in this configuration are found in Fig. 1, and those states18

are in good agreement with prior studies about the same configuration.1, 2 It is relevant to note that, in the case of an array of19

lasers, the same dynamics can also be observed, but we only focused on the pulsing state as it has not been reported previously.20

For a high bias current (seven times) above the threshold, Fig. 1 (a) shows that the single laser exhibits a steady-state behavior21

up to an intermediate feedback level of 10 ns−1. The corresponding unwrapped phase in Fig. 1 (b) is monotonically decreasing22

and no specific feature is highlighted in the electrical spectrum of Fig. 1 (c). Further increase of the feedback strength to23

10.7 ns−1 triggers a first kind of switching dynamics in the output of the laser, as one can observe in Fig. 1 (d). Switching24

dynamics correspond to a train of pulses, as opposed to the pulsing dynamics shown in the main text for arrays of lasers. Each25

train of pulses is composed of many pulses, and the overall behavior is periodic. As mentioned, we found no single pulsing26

configuration for the lone laser under external optical feedback. The typical phase behavior of switching dynamics, shown in27

Fig. 1 (e), is also very different from the phase behavior during pulsing, which will be discussed in an upcoming figure. Phase28

increases in steps during the pulse train and then abruptly decreases outside the pulse train, with a diminution over several29

periods. The electrical spectrum in Fig. 1 (f) comprises several broad components of discrete peaks. The interval between30

these multiple peaks corresponds to the repetition frequency of the switching dynamics. The oscillation frequency within31

the switching dynamics corresponds to the maximum of the electrical spectrum. From this feedback strength value, a slight32

increase tunes the switching dynamics, as visualized in Fig. 1 (g). The laser output still displays a train of pulses, but the33

number of pulses within the train has increased, and the amplitude of the pulses is more consistent. The evolution of phase in34

Fig. 1 (h) underscores that the two switching dynamics share similar features, and that confirms the difference with pulsing35

dynamics. The electrical spectrum shown in Fig. 1 (i) does not differ much from that shown in Fig. 1 (f), but each peak is36

broadened. A wide variety of switching dynamics (not shown here) can be obtained when varying κ f around 11-14 ns−1. When37

the feedback strength is increased, the train of pulses contains more and more pulses until it becomes continuous, and only38

the fast oscillation remains. Such state can be observed in Fig. 1 (j) for κ f = 17 ns−1. The phase decreases over long time39

scales and otherwise follows the oscillation pattern at short time scales, as seen in Fig. 1 (k). The electrical spectrum in Fig. 140

(l) contains the frequency component related to the oscillation frequency and several harmonics of the main frequency. Each41

contribution is narrow-band, contrasting with the electrical spectra for switching dynamics. In this single-laser configuration,42

intermediate feedback strength can also lead to low-complexity chaos dynamics, and this is illustrated in Fig. 1 (m) for κ f = 2543

ns−1. The phase in Fig. 1 (n) now decreases much faster with time and shows small amplitude fluctuations that seem to retain44

an almost periodic behavior with a typical scale close to roundtrip time (3 ns). The electrical spectrum in Fig. 1 (o) displays a45

wide component, which is a typical feature of chaos dynamics, but discrete peaks can still be found within the structure, hence46

explaining why the temporal pattern of Fig. 1 (m) belongs to low-complexity chaos.47
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RÉSUMÉ

Les lasers à cascades quantiques sont connus pour leur dynamique non-linéaire lorsqu’ils
sont soumis à une contre-réaction optique. Nous montrons que l’ajout d’une rotation de
polarisation peut provoquer un autre phénomène non-linéaire, à savoir une onde carrée, avec
l’apparition d’une onde transverse électrique en plus de celle transverse magnétique.

MOTS-CLEFS : lasers à cascades quantiques, moyen-infrarouge, contre-réaction optique,
dynamique (a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

FIGURE 1 : a) trace temporelle expérimentale et b) spectre RF de l’onde TM émise par le LCQ lorsque la contre-
réaction optique est appliquée sans retournement de polarisation. Dans ce cas, il n’y a pas de dynamique TE.

