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Network synchronization of lasers is critical for achieving high-power outputs and enabling ef-
fective optical computing. However, the role of network topology in frequency synchronization of
optical oscillators and lasers remains not well understood. Here, we report our significant progress
toward solving this critical problem for networks of heterogeneous laser model oscillators with re-
pulsive coupling. We discover a general approximate principle for predicting the onset of frequency
synchronization from the spectral knowledge of a complex matrix representing a combination of the
signless Laplacian induced by repulsive coupling and a matrix associated with intrinsic frequency
detuning. We show that the gap between the two smallest eigenvalues of the complex matrix gener-
ally controls the coupling threshold for frequency synchronization. In stark contrast with attractive
networks, we demonstrate that local rings and all-to-all networks prevent frequency synchroniza-
tion, whereas full bipartite networks have optimal synchronization properties. Beyond laser models,
we show that, with a few exceptions, the spectral principle can be applied to repulsive Kuramoto
networks. Our results provide guidelines for optimal designs of scalable optical oscillator networks
capable of achieving reliable frequency synchronization.

I. INTRODUCTION

Frequency synchronization when coupled photonic os-
cillators with different natural frequencies synchronize
to a common frequency is a critical requirement for
unconventional computing using optical oscillators and
lasers [1–5] as well as for communication, sensing, and
metrology [6]. Frequency synchronization implies phase
entrainment with non-stationary yet bounded relative
phases. Such average frequency locking without phase
locking accompanies resonance-assisted synchronization
in coupled lasers [7]. While phase synchronization is
crucial for coherent beam combining in high-power laser
systems [8, 9], frequency synchronization is essential in
applications where optical oscillators with initially differ-
ent emission frequencies need to operate coherently. In
particular, in optical computing architectures and pho-
tonic neural networks, arrays of lasers with intrinsic fre-
quency detuning perform complex computations through
interference and modulation [10]. Frequency synchro-
nization ensures that the computational elements inter-
act coherently, maintaining the integrity of the compu-
tational processes. In optomechanical systems, optical
oscillators with different frequencies interact with me-
chanical resonators [11], where frequency synchroniza-
tion enhances the system’s sensitivity and performance.
Similarly, in optical frequency combs used for precision
measurements and metrology, frequency synchronization
across the comb lines is vital [12, 13]. Trapped Bose-
Einstein condensates that simulate the classical spin de-
grees of freedom in the XY Hamiltonian require fre-
quency synchronization for properly operating the XY
simulator [14].

Complex laser oscillator networks that expand beyond

the conventional lattice geometries based on the evanes-
cent tail coupling of the neighboring lasers can be imple-
mented using diffraction engineering [15–17]. The main
types of coupling in laser networks encompass dispersive
and dissipative interactions. Dissipative coupling induces
the splitting of the resonant frequencies and is generally
considered the superior mechanism for promoting net-
work synchronization [18]. However, the dissipative cou-
pling can be attractive or repulsive, promoting in-phase
and out-of-phase oscillations, respectively. The signifi-
cance of the repulsive coupling scenario manifests itself
in various applications, including the spin models for un-
conventional computing [1, 19, 20]. In this context, the
attractive coupling corresponds to the trivial ferromag-
netic case. In contrast, repulsive coupling aligns with
anti-ferromagnetism that can embed hard optimization
problems [3, 14, 21], and can represent non-trivial energy-
based neural network models [22]. Furthermore, it has
been suggested that anti-phase-coupled lasers can have
better overall beam combining efficiencies [23].

Extensive research has been devoted to the role of net-
work structure and parameter heterogeneity on the syn-
chronization in oscillator networks with attractive cou-
pling, including laser arrays [9, 24–29], and more broadly,
Laplacian [30–37], pulse-coupled [38–42], amplitude-
phase oscillator [43–46] and Kuramoto-type networks
[34, 47–56]. In particular, it was shown that the critical
coupling for the onset of phase synchronization in Ku-
raromoto oscillator networks of nonidentical oscillators
is controlled by the largest eigenvalue of the adjacency
matrix [34]. Complete synchronization in Laplacian net-
works of identical [30] or nonidentical [33, 37, 57] oscilla-
tors is determined via the master stability function that
involves the second largest and the largest eigenvalues of
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the Laplacian matrix [30].

