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ABSTRACT

Non-smooth dynamics induced by switches, impacts, sliding, and other abrupt changes are pervasive in physics, biology, and engineering. Yet,
systems with non-smooth dynamics have historically received far less attention compared to their smooth counterparts. The classic “Bristol
book” [di Bernardo et al., Piecewise-smooth Dynamical Systems. Theory and Applications (Springer-Verlag, 2008)] contains a 2008 state-of-
the-art review of major results and challenges in the study of non-smooth dynamical systems. In this paper, we provide a detailed review of
progress made since 2008. We cover hidden dynamics, generalizations of sliding motion, the effects of noise and randomness, multi-scale
approaches, systems with time-dependent switching, and a variety of local and global bifurcations. Also, we survey new areas of application,
including neuroscience, biology, ecology, climate sciences, and engineering, to which the theory has been applied.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0138169

This paper opens the 2022 Focus Issue on Non-Smooth Dynam-
ics. We review advances in the theory of piecewise-smooth and
non-smooth dynamical systems beyond the extensive coverage of
the high-impact “Bristol book” that was published in 2008. We
also highlight the contributions to this Focus Issue that articu-
late the role of non-smooth dynamics and cover a wide range of
topics including Filippov systems, discontinuity-induced bifur-
cations, vibro-impact systems, pulse-coupled systems, switching
networks, and applications in mechanics and biomechanics.

I. INTRODUCTION

Non-smooth dynamics, appearing as switches, impacts,
sticking, sliding, and chatter require careful formulation and

treatment due to the essential piecewise or discontinuous features.
Piecewise-smooth and non-smooth dynamical systems represent
a vast research area in nonlinear science, related to systematic
mathematical analysis and modeling of non-smooth dynamics and
bifurcations, possibly in the presence of uncertainty and stochastic-
ity. The introduction of non-smoothness can generate nearly any
type of behavior, via a huge range of discontinuity-induced bifurca-
tions, some with smooth counterparts, like fold-type or Hopf-type
bifurcations, but others specific to non-smooth phenomena, e.g.,
grazing and sliding. While the theory of smooth dynamical systems
dates back to Poincaré’s time, systematic efforts to understand non-
smooth dynamics and bifurcations have only been performed more
recently.

Notwithstanding valuable early contributions by Andronov
et al.,1 Neimark,2 Filippov,3,4 Feigin,5,6 and others (see Sec. 1.7 of
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Jeffrey7), progress on non-smooth dynamics underwent rapid accel-
eration in the 1990s, ignited by the fundamental work of Nordmark
and collaborators on impact oscillators and discontinuity maps.8–10

Researchers at Bristol, UK, and nearby Bath were central to many of
these developments and took the extra step of collating the state-of-
the-art theory at the time into a graduate-level textbook11 published
in 2008. The book was completely novel and has standardized termi-
nology, and it made non-smooth dynamics mainstream by showing
how standard dynamical systems ideas, when appropriately general-
ized, provide the key to understanding physical problems in diverse
disciplines. As of this writing, the book has over 2000 citations in
Google Scholar. In view of its lofty place in the non-smooth dynam-
ics literature, we, and many others, refer to it simply as the “Bristol
book.”

However, the theory of non-smooth dynamics has developed
further since 2008. The main purpose of this paper is to review these
advances. The advances are diverse, some theoretical and others
breaking into new areas of application. Some reviews and addi-
tional books have been compiled. Of particular note is the work of
Jeffrey7—another Bristol book that extends Filippov’s framework to
systems with multiple switches and explains the occurrence of novel
dynamics in physically motivated regularizations of nonsmooth
models.

We also briefly survey articles in the present Focus Issue that
brings together applied mathematicians, physicists, and engineers
to display recent advances in the theory and applications of non-
smooth dynamical systems. Topics covered range from the dynam-
ics and bifurcations of piecewise-smooth and impacting systems,
including non-classical sliding homoclinic and grazing bifurcations,
to the constructive role of non-smoothness in the stability and con-
trol of switched networks with an eye toward applications in biology
and engineering.

The idea of organizing this Focus Issue was inspired by a non-
smooth dynamics minisymposium held at the virtual 2021 SIAM
Conference on Applications of Dynamical Systems. This focus con-
tains a collection of research papers from a broad spectrum of topics
related to modeling, analysis, and control of non-smooth dynami-
cal networks. We hope that this collection will generate significant
interest among the mathematics, physics, and engineering audiences
of the journal. Junior researchers might also find this collection use-
ful as an inspiration to start graduate research in this exciting field
of research.

II. HIDDEN DYNAMICS

Much of the Bristol book is dedicated to the dynamics and
bifurcations of ordinary differential equation (ODE) systems of the
form

ẋ =
{

fL(x), h(x) < 0,

fR(x), h(x) > 0.
(1)

Here, the system state x(t) ∈ R
n evolves according to one of two

vector fields, fL, and fR, as governed by the sign of a smooth func-
tion h : R

n → R. This represents the simplest formulation of state-
dependent switching between two modes of evolution. Solutions can
become constrained to the switching manifold h(x) = 0, Fig. 1. This

FIG. 1. A phase portrait of a two-dimensional non-smooth system of the form
(1). Evolution on the switching manifold h(x) = 0 is termed sliding motion. Slid-
ing motion usually ends when the system state reaches a point of tangency
(visible fold).

is sliding motion, usually formulated as the solution to a convex
combination of fL and fR in accordance with Filippov.3,4

A more realistic model might incorporate hysteresis or time-
delay in the function h or smooth the vector field over a narrow
region (boundary layer) containing the switching manifold. If the
addition of such complexities has little or no bearing on the qual-
itative features of the dynamics, it is probably better to work with
the simpler model (1). This is often indeed the case and serves to
illustrate the importance of understanding the dynamics and bifur-
cations of such systems. However, in many situations, new dynamics
arise.

Understanding the causes and consequences of such hidden
dynamics has recently been championed by Jeffrey.7 Here, things are
clearer with (1) rewritten as

ẋ = [1 − H(h(x))]fL(x) + H(h(x))fR(x), (2)

where H is the Heaviside function. Hidden dynamics can appear
when H is replaced with a smooth approximation that is non-
monotone.12–14 This occurs, for example, in friction models to cap-
ture the shape of the Stribeck curve15,16 that accounts for the extra
break-away force that in-contact objects require to begin slipping.