Supplementary figure 1. Nonlinear dynamics that can be observed for a bias current high above threshold (β = 7) and
several conditions of feedback strength in a single laser; (a) Intensity time trace, (b) phase time trace, and (c) electrical
spectrum for κ f = 10 ns−1, illustrating steady-state dynamics at low feedback strength; (d-f) identical to (a-c) but for
κ f = 10.7 ns−1, corresponding to a first type of switching dynamics; (g-i) identical to (a-c) but for κ f = 11 ns−1,
corresponding to a second type of switching dynamics; (j-l) identical to (a-c) but for κ f = 17 ns−1, corresponding to fast
oscillations in the output of the laser; (m-o) identical to (a-c) but for κ f = 25 ns−1, corresponding to low-complexity chaos
dynamics. The frequency detuning for this laser is 0. Other parameters not mentioned here are as shown in Tab. 1

Default parameters for the Lang-Kobayashi model simulations48

The Lang-Kobayashi model in the context of an array of semiconductor lasers takes into account various dynamical parameters49

that we list in this section, and the values for each parameter used in the 30 laser models of the main text are gathered in Table 1.50

The relationship between the threshold current Jth, defined as a number of electrons per unit of time (used in the equations) and51

Ith, the threshold current in unit of A (described in the table) is Jth =
Ith
e , with e the charge of an electron. An illustration of52
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decay non-local coupling is shown in Fig. 2. The external time delay is identical for all lasers in all the simulations presented.53

Yet, similarly to what has already been mentioned for noise, we have computationally verified the emergence of pulses in54

the presence of disordered time delay but wished to restrain to non-disordered examples to explain the pulsing mechanism55

better and compare with reduced modeling. Tab. 3 shows the parameters used in the two-laser Lang-Kobayashi model, whose56

simulation results are shown in Fig. 4(a) in the main text.57

Supplementary table 1. Details of the parameters for simulating the 30-Lang-Kobayashi laser model array. The values used
in the simulations are compatible with those usually found in semiconductor lasers.3, 4

Symbol Description Value

λ Wavelength 770 nm
α Linewidth enhancement factor 5.0
g Differential gain coefficient 1.5×10−5 ns−1

s Gain saturation coefficient 2×10−7

γ Cavity loss 500 ns−1

N0 Carrier number at transparency 1.5×108

γn Carrier loss rate 0.5 ns−1

ωodd Frequency detuning for odd lasers -2 GHz
ωeven Frequency detuning for even lasers 2 GHz

τ Feedback delay time 3 ns
κ f Feedback strength varied from 0 ns−1to 50 ns−1in steps of 0.2 ns−1

d Cross-laser reinjection efficiency 0.75
β Pump factor varied up to 9.0
Ith Threshold pump current for a single laser 14.7 mA

Supplementary figure 2. Decay non-local coupling in the network of emitters. The transparency of the links is inversely
proportional to the coupling strength between emitters.

Perturbation of the frequency detuning in the 30-laser configuration58

The main manuscript details the pulsing dynamics in an array of 30 lasers with frequency detuning. To optimize the pulsing59

dynamics, which includes the juxtaposition of anti-phase and in-phase synchrony, we focused on a configuration with a60

frequency detuning of -2 GHz for odd lasers and 2 GHz for even lasers. However, this requirement can be relaxed without61

significantly impacting the observed dynamics. With the frequency detuning values listed in Tab. 2, one can observe the pulsing62

dynamics displayed in Fig. 3, among others. A configuration with a single pulse per period is illustrated in Fig. 3 (a) for the full63

array of 30 lasers, and the alternate behavior between the even and the odd lasers is still observed. In Fig. 3 (b) the phase time64

trace for an even and an odd laser shows that the phase behavior strongly differs compared to what was described in Fig. 1 for a65