However, a significant knowledge gap remains re-
garding the interplay of these factors for phase-locked
rhythms or frequency synchronization in repulsive oscil-
lator networks. Such networks exhibit different forms
of phase and frequency synchronization, including splay
states [58], clusters [59], and cyclops states [60] whose
dependence on the network structure is not well under-
stood and can be counterintuitive. For example, globally
coupled repulsive Kuramoto networks fail to reach fre-
quency synchronization, whereas it occurs in locally cou-
pled networks [61]. Generally, the governing principles
for the transition to phase-locked patterns and frequency
synchronization in repulsive networks cannot be inferred
from their counterparts with attractive coupling.

This paper primarily focuses on frequency synchroniza-
tion in optical oscillator networks with intrinsic frequency
detuning, which is a foundational step before achieving
phase-locking regimes in many oscillatory systems [62].
This paper extends our previous study of frequency syn-
chronization of two class-A laser oscillators with dissipa-
tive coupling [18] to larger networks. We reveal a general
principle that pairs frequency synchronization with the
network structure and parameter detuning in networks
of class-A laser oscillators [63, 64] with repulsive sign-
less Laplacian dissipative coupling [18]. This principle
indicates that the coupling threshold for frequency syn-
chronization is controlled by the spectral knowledge of
the complex matrix composed of the connectivity matrix
and the matrix representing intrinsic frequency detuning.
More precisely, the coupling threshold in such repulsive
laser networks is defined by the spectral gap between the
two smallest (non-zero) eigenvalues of the complex ma-
trix. This principle suggests that full bipartite networks
rather than global or local network topologies provide
optimal synchronization properties. In particular, we
demonstrate that dense long-range interactions do not
necessarily lower the synchronization threshold. We also
show that the dynamics of the amplitude-phase laser os-
cillators with signless Laplacian dissipative coupling can
be approximated by the Kuramoto model with repulsive
coupling. As a result, with a few notable exceptions,
the spectral network principle can also be applied to fre-
quency synchronization in such Kuramoto networks. Our
results may open the door to optimal designs of scalable
optical computing networks that require their photonic
oscillators to be frequency synchronized to be used as
analog processors [3, 4].

The layout of this paper is as follows. Section II in-
troduces the laser network model and states the prob-
lem under consideration. In Sec. III, we formulate the
spectral network principle for networks of identical laser
oscillators. In Sec. IV, we extend our results to non-
identical oscillators. In Sec. V, we demonstrate how the
principle applies to frequency synchronization in repul-
sive Kuramoto networks. Sec. VI contains concluding
remarks and discussions.

II. THE MODEL

We consider a network ofN dissipatively coupled lasers
described by a minimal dynamical model that involves
only the amplitude and phase of the field in each laser
cavity [65]. The complex amplitude of the nth oscillator
obeys

ȧn(t) = (−iωn − 1 + g0(1− |an|2))an, n = 1, ..., N, (1)

where time is normalized to the field decay rate, ωn and
g0 represent the dimensionless resonant frequency and
small signal gain, respectively. This model applies to
class-A lasers, where the atomic degrees of freedom can
be adiabatically eliminated due to their much faster de-
cay rates compared to that of the electromagnetic field
[63, 64]. In this regime, the laser dynamics’s description
simplifies to a single equation governing the evolution of
the electric field with an appropriate saturable gain term
[66]. Although semiconductor lasers are typically clas-
sified as class-B lasers — requiring models that account
for the complex dynamic interplay between the field and
population inversion [67] — it is noteworthy that near
the oscillation threshold, a class-B laser’s behavior can
be approximated using a class-A laser model [68]. More-
over, the simplicity and analytical tractability of the
class-A laser model make it valuable in various applica-
tions—including optical neural computing [69], quantum
simulations [70], and topological lasers [71] — which sup-
ports its use in exploring synchronization phenomena in
optical networks. From a nonlinear dynamics perspec-
tive, the behavior of the model (1) is analogous to that
of the Landau-Stuart oscillator.
The dynamical equations governing complex field am-