The resulting non-monotone model typically involves dynam-
ics that are qualitatively different to those of (2). The lack of mono-
tonicity can cause a shift in bifurcation values or introduce new
bifurcations.17,18 It can introduce oscillations in the boundary layer
in scenarios where (2) has roughly uni-directional sliding motion.
Taken to an extreme, non-monotone smoothing can convert sliding
motion into chaos.19

When multiple switching conditions are involved, monotone
smoothing is sufficient to generate new dynamics.19,20 As shown by
Harris and Ermentrout,21 this occurs for the Wilson–Cowan neuron
model with discontinuous firing rate functions. The model is

u̇ = −u + H(u − av − b),

τ v̇ = −v + H(u − cv − d),
(3)
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FIG. 2. The upper plots show a bifurcation diagram and representative phase portraits of the non-smooth system (3) with a = 2, b = 0.05, c = 0.25, and d = 0.3, as given
by Harris and Ermentrout.21 The lower plots are for the smooth system obtained by replacing the Heaviside functions with hyperbolic tangent functions as explained in the
text (using ε = 0.005). Stable solutions are colored blue; unstable solutions are colored red. The green curves are switching manifolds in the upper plots and nullclines in
the lower plots. The bifurcation diagrams show the v-value of the steady-state solution and minimum and maximum v-values of the limit cycle.

where u(t) represents the average activity of a large neural network,
v(t) is a recovery variable, and H is again the Heaviside function.
The intersection of the two switching manifolds, u = av + b and
u = cv + d, is a steady-state solution that loses stability and emits
a stable limit cycle as the parameter τ is increased, Fig. 2(a). By
replacing each H(z) with 1

2

(

tanh
(

z
ε

)

+ 1
)

(here, z is a dummy vari-
able), the system is now smooth but the analogous transition occurs
much earlier in a (classical) Hopf bifurcation, Fig. 2(b). By taking
ε → 0, we recover (3), yet the Hopf bifurcation value converges to
τ ≈ 0.1373, which is substantially earlier than the bifurcation value
for (3) of τ ≈ 0.5240. We conclude that, for intermediate values of τ ,
arbitrarily steep monotone smoothing causes the steady-state solu-
tion to lose stability and stable, small-amplitude, oscillations to be
created.

A deeper understanding of the dynamics and bifurcations of
(1) can be gained by smoothing with monotone functions.22,23 The
smoothed model is inherently slow–fast and, in this way, slow–fast
systems and piecewise-smooth systems are closely related (see also
Sec. IX). For example, folded nodes24 of slow–fast systems can,
when the limit to the Heaviside function is taken, become two-
folds of piecewise-smooth systems25 [a two-fold of (1) is a point on
h(x) = 0 at which both fL(x) and fR(x) have a tangency to h(x) = 0
and certain genericty conditions are satisfied7]. Two-folds were con-
sidered by Filippov4 and Teixeira,26 but only recently analyzed in
more detail.27–31 Single folds have been investigated by smoothing,32

as have planar two-folds,33 including the non-uniqueness of tra-
jectories that enter two-folds.34 A contraction analysis based on

regularization was also used to study the stability of different classes
of switched Filippov systems.35

III. GENERALIZATIONS AND EXTENSIONS OF SLIDING

MOTION

The discontinuous neuron model (3) is one of many non-
smooth models that involve multiple switching manifolds. To spec-
ify sliding motion along the intersection of two switching manifolds,
Filippov’s approach to constructing a tangent convex combination
can fail to define a unique solution. Several ways to remedy this have
recently been proposed. Jeffrey36 identifies a “canopy” convex com-
bination that is, in a sense, the simplest. Dieci and Difonzo37 instead
take the barycentric mean. Kaklamanos and Kristiansen38 smooth
the system, then define sliding motion by taking the nonsmooth
limit. Jeffrey et al.39 apply perturbations (hysteresis, time-delay,
noise, and numerical discretization) and take the zero perturbation
limit. Such a procedure gives different results for the different types
of perturbations renewing the remarks of Utkin,40 in the context of
relay control, that the most appropriate definition for sliding motion
depends critically on the physical properties of the system under
consideration.

Related to this problem, friction models with sufficiently many
degrees of freedom (DoF) naturally involve switching manifolds that
are codimension-two (instead of codimension-one). Some theory
for the dynamics and bifurcations of such systems has recently been
developed by Antali and Stépán.41,42
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IV. LOCAL BIFURCATIONS OF NON-SMOOTH ODES

As parameters are varied, interactions between invariant sets
and switching manifolds produce a wide variety of novel bifurca-
tions collectively known as discontinuity-induced bifurcations. The
simplest type of discontinuity-induced bifurcation is arguably a
boundary equilibrium bifurcation that occurs when an equilibrium
of a smooth component of the system collides with a switching man-
ifold. Discontinuity-induced bifurcations are described in Chap. 5 of
the Bristol book, which, following Kuznetsov et al.,43 chronicles ten
topologically distinct, generic, boundary equilibrium bifurcations in
the two-dimensional setting. Unfortunately, two cases were over-
looked, shown in Fig. 3. These cases were only described later,44,45

and they serve to illustrate the difficulty in attempting a comprehen-
sive classification of bifurcations of non-smooth systems.46

Indeed, for systems with more than two dimensions, boundary
equilibrium bifurcations can create chaotic attractors47,48 and even
multiple attractors.49 This suggests that future developments in the
bifurcation theory of high-dimensional non-smooth systems may
benefit from focusing on weaker results that apply generally rather
than a large number of strong results for particular situations.50

Boundary equilibrium bifurcations can mimic Hopf bifurca-
tions by converting a stable equilibrium into a stable limit cycle,43,51

but there are many other mechanisms, unique to non-smooth sys-
tems, that can achieve this transition.52 Two-folds each shifting
along a switching manifold as parameters are varied, can collide,
interchange positions, and generate a limit cycle. As shown in Fig. 4,
such a phenomenon occurs for the automatic pilot model

φ̈ + φ̇ = −H(φ + βφ̇), (4)

given in the classic book of Andronov et al.1 The desired heading of
φ = 0 for the ship or vessel is achieved when the control parameter
β is positive. If the value of β is decreased through zero, two folds
collide and a stable limit cycle is created. Only recently has this type
of bifurcation been analyzed in a general setting.53

FIG. 3. Two boundary-equilibrium bifurcations not described in the Bristol book.
In (a), an unstable node transitions to a stable pseudo-equilibrium. In (b), a stable
node and a saddle pseudo-equilibrium collide and annihilate.