single laser. The phase is overall decreasing and there is a positive step every time a pulse is triggered for the even lasers while66

there is a negative step every time a pulse is triggered for the odd lasers. The synchrony behavior is detailed in Fig. 3 (c) and67

shows again that anti-phase synchrony is followed by in-phase synchrony. Pulsing in the odd lasers is simultaneous with the68

anti-phase behavior, while pulsing in the even lasers is simultaneous with the in-phase behavior. We also highlight a case with69

two pulses per period, as seen in Fig. 3 (d). The phase time trace in Fig. 3 (e) confirms that the number of steps is related to the70
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Supplementary table 2. Frequency detuning of the 30 lasers in the array when the perturbed case is studied.

Laser number Frequency detuning (GHz)

1 -2.059
2 2.008
3 -2.079
4 1.887
5 -1.998
6 2.117
7 -2.041
8 2.035
9 -1.930

10 2.008
11 -1.952
12 2.155
13 -1.781
14 2.020
15 -2.178
16 2.033
17 -1.982
18 1.893
19 -1.998
20 2.032
21 -1.883
22 2.011
23 -2.108
24 2.128
25 -2.016
26 2.068
27 -1.978
28 2.072
29 -2.028
30 2.017

number of pulses, as two steps per period can be observed. The last panel, meaning Fig. 3 (f), showcases the synchrony features71

already observed without the perturbation of the frequency detuning. Overall, this example underscores that the frequency72

detuning does not need to be strictly -2 or 2 GHz to observe pulsing and an uncertainty of more than 0.1 GHz can be tolerated73

for some lasers in the array. This finding is noteworthy as it can be complex to experimentally manufacture an array of lasers74

with extremely precise frequency detuning. A typical uncertainty of 0.1 GHz can be achieved more realistically and should not75

impact the pulsing phenomenon. This alternating configuration of detuning values was engineered to encourage pulsing, but76

pulsing can be achieved with other non-alternating configurations, as demonstrated in the next section.77

Example with sparse frequency detuning configuration78

In addition to the perturbed frequency detuning that is underscored in the previous section, pulsing was achieved in an example79

with a non-alternating detuning configuration. This example has an array of 20 lasers, and its behavior is illustrated in Fig. 4.80

The frequency detuning on lasers 5, 10, and 15 is 4 GHz. All other lasers have a detuning of zero. Other parameters are the81

same as those shown in Tab. 1. Pulsing has the greatest amplitude on the three lasers with 4 GHz detuning. The amplitude of82

the pulses is weaker for lasers farther from these detuned lasers, with the lasers on the edges showing the lowest amplitude83

pulses. This further proves that pulsing is driven by differences in frequency detuning between lasers in an array. The synchrony84

behavior shows anti-phase synchrony followed by in-phase synchrony, as seen in Fig. 4(c) and (f), although neither is as85

pronounced as in the alternating-detuning cases.86
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Supplementary figure 3. Investigation of a 30-laser pulsing case similar to the one highlighted in the main text, but with the
addition of perturbed frequency detuning. (a) Overview of single pulsing in the array of 30 lasers, with the odd and even lasers
showing alternate behaviors. (b) Phase time trace for one selected odd laser and one selected even laser, both showing a step at
the instant of pulsing that contrasts with the otherwise linear evolution of the phase. (c) Combined field intensity (black curve)
of the 30 lasers in the array, illustrating when the lasers are anti-phase synchronized and in-phase synchronized. This panel also
shows the magnified intensity of an odd laser (green curve) and an even laser (cyan curve). (c-d) identical to (a-b) but for a
configuration with two pulses per period.

