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The generation of high-power controlled pulses in semiconductor lasers and laser arrays is of
significant theoretical and practical importance, with broad applications across various fields. The
widespread view suggests that external factors, such as strong modulation, unilateral injection, or
saturable absorbers, are necessary for pulse generation. In contrast, we demonstrate that direct-
current-driven external-cavity laser arrays, subject only to optical feedback and non-local time-
delayed coupling, can generate frequency disorder-induced pulsing without any external means.
We establish how designed frequency disorder promotes coherent pulsing across the laser array at
a high-bias current. This pulsing is characterized by highly desired features such as multi-GHz
frequency operation, high peak power, and near-perfect phase synchronization. Through analysis
and numerical simulations, we reveal the pulse generation mechanism that originates from a disorder-
induced saddle-node bifurcation, leading to energy accumulation preceding pulse emission. Our
breakthrough results pave the way for a new paradigm in the understanding and systematic design
of disorder-induced controllable pulses for large, scalable semiconductor laser arrays.

Introduction. Semiconductor lasers are renowned for
excitability under various perturbations that disturb
their steady operation, with pulsing being particularly
important for applications including optical neurons [1, 2]
and photonics processors [3]. Studies across diverse plat-
forms, from single lasers to 2D arrays, have shown that
external means, such as AC driving [4], strong modula-
tion [5, 6], or unilateral injection [7–11], play a key role
in the controllable pulsing dynamics. For example, large
amplitude modulation can trigger gain-switched pulses
down to tens of picoseconds [12–17], and further pulse
narrowing is achievable through mode locking, especially
with a saturable absorber [18–24]. These external meth-
ods aimed to achieve nearly perfectly controllable pulsing
dynamics [25, 26], in contrast to what is obtained with
external optical feedback alone [27–31]. Despite some
progress in generating pulses in laser arrays, synchro-
nization between pulsing emitters with external control
remains elusive. Pulses often propagate spatially rather
than occurring simultaneously across the array [32–34].
Configurations with two lasers subject to both transverse
coupling and optical feedback showed limited success in
achieving synchronous pulsing [35, 36], and scalability for
large arrays is still a significant challenge [37, 38].

Synchronization in laser arrays has been extensively
studied [39–50], with intrinsic disorder and noise often
regarded as disruptive factors. However, since the dis-
covery that disorder can tame spatiotemporal instabil-
ities and induce synchronization in oscillator networks
[51, 52], it has been shown, both theoretically and ex-
perimentally, that under certain conditions, disorder-
induced synchronization and coherent dynamics can
emerge across a wide range of physical and engineer-
ing systems [53–59]. Notably, it has been demonstrated

that a time-delayed laser array with inherent disorder,
composed of broad-area diodes in an external V-shaped
cavity, under the right conditions can achieve perfect
synchrony [60–62]. Specifically, while frequency disor-
der typically degrades phase synchrony, the introduc-
tion of misalignment (disorder in time delays) can com-
pletely reverse this effect, leading to nearly perfect phase-
synchronized behavior [62].

In this Letter, we demonstrate that contrary to the
widespread assumption that external means are required
for controllable pulsing, large arrays of semiconductor
lasers subject to optical feedback and non-local delayed
coupling can exhibit robust, high-power, coherent, and
periodic pulsing dynamics at multi-GHz frequencies. Re-
markably, this coherent pulsing is induced by an en-
gineered frequency detuning disorder between emitters
without the need for any external control mechanisms.
This behavior sharply contrasts with the expected dy-
namics of single semiconductor lasers without external
means. In our setting, the engineered pulsing features
narrow time widths of tens of picoseconds, tunable in-
tervals between well-separated single and multiple spike
trains, and transition from anti-phase locking to phase
locking, indicating the potential for coherent beam com-
bining. By combining analytical techniques and numer-
ical simulations, we uncover the underlying mechanism
responsible for disorder-induced pulse generation in ar-
rays of Lang-Kobayashi laser models. Our findings high-
light the promise of engineered, all-optical pulsing in
large semiconductor laser arrays, offering a clear path
toward phase-locked beam combining for high-power op-
tical pulse generation.