FIG. 4. Phase portraits and a bifurcation diagram of (4). This is a minimal model
of an automatic pilot where the vessel headingφ(t) is controlled through a param-
eter β that governs how the rudder switches between two allowed positions.
The switchingmanifold is colored green for crossing regions, blue for the attracting
sliding region, and red for the repelling sliding region. These regions are bounded
by folds shown as black triangles.

Every type of Hopf-like bifurcation involves a scaling law for
the amplitude and period of the bifurcating limit cycle as a function
of parameters.54 The amplitude grows asymptotically linearly when
the dynamics is piecewise-linear to leading order, while if two folds
are involved, the amplitude is usually asymptotically proportional
to the square-root of the parameter change, as in Fig. 4. An inter-
esting exception is a two-fold perturbed by hysteresis, which gives a
cube-root scaling law.55 For non-smooth systems that are C1 but not
C2, a modification to the standard Hopf bifurcation non-degeneracy
coefficient is required.56,57

Also in recent years, there have been many studies that aim
to count or bound that number of limit cycles possible in various
classes of non-smooth systems; see Llibre and Zhang58 and refer-
ences within. The unfoldings of several codimension-two bifurca-
tions have been derived,59–61 as has the three-dimensional unfolding
of the simultaneous occurrence of Hopf, saddle-node, and boundary
equilibrium bifurcations.62

V. GLOBAL BIFURCATIONS

The global bifurcation theory for systems with discontinu-
ities remains quite undeveloped. Di Bernardo and Hogan63 pro-
vided an extensive review in 2010. Perhaps, the first major focus
of existing studies is on deriving conditions under which global
bifurcations in non-smooth ODEs are qualitatively similar to their
classical (smooth) counterparts.64 Novaes and Teixeira48 derived a
version of Shilnikov saddle-focus theorem whereby a sliding saddle-
focus homoclinic loop yields a countable infinity of sliding saddle
periodic orbits. Belykh et al.65 constructed an analytically tractable
non-smooth system with a Lorenz-type attractor whose global bifur-
cations could be rigorously characterized and explicitly connected
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to the system parameters. A second major focus concerns global
discontinuity-induced bifurcations of limit cycles67 and homoclinic
orbits.47,66,68 For instance, a saddle in a Filippov system can attain
a homoclinic connection involving sliding motion that generates a
stable limit cycle independently of the sign of a saddle value.43,66

Figure 5 contrasts classical and non-classical homoclinic butterfly
bifurcations for Lorenz-type systems.66 Remarkably, the emergence
of sliding motion induces a non-classical homoclinic bifurcation in
which an unstable homoclinic orbit gives birth to a stable period-
doubled limit cycle.

The characterization of other global discontinuity-induced
bifurcations in three dimensions or higher remains a challenging
problem. For example, non-smooth systems can merge saddle-focus
homoclinic orbits with sliding motion and boundary equilibrium
bifurcations, generating a fundamentally different and complicated
bifurcation set47 which calls for the development of new rigorous
methods.

FIG. 5. The role of stable sliding motions for shaping the outcome of the classi-
cal homoclinic butterfly bifurcation in a piecewise-smooth version of the Lorenz
system.66 Top row: the classical homoclinic bifurcation in the absence of sliding
motion. Two stable foci el and er attract opposite branches of the unstable mani-
fold of a saddle Os (left); the unstable homoclinic orbit (middle) gives birth to two
saddle cycles (dashed curves) (right). Middle row: sketches for the homoclinic
bifurcation in the presence of sliding motion. A one-sided diagram (left) similar
to that above; the homoclinic orbit tangent to the switching manifold (middle); the
emergence of a stable period-2 limit cycle (red) with sliding motion fragments
(pink) and two saddle limit cycles (dashed) (right). Bottom row: corresponding
phase portraits. Figure modified from Belykh et al.66

VI. GRAZING, SLIDING, AND

BOUNDARY-INTERSECTION CROSSING

BIFURCATIONS

For non-smooth ODEs and hybrid systems (combining ODEs
and maps), a bifurcation occurs when a limit cycle collides with a
switching manifold. Such bifurcations can be grouped broadly into
three classes, see Fig. 6. Grazing bifurcations are common in vibro-
impacting systems and occur most simply when a non-impacting
oscillatory solution grows to hit the impacting surface. Sliding bifur-
cations involve sliding motion, for example, a limit cycle may gain
or lose a sliding segment.69 Lastly, the limit cycle may, without addi-
tional codimension, collide with a switching manifold at a corner
(kink)70 or reach an intersection of switching manifolds (common
in power converter models71). The Bristol book refers to these as
boundary-intersection crossing bifurcations.

The local dynamics can be investigated by constructing and
analyzing Poincaré maps, or stroboscopic maps in the case of peri-
odically forced systems. A robust way to achieve this is to follow
Nordmark’s approach of composing of a smooth global map, which
covers the reinjection, with a local piecewise-smooth map, termed
a discontinuity map, that incorporates the effect of the switching
manifold. The composed map is piecewise-smooth and the bifurca-
tion occurs when the fixed point that corresponds to the limit cycle
collides with the switching manifold of the map. In the context of
the map, the bifurcation is termed a border-collision bifurcation.

A large portion of the Bristol book (Chaps. 6–8) is dedicated to
deriving the form of such maps for different types of grazing, sliding,
and boundary-intersection crossing bifurcations. In most cases, one
piece of the map admits a Taylor series expansion, while, as a con-
sequence of a quadratic tangency between the grazing trajectory and
the switching manifold, the other piece of the map has an expansion
in terms of powers of the square root of the displacement from the

FIG. 6. Sketches illustrating a grazing bifurcation, a sliding bifurcation, and a
boundary-intersection crossing bifurcation. In each case, a limit cycle (or more
generally a distinguished trajectory69) encounters a fold (black triangle) or inter-
section of switching manifolds. There are several different types of bifurcations
within these three classes depending on the local geometry of orbits. Names for
the particular bifurcations shown here are indicated in brackets; for details refer
to the Bristol book.