Computation support for deriving the reduced model87

The objective of the reduced model is to explain the origin of the pulsing behavior in the minimum network required to generate88

pulsing, which is a network of two lasers with transverse coupling. The parameters used in the two-laser model shown in Fig. 4(a)89

of the main text are summarized in Tab. 3. To derive the reduced model, we approximate r1(t − τ)≈ r1(t)≈ r2(t − τ)≈ r2(t),90

φi(t − τ) ≈ φi(t), and N1(t − τ) ≈ N1(t) ≈ N2(t − τ) ≈ N2(t). To demonstrate the validity of these approximations for the91

two-laser case, example plots are shown in Fig. 5 for the pulsing case in which κ f = 18.0ns−1 and ∆ω = 3.0GHz.92

The normalized differences between the non-delayed and time-delayed versions of r2(t), φ2(t), and N2(t) are plotted in93

Fig. 5(a). The absolute value of (φ2(t)−φ2(t−τ))/φ2(t) is below 5×10−5 for all time, and remains below 1.2×10−5 between94

pulses. The absolute value of (N2(t)−N2(t − τ))/N2(t) is below 0.02 for all time and remains below 2×10−6 between pulses.95

The absolute value of (r2(t)− r2(t −τ))/r2(t) is slightly larger, at a maximum around 0.2, but remains below 1×10−5 between96

pulses. This maximum value may be due to a period that differs slightly from τ or small differences in pulse shapes. The fact97

that all these values remain around zero for most of the time supports the approximations r2(t − τ)≈ r2(t), φ2(t − τ)≈ φ2(t),98

and N2(t − τ)≈ N2(t). The same trends hold true for laser 1, so r1(t − τ)≈ r1(t), φ1(t − τ)≈ φ1(t), and N1(t − τ)≈ N1(t).99

The normalized differences between the ri(t) and Ni(t) values for the two lasers are shown in Fig. 5(b). The absolute value100

of (N2(t)−N1(t))/N2(t) is below 0.025 for all time, and remains below 4.1×10−3 between pulses. The absolute value of101

(r2(t)− r1(t))/r2(t) is slightly larger, at a maximum under 0.2, but remains below 0.013 between pulses. As before, the fact102

these values are generally around zero validates the approximation r1(t)≈ r2(t) and N1(t)≈ N2(t).103
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Supplementary figure 4. Investigation of a 20-laser pulsing case when a limited number of emitters in the array exhibit
frequency detuning, with only ω5 = ω10 = ω15 = 4 GHz being non-zero. (a) Overview of single pulsing in the array of 20
lasers. (b) Phase time trace for one selected odd laser and one selected even laser, both showing a step at the instant of pulsing
that contrasts with the otherwise linear evolution of the phase. (c) Combined field intensity (black curve) of the 20 lasers in the
array, illustrating when the lasers are anti-phase synchronized and in-phase synchronized. This panel also shows the magnified
intensity of an odd laser (green curve) and the magnified intensity of an even laser (cyan curve). (c-d) identical to (a-b) but for a
configuration with two pulses per period.

Supplementary table 3. Details of the parameters for simulating the two-Lang-Kobayashi laser model array.

Symbol Description Value

λ Wavelength 770 nm
α Linewidth enhancement factor 2.5
g Differential gain coefficient 1.5×10−5 ns−1

s Gain saturation coefficient 2×10−7

γ Cavity loss 500 ns−1

N0 Carrier number at transparency 1.5×108

γn Carrier loss rate 0.5 ns−1

ω1 Frequency detuning for laser 1 -∆ω/2
ω2 Frequency detuning for laser 2 ∆ω/2
τ Feedback delay time 8 ns
κ f Feedback strength varied from 6 ns−1to 24 ns−1in steps of 0.2 ns−1

d Cross-laser reinjection efficiency 1.0
β Pump factor 9.0
Ith Threshold pump current for a single laser 14.7 mA
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Supplementary figure 5. Plots demonstrating the validity of the approximations used for the reduced model. These are
shown for the two laser full Lang-Kobayashi model simulations for the pulsing case in which κ f = 18.0ns−1 and
∆ω = 3.0GHz. (a) normalized differences between non-delayed and time-delayed versions of r2(t), φ2(t), and N2(t). (b)
normalized differences between the ri(t) and Ni(t) values for the different lasers.
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