plitudes of the network are

ȧ(t) = −a+ g0(1− a∗ · a)a− iΩa− κQa, (2)

where a = [a1, ..., aN ]T is the vector containing the
lasers complex amplitudes, Ω = diag(ω1, ..., ωN ) is an
N × N diagonal matrix involving detuned resonant fre-
quencies, Q is the signless Laplacian connectivity matrix
with off-diagonal elements qmn = 1 for coupled oscil-
lators and qmn = 0 otherwise, and diagonal elements
qmm =

∑
m ̸=n qmn. Figure 1 illustrates the physical

implementation of the laser oscillator network (2). Fig-
ure 1(a) schematically depicts the interaction of two laser
oscillators through the dissipative coupling. In this set-
ting, the energy exchange between two laser cavities is
mediated through the surrounding medium, where radi-
ation leakage is inevitable. The in-phase emission of the
two oscillators in the decay channel yields the negative
sign of the coupling term −κQa in (2) with the coupling
coefficient κ > 0. As a result, it makes the dissipative
coupling repulsive (see [18] for a more detailed descrip-
tion of the dissipative coupling’s role in frequency syn-
chronization of two class-A laser oscillators). Larger net-
works with arbitrary connections defined by the signless
Laplacian matrix Q can be implemented by diffraction
engineering [15] as depicted in Fig. 1(b),(c).
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FIG. 1. (a) The concept of dissipative coupling, where two resonators with mismatched resonant frequencies (ω0 + ∆ and
ω0 − ∆) interact through a dissipative (lossy) medium, which causes radiation leakage. (b) The general scheme for creating
arbitrary coupling between spatially-segmented laser oscillators (gray dots) through intra-cavity diffraction engineering. The
diffractive surfaces (three transparent meshes) steer light from individual lasers toward other lasers to implement, through
transverse coupling (red dots), an arbitrarily complex network topology within the array. (c) The equivalent connection graph
of system (2).

FIG. 2. The onset of frequency synchronization in the two-
oscillator network (4). The color plots indicate the oscillators’
phases. (a). Below the synchronization coupling threshold,
κ = 0.01 < κc. (b). Frequency synchronization above the
coupling threshold κ = 0.06 > κc. Parameters ω1 = ω0 + ∆,
ω1 = ω0 −∆, where ω0 = 1, ∆ = 0.05, and g0 = 1.02.

Combining the last two terms in (2), we introduce the
complex matrix

M = iΩ+ κQ, (3)

which accounts for the contribution of intrinsic frequency

detuning and linear dissipative coupling. In an ampli-
tude and phase representation of the complex amplitudes
an(t) = An(t)e

iϕn(t), the network (2) can be written in
the form

Ȧn = −An + g0(1−A2
n)An − κ

N∑
m=1

qmnAm cos(ϕm − ϕn),

ϕ̇n = −ωn − κ
N∑

m=1
qmn

Am

An
sin(ϕm − ϕn), n = 1, ..., N.