Chaos 33, 010402 (2023); doi: 10.1063/5.0138169 33, 010402-5

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos EDITORIAL scitation.org/journal/cha

switching manifold. As shown in Chap. 4 of the Bristol book, one-
dimensional square-root maps can have chaotic attractors. In higher
dimensions, square-root maps can behave in a one-dimensional
fashion, but this does not prove they exhibit chaos. Proofs of chaos
have now been achieved for two-dimensional square-root maps in
an ergodic sense72 and a topological sense.73 Also, the existence of a
Smale horseshoe has been established under certain conditions.74

As normal forms, truncated square-root maps such as the
Nordmark map

[

xn+1

yn+1

]

=
[

τxn + yn − χH(xn)
√

xn

−δxn + µ

]

(5)

capture the local dynamics of a system in a neighborhood of a graz-
ing bifurcation. However, it is now well recognized that the size of
this neighborhood is often hopelessly small. A recent study75 of a
prototypical impact oscillator model, using parameter values based
on experiments,76,77 found that when the model is interpreted as
a perturbation of (5), a period-doubling bifurcation of a period-2
solution occurs at µ ≈ 0.000 18. Consequently, the neighborhood of
µ = 0 in which the Nordmark map reproduces the local dynamics
qualitatively does not extend past this value. There is a pressing need
to derive extensions to (5) that better capture near-impact dynamics.
Some advances have already been made in this direction.78–82

VII. BORDER-COLLISION BIFURCATIONS

Piecewise-smooth Poincaré maps that do not have a square-
root term are usually piecewise-linear to leading order. Such maps
are most interesting when they are non-differentiable, otherwise
fixed points simply pass through border-collision bifurcations with-
out a change to their stability. If the map is continuous, it can be
truncated and transformed into the piecewise-linear form

xn+1 =
{

ALxn + bµ, cTxn ≤ 0,

ARxn + bµ, cTxn ≥ 0,
(6)

where AL and AR are d × d matrices and b, c ∈ R
d. The assumption

that (6) is continuous on the switching manifold implies AL and AR

differ by a rank-one matrix.
The dynamics created in border-collision bifurcations of (6)

are the subject of Chap. 3 of the Bristol book. Here, they reproduce
the results of Feigin5,6 that show there are at most five cases for the
number of fixed points and period-2 solutions that exist on each
side of a generic border-collision bifurcation. However, due to the
constraint on the difference between AL and AR, one of these cases
cannot occur.83 It is simply not possible for two fixed points to exist
on one side of a generic border-collision bifurcation and a period-2
solution to exist on the other side of the bifurcation.

Shortly after 2008 the codimension-two coincidence of border-
collision bifurcations with either saddle-node, period-doubling, or
Neimark–Sacker bifurcations were unfolded in a general setting.84,85

The results show that in two-parameter bifurcation diagrams curves
of saddle-node bifurcations emanate tangentially from curves of
border-collision bifurcations, whereas curves of period-doubling
and Neimark–Sacker bifurcations emanate transversally, Fig. 7.

FIG. 7. Sketches of codimension-one bifurcation curves near codimension-two
points at which a non-hyperbolic fixed point undergoes a border-collision bifur-
cation (BCB: border-collision bifurcation; SN: saddle-node bifurcation; PD: peri-
od-doubling bifurcation; NS: Neimark–Sacker bifurcation). The period-doubled
solution created in the period-doubling bifurcation collides with the switching
manifold on a curve that is tangent to the period-doubling curve at the codimen-
sion-two point (and similarly for the invariant circle created in the Neimark–Sacker
bifurcation).

It has long been observed that periodicity regions of piecewise-
linear maps exhibit a distinctive “sausage-string” structure in two-
parameter bifurcation diagrams. This is illustrated in Fig. 8 for
the following integrate-and-fire neuron model with square-wave
forcing:

V̇ = −V + I + A sgn
(

sin
(

2π t
T

))

,

if V = 1 thenV 7→ 0
(7)

studied by Tiesinga86 and later Granados et al.87 The voltage V(t)
is reset to 0 whenever it reaches the value 1 and corresponds to
the neuron firing, while the forcing models the pulsatile release of
hormones, for example. The stroboscopic map of (7) is a piecewise-
linear circle map due to the combined effect of the reset law and
discontinuous forcing. The theory of circle maps can be used to
establish the uniqueness and continuity of the rotation number,
which relates directly to the average firing rate.88

The sausage-string structure is characterized by the presence of
shrinking points89 where periodicity regions have zero width. Recent
asymptotic results for maps of the form (6) characterize the geom-
etry of the periodicity regions near any generic shrinking point.90,91

In particular, the results show how the thickness of the regions can
differ near different shrinking points.

Also, it has long been known that border-collision bifurcations
can create multiple attractors simultaneously.92,93 It is now known
that in fact any number of attractors can be created.94–96 Multiple
chaotic attractors can be created,97–99 and chaotic attractors can be
high-dimensional.100–104 Chaotic attractors are often created robustly
in the sense that if some instance of (6) exhibits a chaotic attrac-
tor, then so does (6) for any sufficiently small perturbations to the
entries of AL, AR, b, and c.105–109 The chaotic attractor also persists
when the higher-order terms that were removed to obtain (6) from
a mathematical model are added back in. This was recently used to
prove that chaos is created in a prototypical power converter model,
which has been conjectured for some time.110 Other studies have
explored stronger notions of robustness, such as the continuity of
the attractor with respect to Hausdorff metric111 or with respect to
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FIG. 8. Mode-locking regions of the integrate-and-fire model (7) with I = 1.5. Any periodic solution of (7) involves p firings per q periods (of length T) for some p, q ≥ 1,
making for an average firing rate of p

q
. Each sausage-string corresponds to a fixed irreducible fraction p

q
, and here these are shown for all q ≤ 30. The values of some

fractions are indicated.

measure.112 While the robustness of chaotic attractors provides a
stark difference to chaotic attractors of smooth systems created in
period-doubling cascades for which periodic windows are dense in
parameter space,113 it is important to recognize that robust chaos
does generically occur in smooth systems with sufficiently many
dimensions.114–116

VIII. STOCHASTICS

A variety of questions have been explored with newly devel-
oped techniques in the stochastic context. Buckdahn et al.117 stud-
ied how stochastic solutions converge to Filippov solutions in the
zero-noise limit. The effects of randomness on orbits with sliding
segments in canonical relay control systems were also studied via
a combination of boundary layer analyses.118–120 It was shown how
these analyses determine statistics for the entry, sojourn, and exit
dynamics of random trajectories near sliding segments of an under-
lying deterministic orbit. More recently, Hill et al.121 described the
paths that random trajectories are most likely to take by using a path
integral framework.

