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Breathing and switching cyclops states in Kuramoto networks with higher-mode coupling1
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Cyclops states are intriguing cluster patterns observed in oscillator networks, including neuronal ensembles.
The concept of cyclops states formed by two distinct, coherent clusters and a solitary oscillator was introduced by
Munyaev et al. [Phys. Rev. Lett. 130, 107021 (2023)], where we explored the surprising prevalence of such states
in repulsive Kuramoto networks of rotators with higher-mode harmonics in the coupling. This paper extends our
analysis to understand the mechanisms responsible for destroying the cyclops’ states and inducing dynamical
patterns called breathing and switching cyclops states. We first analytically study the existence and stability of
cyclops states in the Kuramoto-Sakaguchi networks of two-dimensional oscillators with inertia as a function
of the second coupling harmonic. We then describe two bifurcation scenarios that give birth to breathing and
switching cyclops states. We demonstrate that these states and their hybrids are prevalent across a wide coupling
range and are robust against a relatively large intrinsic frequency detuning. Beyond the Kuramoto networks,
breathing and switching cyclops states promise to strongly manifest in other physical and biological networks,
including coupled theta neurons.
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I. INTRODUCTION21

Phase oscillator networks have emerged as a paradigmatic22

reduced model for describing emergent cooperative properties23

of diverse real-world systems, including neuronal networks24

[1–3], laser arrays [4–6], and power grids [7–9]. The cele-25

brated Kuramoto model of one-dimensional (1D) oscillators26

[10,11] and its extension to two-dimensional (2D) oscil-27

lators with inertia [12] captures the essence of the phase28

networks and provides a concise framework to explore the29

richness of their cooperative dynamics [13–19]. These dy-30

namics include full [20–24], partial [25,26], explosive [27–29]31

and asymmetry-induced synchronization [30,31], chimeras32

[32–39], solitary states [40–44], clusters [45–48], generalized33

splay [49], and cyclops states [50]. The cooperative dynamics34

of Kuramoto networks with attractive coupling have been35

studied more extensively than their counterparts in repulsive36

networks. While full synchronization is the simplest and most37

dominant rhythm in attractive networks, splay [51,52] and38

generalized and cluster splay states [48,49] are expected to39

be the most probable patterns in repulsive networks. Yet a40

complete understanding of rhythmogenesis in repulsive net-41

works is still lacking. Two repulsively coupled oscillators tend42

to achieve antiphase synchronization; however, predicting an43

outcome of such interactions in large repulsive networks is44

often elusive. Notably, the role of repulsive connections can be45

counterintuitive, especially in networks with mixed attractive46

and repulsive coupling [53–56]. For example, adding pairwise47

repulsive inhibition to excitatory networks of bursting neurons48

*Corresponding author: ibelykh@gsu.edu

can synergistically promote synchronization by facilitating 49

transitions between different types of bursting [55]. 50

In the context of Kuramoto-type networks, the prevail- 51

ing approach is to model interactions by the first sinusoidal 52

harmonic from a Fourier decomposition of a 2π -periodic 53

coupling function. This simplest choice of the coupling form 54

adequately describes many dynamical features of real-world 55

networks and is analytically tractable. However, higher-order 56

coupling harmonics have been observed to play a significant 57

role in rhythmogenesis in various scenarios. These encompass 58

Kuramoto-type models of neuronal plasticity [57,58], cou- 59

pled electrochemical oscillators [59], and Josephson junctions 60

[60]. In particular, previous research has demonstrated that 61

augmenting the classical Kuramoto model with higher-mode 62

coupling can result in the emergence of multiple phase-locked 63

states [61,62] and facilitate switching between synchrony 64

clusters [63]. 65

In a recent work [50], we studied rhythmogenesis in re- 66

pulsive Kuramoto networks of identical 2D phase oscillators 67

with phase-lagged first-mode and higher-mode coupling. We 68

introduced the concept of cyclops states formed by two dis- 69

tinct, coherent clusters and a solitary oscillator reminiscent 70

of the Cyclops’s eye. These cyclops states represent a partic- 71

ular class of three-cluster generalized splay states [49] with 72

the solitary oscillator maintaining constant phase differences 73

with the coherent clusters. We reported a surprising finding 74

that adding the second or third harmonic to the Kuramoto 75

coupling makes the cyclops state global attractors in a wide 76

range of couplings’ repulsion. Beyond Kuramoto networks, 77

we showed that the stabilization of cyclops states by the higher 78

coupling harmonics is also robustly present in theta neurons 79

with adaptive coupling. 80
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This paper extends our previous analysis to reveal higher-81