(4)
Under the simplifying assumption that the amplitudes of
all laser oscillators settle down to the same value so that
An(t) → 1, the system (4) can be reduced to the classical
repulsive Kuramoto model with an arbitrary adjacency
matrix C = Q− qmmI, where qmmI is the degree matrix
of the connection graph. However, as we will demonstrate
in Sec. V, the dynamics of the Kuramoto model and the
full system can be quite different.
Frequency synchronization occurs in the network (4)

when ⟨ϕ̇1⟩ = ⟨ϕ̇2⟩ = ... = ⟨ϕ̇N ⟩, where ⟨...⟩ denotes a
time average. Hereafter, we will be using an order param-

eter R = 2
N(N−1) ⟨

∑N
i<j exp{−(ϕ̇i − ϕ̇j)

2}⟩ as a measure

for the degree of frequency coherence. According to our
definition, R = 1 corresponds to perfect frequency syn-
chronization that may include phase-locked patterns with
possibly stationary relative phases. Such examples in-
clude splay states [58] and cyclops states [60]. Typically,
frequency synchronization emerges when the coupling ex-
ceeds a critical threshold value κc. For the two-oscillator
network (2) with frequency detunings ω1 = ω0 −∆ and
ω2 = ω0 + ∆, the threshold coupling can be calculated
analytically so that κc = ∆ [18]. Figure 2 demonstrates
the dynamics below and above the coupling threshold.
In the following, we demonstrate that not all network

topologies support frequency synchronization, even for
identical oscillators and infinitely strong coupling. To
do so, we first derive the spectral network principle for
networks of identical laser oscillators and connect the
coupling threshold κc with the spectrum of the signless
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Laplacian matrix Q.

III. IDENTICAL LASER OSCILLATORS

Previous studies used energy Lyapunov-type functions
to derive conditions on the stability of frequency syn-
chronization in the classical Kuramoto model with non-
identical oscillators and global attractive coupling [50] or
local repulsive coupling [61]. However, constructing such
functions for the amplitude-phase model (2) with arbi-
trary repulsive coupling is elusive. Here, we use an alter-
native approach to making sense of the complex matrix
M ’s spectral properties as a network synchronizability
criterion. We view the onset of frequency synchroniza-
tion as competition between the network eigenmodes for
oscillation. This can be better understood in the case of
identical oscillators, i.e., when ω1 = ω2 = · · · = ωN = ω0.
In this case, considering the dynamics starting at low field
intensities |a| ≪ 1, the evolution can be linearized in the
rotating frame of ω0 as

ȧ = (g0 − 1)a− κQa. (5)

The connectivity matrix Q has N real eigenvalues s1 ≤
s2 ≤ ... ≤ sN . Diagonalizing (5) using the eigenmode
basis of Q, a(t) =

∑
m αm(t)vm, where αm(t) = v†

ma(t),
we obtain the evolution equation for the mth eigenmode

α̇m(t) = (g0 − κsm − 1)αm, m = 1, ..., N. (6)

The fundamental mode (m = 1) with the maximum net
small-intensity gain, g0 − κs1 − 1, has a higher probabil-
ity of becoming the lasing mode, thereby inducing fre-
quency synchronization. To do so, it needs to win the
lasing competition with its closest competing mode with
m = 2 and the gain g0 − κs2 − 1. The outcome of this
competition is generally controlled by the gain difference
between the two modes, κ(s2 − s1), that has to exceed
an energy threshold. This suggests that the threshold
coupling, κc, for the onset of frequency synchronization
can be estimated as

κc =
b

s2 − s1
≡ b

γ
, (7)

where s1 and s2 are the first and second smallest eigen-
values of the signless Laplacian matrix Q, and b is a
scaling factor. Note that the spectral network princi-
ple (7) for frequency synchronization in repulsive net-
works (2) is in sharp contrast with the existing spec-
tral network conditions for phase synchronization in Ku-
ramoto networks controlled by the adjacency matrix’s
largest eigenvalue [34] and complete synchronization in
Laplacian networks [30] determined by the connectivity
matrix’s second largest and largest eigenvalues. In par-
ticular, the spectral gap γ = s2 − s1 is zero for the glob-
ally coupled network (2), so frequency synchronization
cannot be achieved even for large values of κ. On the
contrary, global Kuramoto or Laplacian networks with