Noise may dominate steep nonlinearities in the equations
of motion. This was demonstrated in a model of a prototypi-
cal oscillator subject to friction122,123 suggesting that the Stribeck
effect could be ignored if there is sufficient noise. There are a
variety of approaches for analyzing friction models in the pres-
ence of noise, including path integral methods, forward and back-
ward Kolomogorov equations, and spectral exploration of Langevin
dynamics.124–127 Another study128 uses a Fokker–Planck approach
together with the Kramers’ escape rate to compare numerical and
experimentally observed transitions in a non-smooth Duffing-type
circuit. The interplay of stochastic forcing and parametric noise
with time-periodic delays in an act-and-wait control model has been
studied analytically,129 developing densities for the eigenvalues of the
matrices characterizing the dynamics over an act-and-wait cycle and
contrasting key statistics for the state variables in both act and wait
periods.

For piecewise-linear maps with a randomly varying switch-
ing value, conditions for attractors and instabilities were obtained
by Glendinning.130 For square-root (Nordmark-type) maps (see
Sec. VI) with noise, invariant densities may be approximately Gaus-
sian, in which case analytical approximations are available, or highly
skewed.131 In the context of single-degree-of-freedom impact oscil-
lators, different noise sources yield different stochastic maps that
display fundamentally different densities and dynamics.132 More
recent works of Staunton and Piiroinen133–136 provide some under-
standing for the destabilization of periodic states via the non-
monotonic influence of noise in a square-root map. Their analyses
include the derivation of stochastic zero-time discontinuity maps
that track boundary interactions and their influence on the result-
ing dynamical sequences. This approach is valuable for efficient
computation, model reduction, and an overall understanding of
stochastic dynamics that cross-switching surfaces. Stochastic effects
from noisy forcing and random components in the discontinu-
ity boundaries were also studied in the contexts of the basins of
attraction, multi-stability, deviation of trajectories, and loss or gain
of stability for certain (nearly) periodic orbits. Also, Rounak and
Gupta137 propose computational measures for stochastic bifurca-
tions and shifts in basins of attraction for a harmonically excited
bilinear impact oscillator with a soft barrier. With a random com-
ponent included in the excitation, qualitatively different dynamical
behaviors appear for different parameter values due to the presence
of multiple underlying attractors.

Lawley considered a series of theoretical and applied (usually
biological) scenarios with stochastic switching and random environ-
ments, with earlier work138 providing equations for relevant statistics
and distributions. Later work includes neural and molecular systems
with stochastic gating and both theoretical and applied work with
switching in diffusion and cellular structures.139,140

IX. MULTI-SCALE

The analysis of slow–fast or singularly perturbed settings for
non-smooth systems has considered reduced slow manifolds in a
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number of settings.14 In some simpler settings, boundary equilib-
rium bifurcations appear,141,142 while others consider more complex
structures such as canards. A wealth of complex phenomena arise for
canards in piecewise-linear systems,25,143–151 including mixed-mode
oscillations, Hopf-like bifurcations, bursting, and super-explosions,
with various references indicating similarities and differences with
analogous canards in smooth systems. Regularization via geomet-
rical singular perturbation theory of a stiction oscillator model
exhibiting canards was recently used to resolve the non-uniqueness
of solutions.152 Also Cardin and others153,154 have studied the sta-
bility and persistence of typical singularities and periodic orbits in
singularly perturbed Filippov systems.

Recently, new approaches have been developed for dynamic
bifurcations in non-smooth, non-autonomous systems, where a
parameter varies slowly through a critical point (bifurcation). As
in smooth dynamics, this slow dynamic variation results in a lag in
the critical transition or tipping value, but with different functional
dependence on the rate parameter. For a non-smooth fold-type
dynamic bifurcation, Budd et al.155 obtain expressions for the tip-
ping value that captures the competition between this lag with the
advance driven by external oscillatory forcing. Slow passage through
Hopf-like bifurcations has also been studied.156 Their analysis cap-
tures features analogous to the smooth counterpart, illustrating how
non-smooth systems can facilitate a somewhat simplified approach
through canonical (linear) slow manifolds. They give conditions
for the dynamic Hopf-like bifurcation, connecting zones of linear-
ity with attracting and repelling slow manifolds. This yields a full
description of the way-in/way-out functions that describe transi-
tions, such as in bursting-type phenomena.

A series of works have studied a vibro-impact nonlinear energy
sink based on an impact pair, a ball moving within a cavity in a
larger externally forced mass, using a multi-scale analysis to analyt-
ically capture the reduced envelope dynamics of a regular periodic
orbit of alternating impacts on either end of the cavity.157,158 Recent
semi-analytical solutions for the full system with feedback yield dif-
ferent families of periodic orbits and their eigenvalues, providing the
validity and conditions for the multi-scale reduction.159

X. SWITCHED SYSTEMS

Dynamical systems with time-dependent switching arise natu-
rally as models in many research fields, including physics, biology,
and engineering.160 For example, the temporal patterning of interac-
tions in active matter discontinuously evolves as their comprising
units change their spatial organization.161–164 Similarly, synchro-
nized patterns in brain networks emerge from pulsatile interactions
between spiking and bursting neurons.165 Integrate-and-fire net-
works have proven to be remarkably useful for analyzing synchrony
in pulsatile neural networks. Such integrate-and-fire systems com-
bine two types of discontinuities emerging from the intrinsic reset
process and jump interactions. These discontinuous processes can
occur simultaneously, thereby leading to an ordering problem166

that has no direct analogs in smooth oscillator networks. The tools
developed for overcoming this problem and proving the stability
of neural synchronization include network saltation matrices166 and
the generalized master stability function.167 However, in the broader

context, a remaining open question is whether switching the cou-
pling between agents can trigger synchronization in a network of
piecewise-smooth oscillators. Progress has been made in addressing
this question via distributed discontinuous coupling.168

Non-smooth switching dynamics is also a key property of
various engineering systems, such as power converters and packet-
switched communication networks.169,170 Of particular interest are
blinking networks,171–173 in which connections switch on and off ran-
domly, modulating the ability of the collective dynamics of the inter-
acting nodes. Different aspects of synchronization and consensus
in stochastically blinking networks of continuous-time171–174,174–178

and discrete-time179–185 oscillators have been studied in the fast-
switching limit where the dynamics of a stochastically switching
network is close to the dynamics of a static network with aver-
aged, time-independent connections (see also the review by Belykh
et al.186). Beyond synchronization, a rigorous theory for the behav-
ior of stochastic switching networks of continuous-time oscilla-
tors in the fast switching limit was developed in Hasler et al.187,188

These studies have clarified counter-intuitive relationships between
the stochastic network and its time-averaged counterpart, where
the dynamical law is given by the expectation of the stochastic
variables.