mode coupling-induced mechanisms for emerging dynamical82

patterns termed breathing and switching cyclops states.83

Toward this goal, we derive analytical conditions on the exis-84

tence and stability of cyclops states with constant intercluster85

phases in the presence of the second coupling harmonic.86

These conditions reveal two bifurcation scenarios for desta-87

bilizing the cyclops states. In the first scenario, the cyclops88

states with constant intercluster phases between its three clus-89

ters undergo an Andronov-Hopf bifurcation, preserving their90

intracluster formations but making the intercluster relative91

phase differences oscillate periodically. Similarly to breathing92

three-cluster patterns introduced in [47], we call these breath-93

ing cyclops states. These states can evolve into rotobreathers94

with intercluster phase differences governed by mixed-mode,95

oscillatory-rotatory phase difference dynamics. In the second96

bifurcation scenario, the cyclops state with constant interclus-97

ter phases loses its structural stability but quickly reforms into98

a new cyclops state with a reshuffled configuration. This repet-99

itive switching process yields switching cyclops states. These100

states are similar to blinking chimeras, also characterized by101

a death-birth process in which the coherent cluster dissolves102

and is quickly reborn in a new configuration [64].103

We show that breathing, rotobreathing, and switching104

cyclops states are stable in a wide range of the second105

harmonic coupling strength and phase lag parameter. Remark-106

ably, breathing and rotobreathing cyclops states are dominant107

states, acting as the system’s global attractors in a large108

interval of the second harmonic’s phase lag parameter, cor-109

responding to the overall repulsiveness of the combined first-110

and second-harmonic coupling. We also demonstrate that the111

cyclops states can robustly emerge in Kuramoto networks112

of nonidentical oscillators. In [50], we proved that the 2D113

Kuramoto model with the first and second-harmonic coupling114

is dynamically equivalent to a network of canonical theta neu-115

rons with adaptive coupling. Therefore, we expect breathing116

and switching cyclops states to manifest strongly in theta-117

neuron networks, pointing to the broader applicability of our118

results.119

The layout of this paper is as follows. In Sec. II we in-120

troduce the oscillator network model and state the problem121

under consideration, and give formal definitions. In Sec. III122

we study the existence of cyclops states with constant inter-123

cluster phase differences, called stationary cyclops states. We124

derive an upper bound for the maximum number of station-125

ary cyclops states with distinct intercluster phase differences.126

In Sec. IV we derive a four-dimensional (4D) system that127

governs the dynamics of the intercluster phase differences.128

We study the stability of the fixed point of the 4D system,129

which corresponds to constant intercluster phase differences.130

We derive the conditions under which the fixed point under-131

goes an Andronov-Hopf bifurcation, giving rise to a breathing132

cyclops state. In Sec. V we analyze the variational equa-133

tions for the transversal stability of stationary cyclops states134

that determines the stability of their coherent clusters. In135

Sec. VI we numerically study breathing and switching cyclops136

states emerging from stationary cyclops states via two distinct137

bifurcation routes. We demonstrate the emergence of more138

complex, hybrid dynamical patterns that combine the prop-139

erties of both breathing and switching cyclops states. We also140

study the prevalence of different cyclops states and show that 141

they robustly appear from large sets of randomly chosen initial 142

conditions. In Sec. VII we show the persistence of cyclops 143

states against relatively large intrinsic frequency detuning. 144

Section VIII contains concluding remarks and discussions. 145

The Appendix contains the derivation of the upper bound for 146

the maximum number of stationary cyclops states. 147

II. THE MODEL AND PROBLEM STATEMENT 148

We consider the Kuramoto-Sakaguchi network of 2D phase 149

oscillators 150

μ�̈k + �̇k = ω +
N∑

n=1

2∑
q=1

εq

N
sin[q(�n − �k ) − αq], (1)

where the kth oscillator’s phase �k ranges from −π to 151

π, and the second-order Kuramoto-Sakaguchi coupling [65] 152

represents a pairwise interaction function H (�n − �k ) = 153∑2
q=1 εqsin[q(�n − �k ) − αq]. The oscillators are assumed 154

to be identical with frequency ω, inertia μ, and phase lag 155

parameters α1 and α2. We consider the phase lag α1 ∈ 156

(π/2, π ), that makes the first-harmonic coupling repulsive 157

and fix ε1 = 1 that corresponds to a strong first-harmonic 158

coupling. Throughout the paper, we also choose and fix a 159

relatively strong inertia μ = 1 that is sufficient to make the 160

dynamics of the 2D system qualitatively distinct from the 1D 161

classical model and enable the emergence of breathing cluster 162

dynamics [46]. We will consider a broader range of α2 ∈ 163

(−π, π ), so that the second harmonic may be pairwise attrac- 164

tive or repulsive. As a result, the overall combined coupling 165

may be repulsive with H ′(0) < 0 or attractive with H ′(0) > 0. 166

The latter is possible when the second-harmonic coupling ε2 167

is sufficiently strong to overcome the first-harmonic coupling 168

contribution. 169

Phase coherence and cluster synchrony in the system (1) 170

can be characterized via the lth-order complex Kuramoto 171

parameters [63,66]: 172

Rl(t ) = 1

N

N∑
k=1

eil�k = rle
iψl ,

where rl and ψl define the magnitude and the phase of the lth 173

moment Kuramoto order parameter Rl (t ), respectively. The 174

first-order scalar parameter r1 = |R1| characterizes the degree 175

of phase synchrony with r1 = 1 corresponding to full phase 176

synchrony. Splay states or generalized splay states �k = ωt + 177

ϕk, k = 1, . . . , N with constant nonuniform relative phases 178

ϕk ∈ [−π, π ] satisfy the condition r1 = 0 in the 2D Kuramoto 179

model with the first-harmonic coupling (ε2 = 0). The second- 180

order scalar parameter r2 = |R2| determines the degree of 181

cluster synchrony. In the case of the first-harmonic coupling 182

(ε2 = 0), r2 controls the stability of generalized splay states 183

so that increasing r2 enlarges their stability parameter regions 184

[49,50]. It was shown in [50] that generalized splay states with 185

a maximum r2 are (i) two-cluster symmetric splay states (for 186

even N) and (ii) three-cluster splay states with the relative 187

phases (for odd N): 188

ϕ1 = ϕ2 = · · · = ϕM−1 = γ , ϕM = 0,

ϕM+1 = · · · = ϕN = −γ , (2)
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FIG. 1. Snapshot of a breathing cyclops state in network (1) of
11 oscillators. Periodically oscillating x(t ) and y(t ) govern the phase
difference between the synchronous clusters (blue and pink circles)
and the solitary oscillator (gray circle). The solitary oscillator’s phase
is chosen at θM = 0 as a reference. Parameters are α1 = 1.7, ε2 =
0.08, α2 = −0.3.

where γ = arccos[1/(1 − N )], M = (N + 1)/2, and the189

choice of the reference zero phase for ϕM is arbitrary. We190

termed three-cluster splay states (2) cyclops states. Adding the191

second-harmonic coupling with ε2 �= 0 breaks their symmetry192

in γ and makes r1 nonzero, albeit small. We demonstrated in193

[50] that the second- or higher-harmonic coupling can make194

these asymmetric patterns dominant states. In this paper, we195

generalize the definition of cyclops states (2) for the system196

(1) with second-harmonic coupling and odd N by relaxing197

the condition r1 = 0. As a result, we refer to the following198

three-cluster state determined by the three-dimensional cluster199

manifold:200

D(3) =
⎧⎨
⎩

�1(t ) = · · · = �M−1(t ) = x + �t,
�M (t ) = �t,
�M+1(t ) = · · · = �N (t ) = y + �t

(3)

as to a stationary cyclops state in which two equal clusters201

of M − 1 oscillators rotate with the common frequency �,202

preserving the stationary phase differences x = γ1, and y = γ2203

with the Mth solitary oscillator. Note that due to the asym-204

metry of the relative phases x �= y, the common rotational205

frequency � differs from the oscillators’ intrinsic frequency206

ω and can be derived explicitly from (1) as shown in the next207

section.208

Similarly to (2), the stationary cyclops state defined by209

(3) can be conveniently represented within the reference210

frame θk = �k − �t, k = 1, . . . , N where the relative con-211

stant phase of the Mth oscillator, θM, is chosen at zero so that212

θ1 = · · · = θM−1 = x, θM = 0,

θM+1 = · · · = θN = y. (4)

Due to the system’s global coupling symmetry and equal clus-213

ter sizes M − 1, the existence of the stationary cyclops state214

with intercluster phase differences x = γ1 and y = γ2 implies215

the existence of its counterpart with x = γ2 and y = γ1. Thus,216

cyclops states exist in symmetrical pairs. In the following, we217

will analyze the existence and stability of stationary cyclops218

states in the system (1) with odd N. We will describe two219

main scenarios for destabilizing a stationary cyclops state that220

yield (i) a breathing cyclops state with periodically oscillating221

x(t ), y(t ) so that the intercluster phase differences are bounded222

as |x(t )| < π , |y(t )| < π to produce no phase slips (Fig. 1)223

and (ii) a switching cyclops state, representing a repetitive 224

death-birth process in which the clusters disintegrate to form a 225

new cyclops state with a new reshuffled cluster configuration 226

and a new solitary node. 227

We will also study how the breathing and switching 228

cyclops states can (i) further evolve into more complex dy- 229

namical patterns, including hybrid switching-breathing states, 230

(ii) become globally stable, and (iii) persist against intrinsic 231

frequency detuning. 232

III. POSSIBLE CONSTANT INTERCLUSTER 233

PHASE DIFFERENCES 234

We seek to find permissible stationary cyclops states as a 235

function of the system’s parameters. To determine the constant 236

phase differences x, y, and the rotational frequency �, we 237

substitute the stationary cyclops state solution (3) into (1) and 238

obtain the system of nonlinear transcendental equations: 239

ω − � −
2∑

q=1

εq

N

(
sin(qx + αq) + N −1

2
{sin αq

+ sin[q(x − y)+αq]}
)