FIG. 3. Actual (blue circles) and predicted (red dashed line)
frequency synchronization threshold κc (with the order pa-
rameter R > 0.99) in common bipartite network topologies,
ranging from sparse to dense graphs. The predicted thresh-
olds are computed from the spectral principle (7) with the
scaling parameter b chosen to fit the data. Parameters are
ω0 = 1 and g0 = 6.5. The fitting parameter b is set to 0.0295,
0.045, 0.63, and 0.75 for the chain, square, star, and full bi-
partite topologies, respectively.

attractive coupling are known to have the best synchro-
nization properties, determined by the lowest coupling
threshold for phase and complete synchronization. At
the same time, the spectral network principle (7) agrees
with the observation that repulsive Kuramoto networks
of identical oscillators can not be frequency-synchronized
[61].

Similarly, networks with the zero spectral gap, γ = 0,
are expected to be non-synchronizable. The property
that guarantees a non-zero spectral gap is the bipartine-
ness of the graph associated with the matrix Q. It has
been previously shown in the context of spectral signless
Laplacian graph theory [72–74] that the more edges need
to be removed to make the graph bipartite, the larger
the smallest eigenvalue [75] and the smaller the spectral
gap are. Therefore, a bipartite graph that generally is
the easiest to synchronize has its smallest eigenvalue at
zero, leading to a larger spectral gap. To support this
claim and validate the predictive power of the spectral
network principle (7), we numerically studied the scaling
of the synchronization threshold κc as a function of the
network size in four common network topologies, ranging
from sparse to dense graphs (Fig. 3). All four types of
networks discussed here are bipartite graphs and, hence,
synchronizable. For all these networks, the spectral gap
γ can be calculated analytically as a function of N. For
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FIG. 4. Frequency synchronization of scale-free networks of
identical oscillators and its relation to the spectral gap γ. The
scale-free networks are generated from an initial graph with
m+10 nodes via the preferential attachment mechanism [77].
(a). The onset of frequency synchronization via the depen-
dence of the order parameter R on coupling strength κ. (b).
The corresponding average spectral gap, γ, for networks with
different m. Each curve in (a) and point in (b) correspond to
the average of 100 randomly generated graphs of size N = 70
with m = 1, ..., 9. Other parameters are as in Fig. 3. A larger
spectral gap enhances network synchronizability. (c). Sample
scale-free networks with m = 1, 5, 9. The size of each node is
proportional to its degree.

the chain graph γ = s2 − s1 = 1 − cos (π/N), which for
large N can be approximated as π2/N2 [76]. For the

square lattice graph, the gap is γ = 1− cos (π/
√
N) and

for large N it is approximated by π2/N . The star graph’s
gap is constant and equal to 1. Finally, for the full bipar-
tite graph the gap is γ = N/2 for even N and γ = N − 2
for odd N . Figure 3 indicates that the spectral network
criterion (7) predicts the scaling of the coupling threshold
rather precisely.

To further illustrate the critical role of the spectral gap
γ in frequency synchronization, we generated ensembles
of uniformly connected, Barabasi-Albert scale-free net-
works [77]. Figure 4 shows that more heterogeneous net-
works with higher node degree hubs, in general, corre-
spond to a larger spectral gap γ, and such networks are
easier to synchronize.

IV. EXTENSION TO NONIDENTICAL LASER
OSCILLATORS

While the criterion (7) performs remarkably well for
a large spectrum of the regular and scale-free networks
depicted in Figs. 3-4, it is important to point to the lim-

itations of its predictive power. The energy landscape
governing the system of repulsively coupled identical os-
cillators via a hypothetical Lyapunov function may be a
non-convex function. As a result, the fundamental eigen-
mode might not necessarily be the one to win the lasing
competition or have the maximal overlap with the lasing
mode. Therefore, any mth eigenmode with the corre-
sponding eigenvalue sm cannot be completely ruled out
as unimportant for the network synchronizability. This
might become particularly important for the case of non-
identical laser oscillators where the signless Laplacian
matrix Q alone does not determine the results. In fact,
in the general case, the spectral gap that is predicted to
control frequency synchronization of non-identical laser
models can be defined as the separation between the real
parts of the two eigenvalues of matrix M with the small-
est real parts, i.e.,