Beyond fast switching, a number of studies documented a
strong sensitivity of dynamics to the switching frequency.189–195

For example, non-fast switching connections yield a plethora of
unexpected dynamical phenomena, including bounded windows
of intermediate switching frequencies (windows of opportunity)
in which synchronization becomes stable even though the net-
work switches between unstable modes.178,196–198 Another striking
discontinuity-induced effect is the ability of switching systems that
alternate between stable modes to display unstable behavior at
select switching frequencies.199–201 Our understanding of dynamical
systems and networks with non-fast switching connections is elu-
sive, and even simple planar systems can defeat our intuition. As
an example, we briefly examine the variation of a Stuart–Landau
oscillator considered by Porfiri et al.,201 which alternates between
two modes according to a binary signal s(t). The system period-
ically switches at period T with a duty cycle δ = 0.5 so that the
switch is on for T/2 units of time and is off for T/2 units of time.
Using a complex representation of the form z(t) = x(t) + iy(t),
we have

ż =















(1 + iω)z + iω
z3

|z|2
, s(t) = 0,

(1 + iω)z − iω
z3

|z|2
, s(t) = 1,

(8)

where ω is the radian frequency.
The system is non-differentiable at the origin, which acts as

a hybrid fixed point. Although unstable, the origin has features of
an unstable node and a stable focus, see Fig. 9. A trajectory will
first rotate about the origin approaching it (like a stable focus) and
then will diverge along the principal unstable direction (like an
unstable node). The principal unstable directions of the two modes
are orthogonal, causing the emergence of non-smooth dynamics
during each switching event. The interplay between the antagonistic
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FIG. 9. (a) Streamlines of the two unstable modes of the switched system (8)
for ω = 2, with color indicating the intensity of the vector field for s = 0 (left)
and s = 1 (right). (b) Trajectories of the periodically switched system in (8) for
ω = 2 and δ = 0.5 and T = 0.1 (solid red), T = 2 (green), and T = 5 (dashed
red) with initial condition (1, 0) (left); streamlines of the averaged system in (8) for
T � 1 (right). Figure modified from Porfiri et al.201

characteristics of the modes underpins the stability of the switched
system.

With T � 1, the dynamics of the switched system is unstable as
it would spend a large fraction of time in one of the unstable modes
before it could switch to the other.190 After spiraling toward the
origin for almost an entire quadrant, each trajectory will approach
the principal unstable direction of the mode and travel away from
the origin. Switching will cause the trajectory to experience a sud-
den turn and after each period, the distance from the origin will
increase [see the dashed red line in Fig. 9(b)(left)]. Similarly, the tra-
jectory will also escape to infinity in the fast-switching case T � 1.
This result can be explained by examining the averaged system

ż = (1 + iω)z + i(1 − 2δ)ω
z3

|z|2
, obtained from (8) with T � 1.

Similar to the individual modes, all the trajectories of the averaged
system, except for the origin, spiral out to infinity [Fig. 9(b)(right)].
Surprisingly, there is a wide range of intermediate switching periods
that induce the stability of the switched system so that the origin
becomes a stable focus [see the green line in Fig. 9(b)(left)]. The
stabilization mechanism relies on switching slowly enough to be
attracted toward the origin during the rotation, but fast enough to
avoid reaching the unstable principal directions. Rigorous proof for
the existence of this antiresonance window is given in Porfiri et al.201

XI. OTHER APPLICATIONS

The Bristol book made plain the fact that discontinuities arise
in seemingly every area of science. Indeed, we believe it has spurred
researchers in diverse disciplines to employ non-smooth models to
help answer their research questions. Several applications have been
mentioned above; in this section, we survey several more.

Reduced or conceptual climate models regularly employ
switches as simple descriptions for transitions that are fast relative
to longer time scales typical for climate dynamics. Examples that
have been analyzed dynamically and computationally are Budyko-
type models for glacial cycles that use a discontinuous function for
the albedo,202–205 energy models for Arctic ice melt with a discontinu-
ity capturing the transition to an ice-free state,206,207 PP04 models for
glaciation–deglaciation events208 analyzed recently as a non-smooth
system,209 and threshold models for rainfall and convection.210 Bista-
bility in Stommel-type models for ocean circulation, where the
relative size of temperature and salinity is the basis for a switch,211

has been studied using stochastic methods212,213 and multi-scale
methods.155 Figure 10 illustrates the non-smooth orbits that can be
observed in a periodically forced Stommel model, near transitions
from salinity- to temperature-dominated behaviors. It also shows
how noise-driven tipping between these states is advanced as the
regularity of the underlying fold bifurcation is reduced.

Non-smooth ODEs (particularly Filippov systems) have been
used as models for population dynamics since at least the work of
Gause et al.214–217 in the 1930s, but it seems that they have been
used more widely to model ecological systems only since around
2008 and the work of Dercole and others.43,218,219 Such models,
that are non-smooth when they assume a species switches between

FIG. 10. Left panel: Limiting orbits in the phase plane for a periodically forced
Stommel-type ocean circulation model, which can cross the switching surface
V = 0 between temperature (rescaled T )- and salinity (T − V )-dominated
behavior. Curves from right to left correspond to a decreasing fresh water forcing
parameter. Right panel: Log–log plot (shifted) of noise-driven tipping—the depar-
ture from a salinity-dominated branch of equilibria—as a function of the regularity
of the underlying static fold on this branch in a 1D Stommel-like model. Additive
white noise ranges from zero noise (red curve) to the largest noise (violet curve),
greater than the square root of the slow rate (black vertical dotted line) of the
variation of the bifurcation parameter that passes dynamically through the static
fold point. Dotted (solid) curves indicate an advance (lag) of tipping, where the
noise-induced advance exceeds (is less than) the lag due to a dynamic bifurca-
tion parameter. Dashed-dotted red line: asymptote of noise-free tipping (dynamic
bifurcation) near a non-smooth fold. The black solid line is the cut-off between
advance and lag relative to the static fold.