= 0,

ω − � −
2∑

q=1

εq

N

(
sin αq − N −1

2
[sin(qx−αq )

+ sin(qy−αq )]

)
= 0,

ω − � −
2∑

q=1

εq

N

(
sin(qy + αq) + N −1

2
{sin αq

+ sin[q(y − x)+αq]}
)

= 0. (5)

We subtract the second equation from the first and third equa- 240

tions of (5) to eliminate � and obtain the system of two 241

equations for finding the unknown constants x and y: 242

N − 3

2

2∑
q=1

εqsin αq +
2∑

q=1

εqsin(qx + αq)

+ N − 1

2

(
2∑

q=1

εqsin(qx − αq) +
2∑

q=1

εqsin(qy − αq)

−
2∑

q=1

εqsin[q(y − x) − αq]

)
= 0,

N − 3

2

2∑
q=1

εqsin αq +
2∑

q=1

εqsin(qy + αq)

+ N − 1

2

(
2∑

q=1

εqsin(qx − αq) +
2∑

q=1

εqsin(qy − αq)

−
2∑

q=1

εqsin[q(x − y) − αq]

)
= 0. (6)
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In turn, we find the rotational frequency � from the second243

equation of (5):244

� = ω − 1

N

2∑
q=1

εq sin αq

+ N −1

2N

⎡
⎣ 2∑

q=1

εq sin(qx−αq )+
2∑

q=1

εq sin(qy−αq )

⎤
⎦

(7)

with x and y calculated from (6).245

Due to the complexity of system (6), its solution for x and246

y cannot be found in closed form. Yet we derive an upper247

bound for the maximum number of stationary cyclops states248

with distinct x and y. To do so, we transform the real-valued249

system (6) into a system of complex polynomial equations and250

apply the Bernshtein theorem [67], a practical tool in algebra251

that bounds the number of nonzero complex solutions by the252

mixed volume of their Newton polytopes. The details of this253

analysis are quite technical and are delegated to the Appendix.254

This analysis shows that the complex form of system (6) may255

have up to 17 possible solutions (including some nonphysical)256

corresponding up to 16 stationary cyclops states with distinct257

ordered pairs of constant phase differences x, y. As stationary258

cyclops states exist in pairs, there may be at most eight com-259

binations of x, y (up to the cluster permutation x ←→ y). It is260

worth noticing that there is a continuum of stationary cyclops261

states with a given pair (x, y) due to an arbitrary choice of the262

reference solitary state’s phase θM .263

Figure 2 displays the number of different stationary cy-264

clops states calculated by solving the complex polynomial265

equation (A1) using the NSolve function of Wolfram Math-266

ematica. Note that this number equals two for small values267

of the second-harmonic amplitude ε2. This pair of stationary268

cyclops states with x = γ1 and y = γ2 (x = γ2 and y = γ1)269

emerges continuously from the symmetrical cyclops state (2)270

that exists in the system (1) in the absence of the second-271

harmonic coupling (ε2 = 0). As Figs. 2(a) and 2(b) indicate,272

increasing ε2 increases the number of coexisting stationary273

cyclops states and induces richer dynamics. In the following,274

we will derive general stability conditions for a permissible275

stationary cyclops state and specify these conditions to the276

cyclops state (4) with x = γ1 and y = γ2 from the dashed277

parameter region in Fig. 2 where no other cyclops states with278

distinct x and y (up to permutation of clusters x ←→ y) exist.279

IV. STABILITY OF THE INTERCLUSTER280

PHASE DIFFERENCES281

We seek to obtain the conditions for the stability of the282

constant intercluster phase differences to small perturbations283

of x and y. The dynamics of the intercluster phase differences284

are governed by the system285

μẍ + ẋ =
2∑

q=1

εq

N
(sin αq − sin(qx + αq)

− N −1

2
[sin(qx−αq ) + sin(qy−αq )

+ sin αq + sin[q(x − y)+αq]}),

FIG. 2. (a, b) The color shows the number of distinct sta-
tionary cyclops states in the network (1) as a function of the
second-harmonic coupling and phase lag parameters (α2, ε2). Other
parameters are (a) N = 5, α1 = 2.0 and (b) N = 11, α1 = 1.7. The
number of cyclops is calculated by numerically finding solutions of
system (6). The arrow points to the dashed area corresponding to the
stability diagram of Fig. 3. (c) Snapshots of three distinct station-
ary cyclops states (up to permutation of clusters x ←→ y) for the
parameter set N = 11, α1 = 1.7, α2 = 0.0, ε2 = 6.0 corresponding
to the open diamond in the green area in panel (b). The oscillator
coloring corresponds to the intercluster differences x and y according
to positive and negative values depicted from the horizontal color bar.

μÿ + ẏ =
2∑

q=1

εq

N
(sin αq − sin(qy + αq)

− N−1

2
{sin(qx−αq ) + sin(qy−αq )

+ sin αq + sin[q(y − x)+αq]}). (8)

The 4D dynamical system (8) may be viewed loosely as 286

a system of two nonlinearly coupled driven pendulum- 287

like equations with the terms sin αq representing constant 288

torques and the sine terms with x and y corresponding to 289

pendulum-like nonlinearities and coupling. The presence of 290

the second-harmonic coupling prevents transforming the sys- 291

tem (8) into a more explicit system of two coupled pendula as 292

was achieved for a three-cluster state in [47]. However, the 293

pendulum-like structure of the 4D system (8) points to the 294

possible existence of nontrivial dynamics related to oscillating 295

and even chaotically evolving intercluster phase differences 296

x(t ) and y(t ). 297

Fixed points of system (8) correspond to constant interclus- 298

ter phase differences x, y calculated from (6). We aim to study 299

004200-4
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the local stability of the fixed points and derive bifurcation300

conditions that induce oscillating phase differences x(t ), y(t ).301

Toward this goal, we consider small deviations δx(t ) and302

δy(t ) from a fixed point x = γ1, y = γ2 corresponding to a303

stationary cyclops state. So x(t ) = γ1 + δx(t ), y(t ) = γ2 + 304

δy(t ). We linearize the system (8) in the vicinity of the fixed 305

point state and obtain the following equations that govern the 306

evolution of small deviations δx(t ) and δy(t ): 307

μδẍ + δẋ = −
2∑

q=1

εqq

N

[
cos(qγ1 + αq)δx + N−1

2
[cos(qγ1−αq )δx + cos(qγ2−αq )δy + cos(qσ +αq)(δx − δy)]

]
,

μδÿ + δẏ = −
2∑

q=1

εqq

N

[
cos(qγ2 + αq)δy + N−1

2
[cos(qγ1−αq )δx + cos(qγ2−αq )δy + cos(qσ −αq)(δy − δx)]

]
,

(9)

where σ = γ1 − γ2.308

Following the standard stability approach, we seek solu-309

tions δx(t ) = A1eλt , δy(t ) = A2eλt and derive a system of two310

characteristic equations for finding constants λ, A1, and A2:311

(μλ2 + λ)A1 = −(p11A1 + p12A2),

(μλ2 + λ)A2 = −(p21A1 + p22A2), (10)

where312

p11 =
2∑

q=1

εqq

N

{
N − 1

2
[cos(qγ1 − αq) + cos(qσ + αq)]

+ cos(qγ1 + αq)

}
,

p12 =
2∑

q=1

εqq

N

{
N − 1

2
[cos(qγ2 − αq) − cos(qσ + αq)]

}
,

p21 =
2∑

q=1

εqq

N

{
N − 1

2
[cos(qγ1 − αq) − cos(qσ − αq)]

}
,

p22 =
2∑

q=1

εqq

N

{
N − 1

2
[cos(qγ2 − αq) + cos(qσ − αq)]

+ cos(qγ2 + αq)

}
.