γM = ℜ[λ2 − λ1]. (8)

Note that the spectral gap γM depends on the coupling
coefficient κ present in the complex matrix M. Therefore,
the spectral criterion (7) cannot be directly extended to
non-identical oscillators. Instead, the spectral gap crite-
rion (8) for non-identical oscillators may serve as a met-
ric that characterizes the synchronizability of the net-
work at a given coupling strength k, with higher values
of γM corresponding to better synchronizability. For the
two-oscillator network in Fig. 2 with frequency detun-
ings ω1 = ω0 −∆ and ω2 = ω0 + ∆, the spectral gap is
γM = 2

√
κ2 −∆2, yielding the above-mentioned thresh-

old coupling κc = ∆ (see Section V in [18] for the details
of this linear stability analysis). Notably, the synchro-
nization threshold is marked with a phase transition in
the eigenvalues of matrix M that dictates the system’s
linearized dynamics.
To verify the general approximate criterion (8) for

larger networks, we have numerically calculated the cou-
pling threshold κc for all possible 21 network topologies of
size N = 5 and 1, 000 combinations of random frequency
detunings. Figure 5 shows that the networks 1, 2, and
3, similar to their identical oscillator counterparts with
the zero spectral gap γ = 0, cannot support frequency
synchronization for any of the chosen frequency detun-
ings. Remarkably, these networks include a locally cou-
pled ring and an all-to-all network representing two oppo-
site ends of the network topology range and are known to
be frequency or phase-synchronizable in attractive phase
oscillator networks [34]. It is also worth noting a striking
effect that adding one link to the local chain of Fig. 3
top that completes the loop yields the unsynchronizable
ring network 2 of Fig. 5. Out of the remaining 18 net-
works with non-zero spectral gap γ, and therefore, capa-
ble of frequency synchronization according to the spec-
tral criterion, only one, the network 18, does not follow
the prediction. It remains unsynchronizable for any κ.
This is the case where a complex interplay between the
network structure and distributions of frequency detun-
ing prevents each mth eigenmodes with eigenvalue λm,
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FIG. 5. Synchronization threshold κc for all 21 possible connected networks of five detuned oscillators. The scattered points
in each violin plot represent the coupling thresholds for 1, 000 random frequency distributions with ωm ∈ U(−0.5, 0.5). The
corresponding network is shown under each plot. The large red circles indicate an infinite coupling threshold corresponding
to non-synchronizable networks. The networks are ordered from 1 to 21 by the spectral gap γ. The full bipartite network
with index 21 has the largest γ. As a reference, the blue line shows a predicted trend from the spectral criterion for identical
oscillators (7), with the scaling constant b calculated from the lowest value of κc for full bipartite network 21.

FIG. 6. Phase color plots for the five-oscillator global network
(graph 3) and full bipartite network (graph 21) in Fig. 5. (a)
Unsynchronizable dynamics in the global network. (b) Fre-
quency synchronization in the form of a two-cluster synchro-
nization state in the full bipartite network. Coupling strength
κ = 0.2.

m = 1, ..., N from becoming the lasing mode. Nonethe-
less, as in the identical oscillator case, the spectral crite-
rion singles out the full bipartite network (network 21)
as the optimal network topology with the lowest syn-
chronization threshold. Its dynamics is contrasted to its
globally coupled, unsynchronizable counterpart in Fig. 6.
To better relate the dependence of the threshold κc to

the identical oscillator criterion (7), we choose the low-
est value of κc for the full bipartite network (the lowest
peak of the corresponding violin plot in Fig. 5) to identify
the lowest scaling constant b which could correspond to
identical oscillators. We then use this scaling factor via
(7) for all other networks to demonstrate how this trend
compares to the actual heterogeneous oscillators (Fig. 5).
Notably, with a few exceptions, even the identical oscilla-
tor spectral criterion can predict the general dependence
on the spectral network gap γ. The discrepancy between
the predicted trend and the numerical data is due to mul-
tiple factors, including different spectral gaps γM that
depend on the coupling κ and detuning distributions.

