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PEDESTRIAN-INDUCED BRIDGE INSTABILITY: THE ROLE OF FREQUENCY
RATIOS

I.V.Belykh,1,2 K.M.Daley,1 and V.N.Belykh3,2 ∗ UDC 534

The emergence of the pedestrian-induced bridge instability is conventionally associated with crowd
synchrony; however, this view has been challenged. In this paper, we use a bio-mechanical pedes-
trian model in the form of an active inverted pendulum to analyze the average contribution of a
single pedestrian to possibly uncorrelated crowd dynamics and bridge oscillations. We obtained
that depending on the ratio of the bridge vibration and walking frequencies, the pedestrian can am-
plify bridge vibration or, surprisingly, extract energy from the bridge and damp bridge oscillations.
In particular, we show that different combinations of the bridge and pedestrian step frequencies
corresponding to the same or close frequency ratios can trigger two drastically different bridge
dynamics, with enhanced or suppressed oscillations far from the resonances.

1. INTRODUCTION

Christiaan Huygens, a Dutch mathematician, physicist, and astonomer, was the first to study the
collective dynamics of mechanical oscillators [1]. In particular, he observed the emergence of anti-phase
synchronization of two pendulum clocks, suspended on a wooden beam. Remarkably, the forces of the anti-
phased clocks on the beam canceled each other out, thereby keeping the beam still [2–4]. Since Huygens’s
experiment, phase-locking and cooperative dynamics have been extensively studied in a wide spectrum of
oscillator systems [5–10], including neural networks [11–13], lasers [14–16], and power-grids [17].

Pedestrian–bridge interactions are an important example of emergent complex dynamics in networks of
mechanical oscillators. Many pedestrian bridges have experienced dramatic vibrations or even have collapsed
due to the effects of dynamical pedestrian loading and/or mechanical resonance (see [18] for a detailed review
of documented bridge instability cases).

The list of foot bridges that developed dangerous pedestrian-induced vibrations includes the Toda
Park Bridge [19], Solférino Bridge in Paris [20], the London Millennium Bridge [21], the Maple Valley
Great Suspension Bridge [22], the Singapore Airport’s Changi Mezzanine Bridge [23], the Clifton Suspension
Bridge [24], and the Pedro e Inês Footbridge [25].

The best-known example of the pedestrian-induced instability is the onset of large-amplitude lateral
oscillations of the London Millennium Bridge, which occurred when the number of pedestrians exceeded a
critical value [21,26]. That effect was originally attributed to synchronization of pedestrians’ steps within the
framework of Kuramoto model [27–29]. However, the role of crowd synchrony in triggering bridge wobbling
was challenged later [18, 30, 31]. In particular, it was shown in [18] that the synchronization of pedestrians’
steps is a consequence, not the cause, of the instability. In fact, even uncorrelated pedestrian motion can
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Fig. 1. Dynamical pedestrian–bridge model. Lat-
eral oscillations of the pedestrian center of mass
are modeled by an inverted pendulum of mass m
and effective length L. The quantities x and p de-
termine the lateral position of the pedestrian cen-
ter of mass and the position of the center of pres-
sure of the foot relative to the bridge, respectively.
Bridge oscillations are modeled by a platform with
mass M and a spring with constant k and damp-
ing coefficient d. The y coordinate corresponds to
the bridge lateral displacement. We imagine this
pedestrian as an M. I. Rabinovich poetry fan hur-
rying to the presentation of the “Rings on Time”
book and walking along the UCSD-Scripps Cross-
ing Pedestrian Bridge.

produce negative damping on average to make the bridge unstable over a wide range of bridge natural
frequencies [18]. Paradoxically, pedestrians can stabilize bridge motion instead of shaking the bridge as one
would expect.

In this paper, we first review recent results on the autonomous model of lateral motion of a single
pedestrian, proposed in [32] and used to analyze large crowd dynamics in [26]. We then demonstrate the
complexity of bidirectional interaction between a pedestrian and a light bridge by showing that there may
be combinations of pedestrian and bridge frequencies that can lead to both negative and positive damping
of bridge oscillations.

We devote this paper to the 80th birthday of M. I. Rabinovich, an outstanding scientist and a good
friend of one of the authors (V.N.B). Like a pedestrian who can shake a bridge, M. I. Rabinovich’s pioneering
work has many times given momentum to a new development of nonlinear dynamics. The discovery of stable
synchronization between chaotic systems [33] is only one of many examples that showcases M. I. Rabinovich’s
immense impact on modern physics and neuroscience.