(11)

Solving the characteristic system (10) of two coupled313

quadratic equations to explicitly find λ is out of reach. Instead,314

we introduce the variable � = μλ2 + λ and turn the system315

(10) into the system of linear equations316

P(A1, A2)T = �(A1, A2)T , (12)

where317

P =
(−p11 −p12

−p21 −p22

)
. (13)

Therefore, the stability of (9) can be assessed from (13) in318

terms of its eigenvalues �. To do so, we aim to determine319

the boundary of the stability region that is determined by λ =320

i Imλ and corresponds to an Andronov-Hopf bifurcation of321

the fixed point that induces oscillating phase differences x(t ) 322

and y(t ). Therefore, we can set Re� + i Im� = −μ(Imλ)2 + 323

i Imλ so that the real part equality Re� + μ(Im�)2 = 0 de- 324

fines the stability boundary λ = iImλ. To ascertain what side 325

of the stability boundary corresponds to stability, we select the 326

test value μ = 0. With this choice, we have � = λ, and the 327

inequality Re� < 0 ensures the stability of the fixed point. 328

Extending this argument to nonzero μ, we can conclude 329

that the inequality Re� + μ(Im�)2 < 0 makes Reλ < 0 and 330

determines the fixed point stability. Thus, we arrive at the 331

following assertion. 332

Statement 1. [Internal stability of stationary cyclops 333

states]. 334

1. Constant intercluster phase differences x = γ1 and y = 335

γ2 of the stationary cyclops state (3) are locally stable iff 336

Re�1,2 + μ(Im�1,2)2 < 0, �1,2

= TrP
2

±
√

(TrP)2 − 4detP
2

, (14)

where TrP and detP are, respectively, the trace and determi- 337

nant of matrix P (13) whose coefficients are defined in (11). 338

2. The stability boundary 339

Re�1,2 + μ(Im�1,2)2 = 0 (15)

corresponds to an Andronov-Hopf bifurcation that destabilizes 340

the stationary cyclops state, turning it into a breathing cyclops 341

state with oscillating intercluster phase differences x(t ) and 342

y(t ). 343

The stability of constant phase differences x and y de- 344

fined via (14) can be interpreted as the internal (longitudinal) 345

stability of the stationary cyclops state within the invariant 346

three-cluster manifold D determined by (3) with arbitrary, 347

possibly time-varying x(t ) and y(t ). The stability boundary 348

(15) depicted by the blue solid curve in Fig. 3(a) corresponds 349

to emerging instability of constant phase differences x and 350

y that preserves the three-cluster cyclops formation on the 351

invariant three-cluster manifold D. 352

Having studied the stability of the constant intercluster 353

phase differences, we proceed with the stability analysis of 354

the synchronous clusters, each composed of M − 1 oscilla- 355

tors. These conditions, paired with the condition (14), shall 356

indicate what stationary cyclops states can stably emerge in 357

the network. 358
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FIG. 3. (a) The stability diagram for cyclops states. Regions of
stable stationary cyclops states (CS) are shown in blue, switching
cyclops states (SCS) in yellow, breathing cyclops states (BCS) in
green, and two-cluster regimes (5:6) in white. Analytical boundaries:
the blue solid line corresponds to the stability boundary (15), the
red dashed line to Reλtran

1 = 0, and the green dash-dotted curve to
Reλtran

2 = 0. Two numerical curves marked by the solid circles sep-
arate the stability regions of the switching and breathing stationary
cyclops states. The black dotted line � corresponds to H ′(0) = 0.

Values above the curve make the coupling attractive and full syn-
chronization locally stable. Stationary cyclops states are found as
a solution of system (6) and used as initial conditions. The round,
diamond, and circled times correspond to the parameters used in
Figs. 4–6. (b) The real part of the eigenvalues, associated with the
stationary cyclops state, that determine the (internal) stability of the
intercluster phase differences (blue solid line) and transversal (exter-
nal) stability of the first (red dashed line) and second cluster (green
dash-dotted line) for fixed ε2 = ε∗

2 and varying α2 [along the white
dashed horizontal line in panel (a)]. The background color indicates
the type of the emerged cyclops states as in panel (a). (c) The diagram
is similar to panel (b), but for fixed α2 = α∗

2 and varying ε2 [along the
black-white dashed vertical line panel (a)]. The shaded area indicates
the bistability of switching and breathing cyclops states. Parameters:
N = 11, ε1 = 1.0, α1 = 1.7, ε∗

2 = 0.08, α∗
2 = 0.78.

V. STABILITY OF SYNCHRONOUS CLUSTERS359

We aim to derive the conditions for transversal stability of360

the stationary cyclops state (3) that amounts to the stability361

of the two synchronous clusters composing the stationary362

cyclops state. We introduce small deviations from the oscilla-363

tors’ phases θn −→ θn + δθn, composing the first cluster for364

n = 1, . . . , M − 1 and the second cluster for n = M +365

1, . . . , N. To study the local stability of each synchronous 366

cluster, we consider the difference variables 367

ξn = δθn+1 − δθn, n = 1, . . . , M − 2, (16)

ζn = δθn+1 − δθn, n = M + 1, . . . , N − 1 (17)

that describe the phase difference dynamics within the first 368

and second clusters, respectively. Therefore, from (1), (3), and 369

(16), (17), we obtain two uncoupled variational equations with 370

time-invariant coefficients. Each of the equations determines 371

the local stability of the corresponding cluster within the cy- 372

clops state (3): 373

μξ̈n + ξ̇n + 1

N

2∑
q=1

εqq

{
cos(qγ1 + αq)

+ N − 1

2
[cos αq + cos(qσ + αq)]

}
|ξn = 0, (18)

where n = 1, 2, . . . , M − 2, and 374

μζ̈n + ζ̇n + 1

N

2∑
q=1

εqq

{
cos(qγ2 + αq)

+ N − 1

2
[cos αq + cos(qσ − αq)]