Chaos 33, 010402 (2023); doi: 10.1063/5.0138169 33, 010402-9

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos EDITORIAL scitation.org/journal/cha

different habitats or food sources,220 use a Hollings Type I functional
response,221 or, in the case of pest control, assume that control mea-
sures are applied only when some measure of the pest population
exceeds a threshold.222–226 Similarly, the plant disease model of Zhao
et al.227 assumes infected plants are removed only when their num-
ber is sufficiently high. Models of diseases and epidemics may be
non-smooth due to an assumption that control measures (such as
mask use and limitations on gatherings) are applied only when case
numbers exceed a threshold.228–230 Non-smooth models have also
been used for flu epidemics231 and HIV therapy.232 Recent work on
switched models of sleep/wake cycles employs a multi-scale analysis
to obtain discontinuous circle maps in the slow–fast limit, which are
used to explain the behavior of sleep patterns in relation to circadian
rhythms.233–235

Several studies of single DoF vibro-impact systems, such as
balls bouncing on moving surfaces and pendulums impacting bar-
riers, appeared in the 1990s and 2000s and are documented in
the Bristol book. More recently multi-DoF vibro-impacting systems
have been studied,157,236–238 and there are now books239,240 and at least
one review paper.241 Complex bifurcation sequences are discussed
in recent analytical work on vibro-impact pairs242 and degener-
ate bifurcations for single DoF impact oscillators show fold and/or
period-doubling bifurcations coinciding with the grazing point.243

Combined analytical and numerical studies240 illustrate the poten-
tial for complex behaviors and transitions with various sequences
of smooth and non-smooth bifurcations across canonical models
of single and multiple DoF systems, while sequences of period-
doubling and grazing bifurcations in a vibro-impact-slider pair have
also been studied.244 Mason and Piiroinen245,246 focused on the vibro-
impact dynamics of gears whose motion resembles that of a point
mass impacting two moving barriers. They explored gaps between
chaotic regions and various codimension-two bifurcations involv-
ing grazing. The advances in studying non-smooth phenomena in
more complex settings has supported closer comparisons between
analytical and experimental work, such as in rotors,247 mechanisms
for targeted energy transfer,248 and soft impact systems.249

Non-smooth systems have been extensively used in neuronal
modeling.250 At the individual neuron level, piecewise approxi-
mations are common practice for deriving reduced, analytically
tractable models of excitable cells, including integrate-and-fire,251–253

spiking,254,255 and neural mass models.256 At the network level, chem-
ical synapses are often modeled via pulsatile on–off coupling, which
sharply activates upon the arrival of a spike from a pre-synaptic
cell.257 Such excitatory and inhibitory networks have dynamical and
synchronization properties166,252,258–263 that are drastically different
from models with gap junctions described by smooth functions.264

Also, models of gene networks can be usefully simplified when Hill
functions are replaced by Heaviside functions.265

The ubiquity of thresholds and affine functions in machine
learning (ML) neural networks has also motivated studies of the
dynamical behavior of ML algorithms with these elements. There
have been a range of computational and theoretical studies related
to their convergence and stability, such as the bifurcation analy-
sis of maps for recurrent neural networks,266 dynamical analysis
of piecewise-linear ReLu networks,267 and algorithm design based
on the influence of threshold-induced chatter.268 Of course, there
remain many open questions related to their dynamical behavior.

Non-smooth systems naturally model various bio-mechanical
applications, including animal, human, and robot locomotion.
These include vibro-impact capsules269,270—self-propelled mecha-
nisms driven by an autogenous force that move progressively in
a resistive medium.271 Such devices have the potential to be used
for controllable endoscopic procedures.272 The on–off “drift and
act” control strategy for human balance273 has been studied with
delayed feedback to capture physiologically relevant sensory dead
zones and switching control.274 Milton and Insperger’s extensive
work in this area is collected in a recent book275 and a bifurcation
analysis276 has been performed for a data-inspired model of Asai
et al.277 Non-smooth inverted pendulum models also have been used
successfully to capture the lateral motion of pedestrians in response
to ground movement.278–283 These models are based on the parsi-
monious assumption that walking is fundamentally a process in
which the stance leg acts as a rigid strut, causing the body’s cen-
ter of mass to act like an inverted pendulum in the frontal plane
during each footstep. Rather than fall over, the step ends when the
other leg strikes the ground and, ignoring the brief double-stance
phase seen in realistic gaits, the pedestrian switches to an inverted
pendulum on that leg. Such models have been used to study bidi-
rectional interactions between pedestrians and a lively bridge. These
interactions can yield complex dynamics, including bistable pedes-
trian gaits281 and the emergence of bridge instability without crowd
synchronization.283

XII. CONTRIBUTIONS TO THIS FOCUS ISSUE

Guo and Luo284 study periodic motions and homoclinic orbits
in a discontinuous dynamical system on a single domain with
two vector fields. This simple discontinuous dynamical system
has energy-increasing and energy-decreasing vector fields. The
authors derive analytical conditions of bouncing, grazing, and slid-
ing motions at the two energy boundaries and suggest a proce-
dure for constructing complex motions of interest in engineering
applications.

Zhusubaliyev et al.285 contribute to the theory of bifurcations
of closed invariant curves in piecewise-smooth maps. The authors
discuss a border-collision bifurcation of a repelling resonant closed
invariant curve (a repelling saddle-node connection) colliding with
the switching manifold by a point of the repelling cycle. This bifur-
cation is unique to non-smooth systems and leads to the creation of
a new attractor as well as a new repelling closed invariant curve.

Su et al.286 propose a universal non-smooth coordinate trans-
formation for general bilateral rigid vibro-impact systems. The
essence of this coordinate transformation is the mirror image of
state variables and non-uniform stretching of velocity, making the
trajectories remain continuous in auxiliary phase space. The devel-
oped transformation especially has no requirements on whether the
positions of the barriers are symmetrical and whether the restitution
coefficients of the barriers on each side are consistent.

Ghosh and Simpson287 study the border-collision normal form
having an attractor satisfying Devaney’s definition of chaos. This
strengthens existing results on the robustness of chaos in piecewise-
linear maps. The authors show that the stable manifold of a saddle
fixed point, despite being a one-dimensional object, densely fills an
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open region containing the attractor. The authors also identify a het-
eroclinic bifurcation at which the attractor undergoes a crisis and
may be destroyed.

Llibre and Teixeira288 analyze limit cycles of discontinuous
differential systems formed by two pieces of linear differential cen-
ters separated by a circle. The authors prove that these differential
systems can have at most three limit cycles and that there are differ-
ential systems having exactly zero, one, two, and three limit cycles.
This line of research is in part motivated by Hilbert’s 16th problem
which remains unsolved.