The laser array model. We consider a large array of
Q delay-coupled semiconductor lasers with decayed non-
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FIG. 1. Array of semiconductor lasers subject to decayed
non-local coupling and optical feedback. The feedback and
decayed coupling provided by the external reflector. The re-
flected beam from each emitter couples to the other lasers in
the array after a time delay τ .

local coupling described by a version [62] of the Lang-
Kobayashi equations [63]:

Ėq(t) =
1+iα

2

(
g

Nq(t)−N0

1+s|Eq(t)|2 − γ
)
Eq(t)+

iσωqEq(t) +
κf

Q
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Aqj(Ej(t− τ))
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1+s|Eq(t)|2 |Eq (t) |2,

(1)

with the qth laser complex field Eq(t) = rq(t) exp iϕq(t)
and carrier number Nq(t). The parameters are custom-
ary for Lang-Kobayashi-type models: g and N0 are
the differential gain coefficient and number of carriers
at transparency, respectively, γ is the cavity loss rate,
Jth = γn [N0 + (γ/g)] is the pump current threshold, the
pump factor β > 1 means that the lasers are biased above
threshold, γn is the carrier loss rate, κf is the feedback
strength. The frequency detuning of the qth laser is ωq.
The time delay τ is the external cavity round trip time
which is identical for all lasers. Aqj = d|q−j| ∈ (0, 1)
is the entry of the decay non-local coupling matrix con-
necting the qth laser to the jth laser. Although we have
computationally verified the emergence of pulses even in
the presence of noise and/or non-identical time delays,
we have not considered noise and misalignment disorder
effects here to explain the pulsing mechanism better and
facilitate comparison with the reduced model. Supple-
mentary Table 1 contains the full set of the parameter
values and their meaning. Figure 1 schematically illus-
trates the laser array (1) with Q = 8 emitters.

Previous studies within the Lang-Kobayashi frame-
work for a single laser have extensively reported on
the dynamical routes to chaos, including stable locking,
switching dynamics (particularly in short-cavity regimes
[64, 65]) and periodic oscillations [66, 67]. However, these
studies have only documented switching dynamics rather
than the distinct single-pulse or multi-pulse operation re-
ported in this Letter (see the Supplementary Material for
possible single-laser non-pulsing dynamics). We will also

emphasize that pulsing conditions are encountered for
moderate-to-strong feedback strengths and bias currents
high above thresholds. The latter differs from most of the
pulsing schemes with external means mentioned above,
which require the laser to be biased close to the threshold
to optimize the pulse characteristics.

Numerical simulations. For a large array of 30 semi-
conductor lasers, intensity time traces of pulsing are
shown in Fig. 2. Several conditions of operation are high-
lighted to prove the tunability of the pulsing pattern,
with a single pulse per period Fig. 2 (a), three pulses per
period in Fig. 2 (b), and four pulses per period in Fig. 2
(c), with the peculiarity, in the latter, that the time in-
terval between each pulse differs inside a train of pulse.
The periodicity of pulses and pulse trains is very close
to the external cavity time delay τ . There can be up to
three characteristic time scales (one for cavity roundtrip
time, one for intervals between pulse trains, and one for
intervals between the pulses within a single pulse train)
at stake in this nonlinear phenomenon. Figure 2 shows
two distinct pulsing dynamics within the array, with
even-numbered lasers exhibiting one pattern and odd-
numbered lasers displaying another pattern. This stems
from the choice of frequency detuning presented in this
study (2 GHz for even lasers and -2 GHz for odd lasers).
This choice of detuning helps illustrate the pulsing mech-
anism, but does not contrast strongly with other pulsing
configurations detailed in the Supplementary Material.
This detuning configuration was engineered to better en-
able pulsing, although other non-alternating detuning
configurations can also induce pulsing.

Figure 3 provides a more detailed view of the overall
behavior of the 30-laser array. In the single-pulse case,
as shown in Fig. 3(a), the lasers exhibit alternating dy-
namics: even-numbered lasers follow a similar pulsing
pattern, while odd-numbered lasers share a distinct, yet
comparable behavior. The only notable deviation oc-
curs at the edges of the array, where the network inter-
actions are slightly different, resulting in less pronounced
pulsing. Figure 3(b) details the evolution of coherence
over time, displaying the combined field intensity (black
curve) and the Kuramoto order parameter in the inset
(blue curve). The combined field intensity is given by:
C(t) = |