}
ζn = 0, (19)

where n = M + 1, . . . , N − 1. The variational equations (18) 375

and (19) are stable iff the time-invariant coefficients of the 376

terms ξn and ζn are positive. Therefore, we can formulate the 377

stability conditions in the following assertion. 378

Statement 2. [Transversal stability of stationary cyclops 379

states]. Clusters of oscillators composing the stationary cy- 380

clops state (3) are locally stable iff: 381

2∑
q=1

εqq cos(qγ1 + αq) + N − 1

2

(
2∑

q=1

εqq cos αq

+
2∑

q=1

εqq cos(qσ + αq)

)
> 0,

2∑
q=1

εqq cos(qγ2 + αq) + N − 1

2

(
2∑

q=1

εqq cos αq

+
2∑

q=1

εqq cos(qσ − αq)

)
> 0, (20)

where the left-hand sides of the inequalities (20) are the 382

coefficients of the variational equations (18) and (19). 383

It is also straightforward to show that the stationary cyclops 384

state is always stable to the shift of all phases by a constant 385

value δθk = δθ (k = 1, . . . , N). 386

It is worth noticing that the eigenvalues λtran
1,2 associated 387

with the variational equations (18) and (19) have multi- 388

plicity M − 2. Thus, the eigenvalues λtran
1 and λtran

2 define 389

the transversal stability of the first (n = 1, 2, . . . , M − 2) 390

and second (n = M + 1, . . . , N) clusters, respectively. Fig- 391

ure 3(a) displays their stability boundaries defined by the 392
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conditions (20) with the left-hand sides set to 0 to corre-393

spond to Reλtran
1 = 0 (the red dashed line) and Reλtran

2 = 0394

(the green dash-dotted line). To highlight the constructive395

role of the second-harmonic coupling with ε2 �= 0, we chose396

the parameter values that yield unstable stationary cyclops in397

the network with only first-harmonic coupling with ε2 = 0398

(see Fig. 3).399

As Fig. 3(a) indicates, crossing the stability boundary (15)400

(the lower border of the region CS) induces breathing cyclops401

states in the region BCS (green) in accordance with State-402

ment 1. In turn, crossing the upper border of the region CS,403

composed of the transveral stability boundaries Reλtran
1 = 0404

(the red dashed line) and Reλtran
2 = 0 (the green dash-dotted405

line) can yield either switching cyclops states in the region406

SCS (yellow) or asymmetrical, two-cluster states with five-407

and six-oscillator synchronous clusters (white region 5:6). In408

the following, we will primarily focus on the properties of409

emerging breathing and switching cyclops states.410

VI. EMERGING BREATHING AND SWITCHING411

CYCLOPS STATES412

We performed numerical calculations using a widely413

adopted fifth-order Runge-Kutta scheme with a fixed time step414

0.01 to further validate our analytical results and predictions.415

Figure 3 confirmed the two main bifurcation scenarios for416

destroying the stationary cyclops states and generating breath-417

ing and switching cyclops states described by Statements 1418

and 2. In the first scenario, complex conjugate eigenvalues419

λ1,2, that determine the stability of constant intercluster phase420

differences x and y via (10), become purely imaginary and421

induce oscillating x(t ) and y(t ) [Fig. 4(c)]. As a result, the422

stationary cyclops state becomes internally unstable; however,423

the stability of the clusters preserves and guarantees the emer-424

gence of a breathing cyclops state [see Figs. 4(a) and 4(d) and425

Supplemental Movie 1 [68] for the animation of the breathing426

cyclops state dynamics]. Periodic oscillations of the first two427

order parameters r1 and r2 depicted in Fig. 4(b) are a signature428

of such a breathing cyclops state. As the distance from the429

stability boundary of the CS region [solid blue line in Fig. 3430

a(a)] increases when changing the second-harmonic coupling431

strength ε2 and phase lag α2, the amplitudes of intercluster432

difference oscillations x(t ), y(t ), and order parameters r1(t ),433

r2(t ) increase. It is worth noticing that for the parameters434

α1 and ε1 used in Fig. 3(a), the breathing cyclops state is435

also stable in the absence of the second-harmonic coupling436

(ε2 = 0).437

In the second bifurcation scenario determined via State-438

ment 2, the stationary cyclops state loses its transversal439

stability when one of the eigenvalues λtran
1,2 becomes positive440

[Fig. 5(c)]. Note that the real parts of the other eigenvalues441

controlling the internal stability of the intercluster differences442

remain negative, thereby preserving the stable component443

of the saddle dynamics. While the transversal instability444

of the cyclops state may lead to its complete destruction,445

it induces a switching cyclops state [Figs. 5(a) and 5(d)]446

when the transversal instability is weak [note the slightly447

positive eigenvalue, depicted by the red nabla in Fig. 5(c)].448

This nonstationary cyclops state represents a two-stage repet-449

itive process. During the first relatively long stage, the450

FIG. 4. Breathing cyclops state. (a) The colors depict the phase
differences θk (t ) − θ6(t ). The gray strip indicates the reference soli-
tary oscillator. (b) The corresponding values of r1 and r2. (c) The
eigenvalues associated with the destabilized stationary cyclops state.
Some eigenvalues are repeated. The round (triangular) labels corre-
spond to the internal (transversal) stability. Note a pair of complex
eigenvalues with a positive real part (red) that emerged due to
an Andronov-Hopf bifurcation and yielded periodic oscillations of
intercluster differences. (d) Phase distributions θk at several time
instants. The arrows indicate the direction of periodic phase clus-
ters’ oscillations (see Supplemental Movie 1 [68] demonstrating this
breathing cyclops state). The oscillators’ coloring represents their
relative phase difference with the solitary oscillator as in Fig. 2(c).
Parameters N = 11, μ = 1.0, ε1 = 1.0, α1 = 1.7, ε2 = 0.08, α2 =
−0.1 correspond to the open circle label in Fig. 3(a).