Nagy and Insperger289 study the application of feedback con-
trol concepts in a mechanical model of human stick balancing. The
authors provide a control model by creating a transition between
delayed state feedback and predictor feedback in the presence
of sensory dead zones. The resulting mismatched predictor feed-
back, while being a relatively simple model, generates non-smooth
dynamics that resembles actual human stick-balancing characteris-
tics, such as limitations caused by delayed reactions.

Li et al.290 extend the Melnikov method for proving homoclinic
orbits to hybrid systems with impulsive effects and noise excita-
tion. The authors consider a non-smooth Hamiltonian system with
a homoclinic orbit as an unperturbed system. The homoclinic orbit
continuously crosses one switching manifold and then jumps across
a second by an impulsive effect. In particular, the results demon-
strate that changing the periodic excitation coefficient or noise
intensity can induce or suppress chaos.

Zhang and Chen291 study a non-smooth model for the interac-
tion of two neurons, where the non-smoothness enters as impulse
effects. The model is described by a modified Smale horseshoe and
represented by a one-sided symbolic dynamical system. The authors
stress that simple neuronal models can present extremely complex
chaotic dynamics, which nevertheless can be rigorously analyzed.

Klinshov and D’Huys292 study non-smooth dynamics and
noise-induced switching in a phase oscillator with pulse-delayed
feedback subject to two types of noise: additive phase noise act-
ing on the oscillator and stochastic fluctuations of the coupling
delay. Pulse-coupled oscillators are a well-known example of non-
smooth dynamics since their state undergoes abrupt jumps when
they receive pulses. The authors use an event-based approach to
derive a stochastic map that describes the system evolution from
one pulse to the next and offers a qualitative explanation for the
switching.

Szaksz and Gabor293 investigate the dynamics of a fuzzy con-
trolled polishing machine when Stribeck-type damping is present
between the tool and the workpiece, introducing a destabilizing
effect. The authors use a one-dimensional piecewise-linear map to
examine transient chaotic motion and derive closed-form expres-
sions for the expected value of the kickout number and the cor-
responding standard deviation. These quantities provide useful
information for engineers during the tuning process of the control
parameters.

Costa et al.294 develop a soft (compliant) impact model for a
vibro-impact energy harvester, calibrating it with the relevant hard
(instantaneous) impact model for large stiffness as a foundation
for systematic comparisons of the compliant dynamics. For exam-
ple, varying the natural frequency of the membranes that form
the impact boundaries shifts the bifurcation structure for increased

softness parameters. Complementary computational and analytical
results reveal new stable and unstable periodic orbits, co-existing
non-smooth behaviors, and symmetry-breaking bifurcations not
captured by hard impact models.

Peng et al.295 establish a multi-domain framework for analyzing
and controlling switched electromechanical dynamics in servomo-
tor systems including their transient phases. The switched elec-
tromechanical dynamics is derived from the individual models of
internal DC motor, gear train, and H-bridge circuit. The authors
introduce a combination of cycle averaging with piecewise analytical
solutions of the non-smooth dynamics to handle different temporal
scales from high-frequency electrical to low-frequency mechanical
variables.

At the time of writing this review, we anticipate that additional
papers may be included in the Focus Issue. The topics of these papers
include (i) synchronization of networked systems in the presence of
limited resources via edge snapping and (ii) the construction of a
piecewise-smooth dynamical system with a double-scroll attractor
whose existence and chaotic properties can be proven rigorously.

XIII. OPEN PROBLEMS AND CHALLENGES

The area of non-smooth dynamical systems is ripe with open
problems and challenges. We hope this review, along with the collec-
tion of research papers included in this Focus Issue, will encourage
and motivate junior readers to enter this field. Several open prob-
lems are described above and in the Focus Issue. Here, we list others
we believe are central to this research domain.

While there have been significant advances in the analysis of
global bifurcations and stochastic dynamics in non-smooth sys-
tems, arguably they are presently limited to specific settings. By
developing novel methods and then capitalizing on emerging com-
monalities that appear within different frameworks, one should aim
to build generalized methodologies for studying the global non-
smooth dynamics of systems within uncertain or stochastic contexts.
For instance, an important yet undeveloped research problem in the
treatment of switched and impacting systems is an analytical under-
standing of the constructive role of non-smoothness in stabilizing
and controlling their dynamics. Such instances include the emer-
gence of stable ghost attractors,188,192,296 windows of opportunity for
synchronization in switched systems,196–198 and improved perfor-
mance of impacting mechanical systems.11,297 Similarly, it would be
extremely useful to develop a rigorous theory for understanding
and controlling switching networks whose evolution is governed
by a Markov process, instead of sequences of independent random
variables. The machinery developed for synchronization in net-
works with non-fast Markov switching298 could give clues on how
to proceed.

While stochastic bifurcations and the influence of noise on
critical transitions have been studied in a number of specific non-
smooth settings and applications, more general results that capture
the influence of noise on non-smooth phenomena are largely unex-
plored. For example, under what circumstances does noise enhance
or disrupt grazing bifurcations? When might it play a regularizing
role, causing a non-smooth system to exhibit dynamics similar to
a smooth system? Under what circumstances might noise heighten
the non-smooth behavior? Likewise, techniques for mapping out
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basins of attractions and global stability are important ingredi-
ents for understanding stochastic effects, yet general methodologies
are limited or non-existent in non-smooth settings. Recently, new
computational methods137,299 explore characterizations of basins of
attraction for stochastic impacting systems.

The sausage-string structure of periodicity regions shown in
Fig. 8 is well-understood in the context of piecewise-linear maps,90,91

but it arises more broadly: in the asymptotic behavior of heteroclinic
networks,300 in delay differential equations with pulsatile forcing,301

and homogeneous maps.302 It would be nice to explain the structure
in a way that encompasses such alternate settings.

Llibre and Zhang58 list several open problems regarding limit
cycles. For example, two-dimensional piecewise-linear ODEs with a
single linear switching manifold can exhibit three limit cycles, but,
surprisingly (since analytical expressions are available for the flow in
each piece of the system), it is not known whether or not they can
exhibit four or more.

Solving the above problems will presumably require overcom-
ing a number of technically challenging issues and even developing
entirely new analytical methods. We believe future advances will
demand a truly interdisciplinary approach, integrating nonlinear,
stochastic, and computational methods. We hope this review will
contribute to further igniting interest in non-smooth systems and
promoting interdisciplinary collaborations.
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