∑Q
q=1 Eq(t)|2. This metric complements the com-

plex Kuramoto order parameter [68, 69], which is de-
fined as R(t)eiΦ(t) = 1

Q

∑Q
q=1 exp (iϕq (t)) and reaches

1 when all lasers are in-phase synchronized and 0 when
they are anti-phase synchronized. For comparison, the
green curve represents the intensity of one of the even
lasers, scaled by 302, while the orange curve shows the
intensity of one of the odd lasers, similarly scaled. A no-
table feature is the pronounced dip in the combined field
intensity, which occurs when the even-numbered lasers
pulse. At the dip’s lowest point, the lasers are anti-phase
synchronized. A few tens of picoseconds later, the odd-
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FIG. 2. Periodic pulsing dynamics in a 30-laser array under various operating conditions after discarding transients. (a) Single
pulse behavior, parameters β = 6.75, κf = 45ns−1. (b) Triple pulse behavior, parameters β = 9.0, κf = 44.8ns−1. (c)
Quadruple pulse behavior with varying time intervals between pulses, parameters β = 5.0, κf = 43.2ns−1. In each panel, the
blue trace represents laser #14, exhibiting the typical behavior of even-numbered lasers, while the orange trace shows laser
#15, reflecting the behavior of odd-numbered lasers. Crosses indicate the detected peaks in the time traces.

FIG. 3. (a) Heatmap of single-pulse dynamics in a 30-laser array with distinct behaviors between odd and even lasers. (b)
Combined field intensity (black curve) of the 30 lasers, highlighting anti-phase and in-phase synchronization periods. The panel
also shows the magnified intensity of an odd laser (green curve) and an even laser (orange curve). The inset demonstrates the
Kuramoto order parameter R(t), confirming transitions between anti-phase and in-phase synchrony. The parameters for this
case are β = 6.75, κf = 45ns−1. (c-d) Same as (a)-(b) but for a pattern with two pulses per period, parameters β = 9.0,
κf = 45ns−1.

numbered lasers pulse in phase with the Kuramoto order
parameter approaching 1. This alternating pattern be-
tween even and odd-numbered lasers persists when the
system is configured for two pulses per period, as seen in
Fig. 3(c)-(d), with a strong dip triggered when the even
lasers are pulsing. In all other multi-pulsing cases, includ-
ing those shown in Fig. 2, the pattern remains consistent
(not shown). The number of dips in the combined field
intensity matches the number of pulses per period, and
the Kuramoto order parameter remains high (above 96

%) when the odd-numbered lasers are pulsing. Notably,
very similar pulsing dynamics are persistent when ran-
dom perturbations are added to the frequency-detuning
values. Supplementary Table 2 gives an example of per-
turbed detunings that preserve pulsing similar to what
is shown in Fig. 3. Unlike other laser networks, particu-
larly those using saturable absorbers, pulsing in our ar-
ray occurs simultaneously across all lasers without spatial
propagation over time. This results in high phase syn-
chrony during the pulsing state, which is advantageous
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for beam combining. Achieving nearly perfect coherence
is particularly relevant in large laser arrays, as optical
power scales with the square of the number of emitters
along the propagation axis.

Disorder-induced mechanism for pulse generation. To
understand the underpinnings of the disorder-induced
pulsing without confounding factors, we consider the
minimal laser array (1) with Q = 2 and d = 1, which
can be cast into the polar coordinate form for laser field
Eq(t):

ṙq = Grq(t) +
κf

2

2∑
j=1

rj(t− τ) cos (ϕj(t− τ)− ϕq(t)) ,

ϕ̇q = αG+ ωq +
κf

2

2∑
j=1

rj(t−τ)
rq(t)

sin (ϕj(t− τ)− ϕq(t)) ,

Ṅq = J0 − γnNq − 2gG(rq, Nq)r
2
q , q = 1, 2,

(2)
where function G = 1

2

(
g
Nq(t)−N0

1+sr2q(t)
− γ

)
, rq(t), and ϕq(t)

are the complex field magnitude and phase, respectively.
We aim to derive an analytically tractable model that
explicitly demonstrates how rapid periodic phase desta-
bilization originating from the frequency detuning can
induce pulsing. Our simulations of the array (2) detailed
in Supplementary Fig. 5 indicate that (i) the period of
coherent pulsing is nearly constant and close to the time-
delay τ and (ii) r1(t) and N1(t) are close to r2(t) and
N2(t) at the nearly coherent state. Therefore, we ap-
proximate r1(t − τ) ≈ r1(t) ≈ r2(t − τ) ≈ r2(t) ≡ r(t),
ϕ1(t − τ) ≈ ϕ1(t), ϕ1(t − τ) ≈ ϕ1(t), and N1(t − τ) ≈
N1(t) ≈ N2(t− τ) ≈ N2(t) ≡ N(t), where r(t) and N(t)
correspond to a nearly coherent state. We then intro-
duce the phase difference θ = ϕ1 − ϕ2 whose evolution
is governed by θ̇ = ∆ω + κf