intercluster differences x and y practically do not change, 451

and the synchronous clusters preserve their formation, i.e., 452

the dynamical pattern is similar to a stationary cyclops state 453

(Fig. 5). During the second short stage, one cluster reshuffles 454

so that one node leaves the unstable cluster to become a new 455

solitary oscillator, whereas the remaining oscillators from the 456

cluster merge with the old solitary node. Figure 5(d) and Sup- 457

plemental Movie 2 [68] illustrate this process. Accordingly, 458

during the first stage, the magnitudes of the order parameters 459

r1 and r2 are practically constant. They undergo an abrupt 460

change during the second stage to return to a constant value 461

[Fig. 5(b)]. As the parameter α2 increases, the duration of the 462

first stage decreases, and, hence, the period of oscillations in 463

r1 and r2 gradually decreases, causing the switching cyclops 464

state to eventually turn into a chaotically switching dynamical 465

pattern (not shown in Fig. 5). 466

We also observe a hybrid of the switching and breathing 467

cyclops states [Fig. 6(b)]. This hybrid state emerges when, 468

in addition to the external instability of one cluster, there 469

is an internal instability of the intercluster phase differences 470

x and y (Fig. 3). In terms of the eigenvalue spectrum, this 471

amounts to the presence of a pair of complex conjugate 472

eigenvalues λ1,2 (corresponding to the internal instability) 473

and one real eigenvalue λtran
1 lying to the right from the 474
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FIG. 5. Switching cyclops state. (a) The colors depict the phase differences θk (t ) − θ6(t ). The strips with solid black borders indicate the
reference solitary oscillator during the lifetime of a cyclops state configuration (the first stage). Note that clusters disintegrate to form a new
cyclops state with a different solitary oscillator (the second stage). (b) The corresponding values of r1 and r2. The gray fragments correspond
to the zoomed-in insets (right panels). (c) The eigenvalues associated with the destabilized stationary cyclops state. Some eigenvalues are
repeated. The round (triangular) labels correspond to the internal (transversal) stability. Note a positive real eigenvalue (red) corresponding to
the loss of the transversal stability of the stationary cyclops state due to Statement 2. (d) Phase distributions θk corresponding to a death-birth
process in which a cyclops state existing at t = t1 disintegrates to form a new cyclops state at t = t4 (see Supplemental Movie 2 [68] for the
details of this dynamical evolution). Parameters N = 11, μ = 1.0, ε1 = 1.0, α1 = 1.7, ε2 = 0.08, α2 = 0.78 correspond to the diamond label
in Fig. 3(a).

imaginary axis [Fig. 6(c)]. We term this hybrid a switching-475

breathing cyclops state, which is effectively a switching476

cyclops state, which, during its first stage, has oscillating inter-477

cluster phase differences x(t ) and y(t ). Accordingly, the order478

parameter amplitudes r1 and r2 are time-periodic functions479

[Fig. 6(b)]. Figure 6(d) and Supplemental Movie 3 [68] detail480

the dynamical evolution of the switching-breathing cyclops 481

state. 482

Breathing and switching cyclops states can also merge to 483

form another hybrid cyclops state, termed rotobreathing cy- 484

clops states (Fig. 7) in the range of the second-harmonic phase 485

shift with |α2| > π/2 (Fig. 8, the pink regions). Rotobreathing 486

FIG. 6. Switching-breathing cyclops state. The notations are as in Fig. 5. One cluster of the breathing cyclops state [depicted in orange in
panel (a)] eventually disintegrates, forming a reshuffled synchronous cluster and a new solitary oscillator. Note the weak internal and transversal
instability of the destabilized stationary cyclops state due to the three eigenvalues with small positive real parts [red circles and nabla in panel
(c)]. Supplemental Movie 3 [68] animates the sequence given in panel (d). Parameters N = 11, μ = 1.0, ε1 = 1.0, α1 = 1.7, ε2 = 0.0578,
α2 = 0.78 correspond to the circled times label in Fig. 3(a).
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FIG. 7. Rotobreathing cyclops state. The notations are as in
Fig. 5. From left to right: the relative phase between the first syn-
chronous cluster and the sixth reference oscillator oscillates, whereas
the phase of the second synchronous cluster passes zero and ro-
tates until the clusters exchange their roles. Supplemental Movie 4
[68] details this process. Parameters are N = 11, μ = 1.0, ε1 = 1.0,
α1 = 1.7, ε2 = 0.08, α2 = −2.0.

cyclops states, or simply rotobreathers, are also characterized487

by a two-stage repetitive process in which, during the first488

stage, an intercluster phase difference between one cluster and489

the solitary oscillator oscillates while the relative phase differ-490

ence of the other cluster rotates. The clusters exchange their491

oscillatory and rotatory phase roles during the second stage.492

Figure 7 and Supplemental Movie 4 [68] give the full details493

of this two-stage process. Accordingly, the amplitudes of the494

order parameters r1 and r2 exhibit large periodic oscillations495

[Fig. 7(b)].496

Figure 8 demonstrates the prevalence of cyclops states of497

various types. Remarkably, rotobreathers and breathing cy-498

clops states, induced by nonzero second-harmonic phase lag499

α2 in the region where full synchronization is unstable, act500

as global attractors and emerge with a probability close to501

1 [Figs. 8(b) and 8(c)]. Note that breathing and switching502

cyclops states can also emerge with a relatively high proba-503

bility even when they coexist with presumably dominant full504

synchronization when the overall coupling is attractive with505

H ′(0) > 0 [the region bounded by the black dashed vertical506

lines in Fig. 8(b); these lines correspond to the solid circles on507

the black dashed parabola in Fig. 8(a)].508

It is worth noting that the globally coupled network (1)509

with the first- and second-harmonic coupling admits any clus-510

ter partition. As a result, stationary cyclops states with a511

solitary oscillator and nonequally sized coherent clusters exist512

for even N. However, our extensive simulations suggest that513

such stationary cyclops states are unstable for even N in the514

entire parameter range of ε2 and α2 considered in this paper.515

Figure 9(a) supports this claim and demonstrates that, in the516

attractive coupling case, two-cluster states, coexisting with517

complete synchronization, are the only stable cluster patterns518

in the network with N = 10. The same claim holds for the519

repulsive coupling case, with the exception that complete syn-520

chronization is no longer stable so that the two-cluster states521

FIG. 8. Stability and prevalence of cyclops states. (a) Stability
diagram extending Fig. 3(a) to the full range of the phase lag pa-
rameter α2. The notations are similar to Fig. 3(a), with the addition
of rotobreathers (pink). The shaded vertical strip corresponds to
the parameter region of Fig. 3(a). Stationary cyclops states in the
region CS are chosen as initial conditions and further continued
by changing the parameter α2 right and left from each point on
the line α2 = 0.0 for each value of ε2. The initial conditions for
the subsequent calculation are carried over from the final state of the
preceding computation. The double-shaded areas (inclined stripes)
indicate overlapping stability regions and correspond to the bistabil-
ity of different cyclops state types. The two dash-dotted horizontal
lines indicate the values of ε2 used in panels (b) and (c). (b, c)
Probability of cyclops states’ emergence (all types). The number
of trials is 1000. The initial phases are uniformly distributed in the
segment [−π, π ], and the initial velocities are uniformly distributed
in the segment [−1.0, 1.0]. The black dashed vertical lines in panel
(b) indicate the stability boundary of full synchronization. In panel
(c) full synchronization is unstable. Parameters are N = 11, μ = 1.0,
ε1 = 1.0, α1 = 1.7. (b) ε2 = 0.08, (c) ε2 = 0.05.