V. RELATION TO REPULSIVE KURAMOTO
NETWORKS

The spectral gap criterion (8) for frequency synchro-
nization in the amplitude-phase laser model (4) also suc-
cessfully identifies the full bipartite network as the op-
timal network topology for frequency synchronization in
the Kuramoto-type model obtained from the phase equa-
tion in system (4) by setting An = Am = 1 (Fig. 7).
Note the similarities and differences between the syn-
chronization properties of the full amplitude-phase model
(4) (Fig. 5) and its Kuramoto-type counterpart (Fig. 7).
Remarkably, the spectral gap criterion can, with a few
exceptions, qualitatively characterize the dependence of
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the synchronization threshold on the Kuramoto network
topology. The most notable exception is the locally cou-
pled network (graph 2 in Figs. 5 and 7) that is unsynchro-
nizable in the amplitude-phase laser network and syn-
chronizable in the phase network. This discrepancy is
due to a highly heterogeneous distribution of amplitudes
An(t) in the amplitude-phase model (4) with local cou-
pling. We use frequency synchronization as a general
term that can account for non-stationary but bounded
phase dynamics and various phase-locked patterns, in-
cluding phase clusters, as shown in Fig. 6. As a result,
the coupling thresholds for the amplitude-phase model
depicted in Fig. 5 correspond to different distributions
of non-stationary or stationary amplitudes An. Yet, the
spectral gap captures the interplay between frequency
synchronization of the phase models with uniform distri-
butions and network topologies relatively well.

VI. CONCLUSIONS

In this work, we revealed a general approximate princi-
ple that relates a critical coupling threshold for frequency
synchronization in repulsive class-A laser networks to the
spectral gap between the smallest eigenvalues of the ma-
trix combined from the signless Laplacian connectivity
and frequency detuning matrices. The discovered prin-
ciple demonstrates that the spectral gap of the signless
Laplacian, rather than mere connectivity, is a powerful
indicator of the synchronizability of such repulsive net-
works. Applying the spectral principle, we discovered
that, in stark contrast with attractive networks, both lo-
cal ring and global network structures prevent frequency
synchronization, whereas the fully bipartite network has
optimal synchronization properties. The spectral princi-
ple has limitations, as it does not always rule out the syn-

chronizability of a complex network of heterogeneous op-
tical oscillators. However, it identifies topologies that can
be easily synchronized and used for scalable designs of
large optical oscillator arrays. Moreover, a maximal spec-
tral gap of the complex matrix incorporating frequency
detunings could be used as a guiding principle for ma-
chine learning approaches to designing disordered laser
oscillator networks with optimal synchronization prop-
erties required for effective optical computing. While
phase synchronization in oscillator networks generally re-
quires frequency synchronization, the reverse is not nec-
essarily true. Achieving frequency synchronization via
the optimal network design may create conditions con-
ducive to phase-locking, which is desirable in high-power
laser array applications. While injection locking is a
well-established technique for laser synchronization [78],
it relies on an external master laser and can introduce
complexity and scalability issues in large networks. Our
study explores self-synchronization mechanisms inherent
in the network’s topology and coupling, which can of-
fer advantages in terms of robustness and scalability for
applications like distributed optical computing. Beyond
optical networks, our spectral network principle is appli-
cable to a broader class of physical and biological oscil-
lators, including Kuramoto networks, which have wide-
ranging applications in neuroscience, biology, and engi-
neering.
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