2 (sin (ϕ2(t− τ)− ϕ1(t)) −
sin (ϕ1(t− τ)− ϕ2(t)) , where ∆ω = ω1 − ω2 is a fre-
quency detunning. Applying the trigonometric identity
for the difference of sines, we simplify the θ equation and
obtain the reduced system that approximately describes
the collective dynamics close to the coherent state:

ṙ = Gr +
κf

2
(1 + cos θ)r(t), θ̇ = ∆ω − κf sin θ,

Ṅ = J0 − γN(t)− 2gGr2.

(3)

Note that the phase difference equation does not con-
tain r and N and represents a nonuniform phase os-
cillator [70]. This equation has two fixed points that
disappear when ∆ω exceeds κf . Under the condition
that ∆ω is slightly greater than κf , θ slowly drifts near
a ghost state, emerging from a saddle-node bifurcation
at ∆ω = kf , before rapidly completing the cycle. This
rapid increase in the phase difference with θ reaching π
destabilizes the r equation via the increased positive term
(1+cos θ) and induces a pulse in r. The time between the
pulses is determined by the nonuniform oscillator’s period
Tperiod = 2π/

√
∆ω2 − (kf )2 [70], where the denominator

1

(a)

(b)

FIG. 4. Pulse generation in the two-laser array (2) (a) and its
reduced model (3) (b) as a function of the frequency detuning,
∆f = ∆ω/2π, and feedback coupling strength, κf (in ns−1).
The color in the heatmaps (left panels) indicates the number
of peaks per time period T = τ = 8 ns. The blue region
shows one-pulse dynamics, calculated over 100 trials in (a)
to account for multistability and one trial in (b), all from
random initial conditions. The white and dark red regions
correspond to the lasers’ steady operation and fast oscillatory
behavior, respectively. The red dashed curve in (a) represents
the reduced model’s saddle-node bifurcation curve κf = ∆ω
that adequately predicts the pulse generation boundary in (2).
Note the gap on the x-axis highlighting the non-zero minimal
frequency detuning required to induce pulsing at ∆f∗ ≈ 0.9
GHz. The white star (left panels) and accompanying time
traces (right panels) correspond to ∆f = 3.027 GHz and κf =
19 ns−1. Only the r2 time series is plotted in (a), with nearly
coherent r1(t) similar to Fig. 2(a) [not shown]. Parameters
for these runs are shown in Supplementary Table 3.

is small. Figure 4 shows that the reduced model (3) pre-
dicts the onset of coherent single-pulse dynamics in the
full model (2) via the disorder-induced saddle-node bi-
furcation remarkably well. Note that the reduced system
(3) was derived under the close zero-order approximation
that the pulsing periodicity is precisely equal to the ex-
ternal cavity time delay. Therefore, it can only capture
single-pulse dynamics, not multi-pulse trains whose char-
acterization requires higher-order perturbation analysis.

Conclusions. We demonstrated that direct-current-
driven external-cavity laser arrays, relying solely on
optical feedback and non-local time-delayed coupling,
can generate periodic, coherent, high-power and high-
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frequency pulses and pulse trains. We have uncovered the
pulse generation mechanism originating from a disorder-
induced saddle-node bifurcation, facilitating energy ac-
cumulation for subsequently triggering the emission of
pulses. Pulse characteristics depend on diode array de-
tuning patterns so that pulses could be experimentally
realized and controlled by engineering frequency detun-
ings via, e.g., individual control of bias currents or other
means. Our approach opens new avenues for practical
applications, including high-power pulse beam combin-
ing and neuromorphic optical computing. Furthermore,
the disorder-induced mechanism of coherent pulse gener-
ation promises to have substantial implications beyond
laser arrays, extending to other excitable physical and
biological systems.
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