become prevalent and coexist with four-cluster states with 522

rotating intercluster differences for N = 10 [Fig. 9(c)]. Sim- 523

ilarly, stationary cyclops states (4) emerge as the only stable 524

patterns along with complete synchronization for N = 11 in 525

the attractive coupling case [Fig. 9(b)], and breathing cyclops 526

states with equally sized coherent clusters appear as global 527

attractors in the repulsive coupling case [Fig. 9(d)]. 528

Remarkably, this distinct behavior in the emergence of 529

two-cluster and cyclops states in networks of even and odd 530

sizes carries over to large networks. Figure 10(a) demonstrates 531
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FIG. 9. The probability of occurrence of two-cluster (N = 10)
and cyclops states (N = 11) under attractive and repulsive in-
teractions. The histograms indicate the percentage occurrence of
dynamical states in 1000 simulations with random initial conditions.
The initial phases �k (0) are uniformly distributed on [−π, π ]; the
initial velocities �̇k (0) are uniformly distributed on [−5.0, 5.0].
The snapshots correspond to the established dynamical states with
the relative phases θk in the rotating frame as in (4). (a, b) Attrac-
tive coupling: complete synchronization is prevalent with a 72 %
(N = 10) and 62 % (N = 11) probability. It coexists for N = 10
with a stationary two-cluster 5:5 state with an even partition of five
oscillators in each cluster and a constant intercluster phase difference
(a) and for N = 11 with a stationary cyclops state 5:1:5 (b). (c, d)
Repulsive coupling. (c) N = 10: stationary two-cluster 5:5 states co-
exist with four-cluster states 4:4:1:1 with nonstationary intercluster
phase differences. (d) N = 11: breathing cyclops states 5:1:5 with os-
cillating intercluster phase differences are global attractors emerging
with a 100% probability. The black arrows indicate the directions of
evolving intercluster differences. Parameters are μ = 1.0, ε1 = 1.0,
α1 = 1.7; (a, b) ε2 = 0.12, α2 = 0.0; (c, d) ε2 = 0.04, α2 = 0.6.

that stationary cyclops states (4) are stable in the odd-sized532

network with N = 101. Eliminating one oscillator from the533

network turns the cyclops state into a two-cluster state with534

equally sized clusters [Fig. 10(b)]. Removing an extra oscil-535

lator from this 100-node network transforms the two-cluster536

state back to a stationary cyclops state [Fig. 10(c)]. We expect537

this effect to persist in the thermodynamic limit of very large538

N .539

VII. PERSISTENCE OF CYCLOPS STATES540

In this section we demonstrate that cyclops states resist541

intrinsic frequency detuning. We mismatch the intrinsic fre-542

quency ω by choosing the kth oscillator’s frequency ωk, k =543

1, . . . N from a uniform random distribution in the interval544

[ω − δ, ω + δ], where δ is a frequency detuning. We consider545

the parameter region where stationary cyclops states are stable546

[region CS in Fig. 3(a)]. Figure 11 demonstrates the persis-547

tence of three stationary cyclops states, each induced by a548

particular intrinsic frequency distribution. Note that although549

the oscillators’ phases within each synchronous cluster may550

not perfectly align due to the frequency detuning, they remain551

relatively close to each other (see Fig. 11). Additionally, the552

established frequencies of all oscillators are the same. The sta-553

tionary cyclops state can lose the transversal stability similarly554

to their counterparts from the identical oscillator case (note the555

stationary cyclops state marked by the red labels in Fig. 11 that556

FIG. 10. Odd vs even-sized large networks: the transition be-
tween cyclops and two-cluster states as N changes. The colors depict
the relative phases θk, k = 1, . . . , N. (a) A cyclops state with the
three-cluster partition 50:1:50 in the 101-oscillator network. The cy-
clops state with small phase offsets, randomly chosen from a uniform
distribution [−0.01; 0.01] was selected as the initial condition. The
horizontal black stripe indicates the solitary oscillator with θ51 = 0.

(b) The emergence of a two-cluster state 50:50 in the 100-oscillator
network. The cyclops state from (a) with one oscillator removed from
the second cluster was selected as the initial condition. (c) Removing
one oscillator from the two-cluster state in (b) induces a cyclops
state 49:1:49 in the 99-oscillator network. (d) The corresponding
snapshots of phases θk at several time instants: t1 = 1250, t2 = 3750,
t3 = 5200, t4 = 6250, t5 = 11 250, and t6 = 13 750. The black arrow
indicates the direction of the solitary oscillator’s phase evolution.
Parameters are μ = 1.0, ε1 = 1.0, α1 = 3.1, ε2 = 0.002, α2 = 0.2.

turns into a switching cyclops state at δ = δ1). Remarkably, 557

the frequency detuning can also induce a bifurcation scenario 558

for disintegrating stationary cyclops states via a saddle-node 559

bifurcation at δ = δ2 and δ = δ3. We did not observe such a 560

bifurcation route in our extensive simulations of system (1) 561

with identical frequencies reported in Figs. 3–8. 562

VIII. CONCLUSIONS 563

Building upon our recent study [50], this work has sig- 564

nificantly advanced an understanding of rhythmogenesis in 565

Kuramoto networks of 2D phase oscillators with first-mode 566

and higher-mode coupling. A key focus of our work has been 567

on the constructive role of higher coupling modes in inducing 568

and stabilizing a unique class of dynamical states known as 569

cyclops states. These states, characterized by two coherent 570

clusters and a solitary oscillator resembling the Cyclops’s eye, 571

represent a particular form of three-cluster generalized splay 572

states [49]. 573

Our initial findings in [50] revealed the unexpected result 574

that adding the second or third harmonic to the Kuramoto 575

coupling makes cyclops states global attractors, exhibiting 576

remarkable stability over a substantial range of coupling’s re- 577

pulsion. This paper delved deeper into the dynamic repertoire 578

of cyclops states, introducing and systematically analyzing 579
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FIG. 11. Persistence of cyclops states in system (1) with mis-
matched frequencies ωk distributed evenly over the interval [ω −
δ, ω + δ], where ω = 1.7 and δ is a frequency detuning. Global
maxima (circles) and minima (crosses) of order parameter r2 for
three cyclops states (red, orange, and cyan). The global maximum
was determined in the time interval 5 × 103 � t � 104 following
the transition process. A stationary cyclops state is indicated by
overlapping circles and crosses of the same color, while separated
circles and crosses denote a switching cyclops state. The first cy-
clops state (red) originates from the original intrinsic frequency
distribution. Subsequently, modifying the distribution by exchanging
the intrinsic frequency of the Mth solitary oscillator, ωM , with ω1

(or ωM+1) induces the emergence of the second (or third) cyclops
state, depicted by orange and cyan, respectively. As the parameter
mismatch δ increases, the distribution of mismatched frequencies
widens. To induce each of the three cyclops states as δ increases,
a stationary cyclops state from the identical frequency case was
used as the initial condition for δ = 0. The final phase distribution
at a given δ is then used as initial conditions for subsequent sim-
ulations at a higher value of δ. The values of δ < δ1 preserve all
three stable stationary cyclops states. Increasing δ > δ1 destabilizes
the first stationary cyclops state (red) and turns it into a switching
cyclops state. Further increasing δ > δ2 leads to disintegrating the
second cyclops state (orange) at δ = δ2. The third stationary cyclops
state (cyan) persists to δ = δ3. The cyclops states are found from
direct numerical simulations of system (1) for three sets of natural
frequency distributions ωk with a continuous increase in δ from zero.
The inset shows instantaneous phase distributions θk for the third
cyclops state with nonidentical frequencies. Parameters are N = 11,
μ = 1.0, ε1 = 1.0, α1 = 1.8, ε2 = 0.12. The bifurcation parameter
values are α2 = 0.2, δ1 = 0.034, δ2 = 0.105, δ3 = 0.183.

breathing and switching cyclops states and their hybrids, in-580

cluding switching-breathing cyclops states and rotobreathers.581

Through rigorous analytical derivations and numerics, we582

have identified conditions for the existence and stability of583

stationary cyclops states, elucidating two distinct bifurcation584

scenarios. In both scenarios, the second coupling harmonic585

acts as a constructive agent, either inducing periodic oscil-586

lations in intercluster relative phase differences (breathing587

cyclops states) or facilitating swift reconfigurations and tran-588

sitions (switching cyclops states). These dynamical patterns589

can be viewed as nontrivial hybrids of solitary states [41–44],590

generalized splay [49], clusters with breathing and rotatory591

intercluster phase shifts [46,47], and intermittent [37] and592

switching chimeras [64]. In particular, switching cyclops593

states unite the properties of blinking chimeras [64] and three-594

cluster states [47].595

Our extensive stability analysis has underscored the re-596

silience and dominance of breathing, rotobreathing, and597

switching cyclops states across wide parameter ranges, in-598

cluding the case of the overall attractive, two-harmonic599

coupling. Importantly, we have showcased that the construc- 600

tive influence of higher coupling harmonics is not limited 601

to networks of identical oscillators, as cyclops states persist 602

robustly in Kuramoto networks of nonidentical oscillators. 603

Importantly, our prior work [50] demonstrated the dynamic 604

equivalence of the 2D Kuramoto model with first- and second- 605

harmonic coupling to a network of canonical theta neurons 606

with adaptive coupling. This equivalence also suggests the 607

widespread manifestation of breathing and switching cyclops 608

states in theta-neuron networks, underscoring our results’ 609

broad applicability and significance in diverse physical and 610

biological networks. 611

While it is crucial to differentiate between the higher-order 612

harmonic coupling studied in this paper and the higher- 613

order nonpairwise coupling [69–72], it is equally important 614

to recognize their possible interplay and the richness they 615

bring to the dynamics of networked systems. These con- 616

cepts are not mutually exclusive; they can coexist, adding 617

layers of complexity and fostering a diverse range of emer- 618

gent behaviors. Recent research [73,74] analyzed the intricate 619

interplay between pairwise first-order harmonic and nonpair- 620

wise higher-order coupling in shaping collective dynamics in 621

Kuramoto networks. The incorporation of both higher-order 622

harmonics and nonpairwise interactions promises to induce 623

even richer emerging dynamics, including various forms of 624

cyclops states, and may pave the way for a more holistic 625

comprehension of complex networked systems. 626
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APPENDIX: MAXIMUM NUMBER 635

OF STATIONARY CYCLOPS STATES 636

Here we provide the details for deriving an upper bound 637

for the maximum number of stationary cyclops states with 638

distinct x and y, given in Sec. III. 639

Finding all possible solutions of system (6) that determine 640

the existence of stationary cyclops states is elusive due to its 641

complexity, and the number of solutions can vary depending 642

on the parameters. In particular, it prevents locating all solu- 643

tions of the system (6) by their continuation with respect to 644

the parameters. However, this computational problem can be 645

simplified by the change of variables u = eix, v = eiy (|u| = 1, 646

|v| = 1) that transforms the real-valued system (6) into the 647

system of complex polynomial equations: 648

(1 − u)

{
uv

[
eiα1

(
u + v + 2uv

N − 1

)

+ e−iα1v

(
u + v + 2

N − 1

)]
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+ ε2(u + 1)

[
eiα2

(
u2 + v2 + 2u2v2

N − 1

)

+ e−iα2v2

(
u2 + v2 + 2

N − 1

)]}
= 0,

(1 − v)

{
uv

[
eiα1

(
u + v + 2uv

N − 1

)

+ e−iα1 u

(
u + v + 2

N − 1

)]

+ ε2(v + 1)

[
eiα2

(
u2 + v2 + 2u2v2

N − 1

)

+ e−iα2 u2

(
u2 + v2 + 2

N − 1

)]}
= 0. (A1)

The analysis of system (A1) is more manageable, and the649

maximum number of its solutions (the roots of the complex650

polynomials) can be estimated by applying the classical Bern-651

shtein theorem from algebra. To facilitate the reading, we list652

this theorem below.653

Theorem [Bernshtein, 1975] [67]. Let a system of n polyno-654

mials have a finite number of roots in (C∗)
n
, where C∗ = C \ 0.655

Then, the number of roots is bounded from above by the656

mixed volume Pk of their Newton polytopes (the convex hull657

of polynomial supports Sk).658

Before applying the theorem to (A1), we get rid of the659

factors (1 − u) and (1 − v) on the right-hand side of (A1)660

since we are interested only in solutions u, v �= 1. By do-661

ing so, we have excluded the solutions that correspond to662

a one-cluster solution and two-cluster solutions of the form663

(N − 1)/2:(N + 1)/2. It is worth mentioning that, in contrast664

to its real-valued counterpart (6), the complex polynomials665

may have either nonphysical solutions with |u| �= 1 or |v| �=666

1, or solutions that do not correspond to stationary cyclops667

states. The latter solutions with |u| = 1 and |v| = 1, include668

(a) (b) (c)

FIG. 12. The supports S1, S2 (black dots) and the corresponding
Newton polytopes P1, P2 (shaded regions) of (a) the first and (b) sec-
ond polynomials of system (A1). (c) The Minkowski sum P1 ⊕ P2.

a two-cluster N − 1 : 1 solitary state, corresponding to u = v, 669

i.e., x = y. 670

The support of a polynomial
∑

j

∑
l a jlu jvl is the set 671

of exponents ( j, l ). Thus, the supports S1 and S2 of the 672

resulting polynomials (degrees u and v in each of the 673

first and second equations terms) have the form S1 = 674

{(0, 2); (0, 4); (1, 2); (1, 3); (1, 4); (2, 0); (2, 1); (2, 2); (3, 0); 675

(3, 2)}, S2 = {(0, 2); (0, 3); (1, 2); (2, 0); (2, 1); (2, 2); (2, 3); 676

(3, 1); (4, 0); (4, 1)}. 677

Consider the mixed volume of Newtonian polytopes P1 and 678

P2: M(P1, P2) = vol2(P1 ⊕ P2) − vol2(P1) − vol2(P2). As we 679

need to handle only two equations, determining the mixed 680

volume of the two Newtonian polytopes is straightforward 681

and amounts to computing the area of the shaded regions 682

in Fig. 12. This yields the following values: vol2(P1) = 8, 683

vol2(P2) = 8, vol2(P1 ⊕ P2) = 33 (see Fig. 12). Therefore, 684

M(P1, P2) = 17. Excluding the nonphysical solutions and so- 685

lutions corresponding to noncyclops regimes from the sets 686

of roots in (A1), we can always find the number of cyclops 687

modes in the system (1), which is limited to 16 cyclops states. 688

Our numerical search for the roots of polynomials (A1) 689

was performed using the NSolve function of Wolfram Math- 690

ematica. This search found 17 roots almost everywhere in 691

the considered broad parameter regions, suggesting that our 692

analysis effectively identified all possible solutions of (A1) 693

and, therefore, all possible stationary states cyclops, identified 694

from the 17 solutions by excluding the nonphysical solutions 695

(|u| �= 1 or |v| �= 1) and noncyclops states (u = 1 or v = 1 or 696

u = v). 697
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