The layout of this paper is as follows. In Sec. 2, we introduce an inverted pendulum model of
pedestrian self-oscillatory motion. We first study the dynamics of the pedestrian on stationary ground,
assuming no bridge motion. We derive equations for a stable limit cycle that controls the pedestrian’s lateral
gait and show how its amplitude and period depend on the parameters. In Sec. 3, we study pedestrian bridge
interactions that can amplify or damp bridge oscillations depending on the frequency ratios. In Sec. 4, we
provide concluding remarks and discuss the potential contribution of the single-pedestrian dynamics into
overall, possibly incoherent crowd dynamics and bridge vibrations.

2. PEDESTRIAN–BRIDGE INTERACTION MODEL: INVERTED PENDULUM—LINEAR
OSCILLATOR

We follow the standard approach [30–32] for modeling lateral oscillations of the bridge and transverse
oscillations of the pedestrian center of mass by a mass–spring–damper system (Fig. 1).

The bridge is modeled by a platform of mass M with one side attached to a rigid support via an elastic
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spring with constant k and a damper with damping coefficient d. Thus, the bridge motion is described by a
damped linear oscillator, driven by the side-to-side motion of the pedestrian. The pedestrian is modeled by
a self-oscillatory inverted pendulum, capable of adjusting the frequency and amplitude of steps in response
to the lateral motion of the bridge. The pedestrian–bridge model is written as

ẍ+ f(x, ẋ) = −ÿ, ÿ + 2hẏ +Ω2
0y = −rẍ, (1)

where x and y are lateral displacements of the center of mass of the pedestrian and the bridge, respectively,
and the dots denote time differentiation. The self-oscillatory process and the response of the pedestrian
motion to the bridge oscillations are modeled by the function f(x, ẋ). The term −ÿ accounts for an inertia
force on the pedestrian movement caused by the bridge motion. The pedestrian applies force −rẍ to the
bridge. The pedestrian is assumed to have mass m and effective leg length L. Parameter h = d/[2(M+m)] is
the normalized damping coefficient, Ω0 =

√
k/(M +m) is the natural frequency of the bridge loaded with

one pedestrian, and parameter r = m/(M +m) quantifies the strength of pedestrian–bridge interaction.
Many studies in bio-mechanics have indicated that an inverted pendulum model [18, 31, 32, 34] can

successfully be applied to the analysis of the whole body balance in the lateral direction of human walking
[35–37]. This class of inverted pendulum models can be described by various forms of the function f(x, ẋ),
which determines the dynamics of the pedestrian center-of-mass lateral oscillations [18, 30–32].

In this paper, we use the autonomous walking model developed in [26, 32], which describes human
walking as a process in which the stance leg acts as a rigid strut, making the pedestrian’s center of mass act
like an inverted pendulum during each step. The pedestrian switches legs when the position of his or her
center of mass crosses a reference point x = 0. This model ignores the brief phase of weight transfer from
one foot to the other. The adaptation function has the form

f(x, ẋ) = λ
{
ẋ2 + ω2

0

[
a2 − (x− p sgnx)2

]}
ẋ− ω2

0(x− p sgnx), (2)

where sgnx = −1 if x < 0 and sgnx = 1 if x ≥ 0. The presence of the sgn function in (2) accounts for
reversing the direction of movement of the pedestrian center of mass x when the pedestrian shifts the body’s
weight from one foot to the other. The quantities λ, a, p, and ω0 are parameters of the problem, where
λ corresponds to damping, a controls the self-oscillation amplitude, p is the horizontal displacement of the
center of pressure of the foot, and ω0 =

√
g/L, where g is the acceleration due to gravity and L is the

distance from the center of mass to the center of pressure (leg length).
In radiophysics terms, the pedestrian–bridge interaction described by system (1) is analogous to the

dynamics of a nonlinear generator (the pedestrian) with an additional linear RLC circuit (the bridge). Such
oscillatory radiophysical systems are known to exhibit frequency entrainment and bistability whose stud-
ies date back to Van der Pol, Andronov [38], and Teodorchik [39] (see a Physics Encyclopedia entry by
V.N.Belykh and M. I. Rabinovich [40]). As in its radiophysical counterpart, the pedestrian–bridge inter-
actions can also lead to bistability and hysteretic transitions between two stable oscillatory states. These
states represent two co-existing pedestrian gaits that correspond to walking out of phase with the bridge.
One of these gaits can induce significantly stronger bridge oscillations. A single misstep can change the
initial conditions and force the pedestrian to switch to the other gait [32].

3. PEDESTRIAN GAIT ON THE MOTIONLESS BRIDGE

Before assessing the role of the pedestrian step frequency in influencing bridge oscillations, we study
how intrinsic parameters of adaptation function (2) control the size and period of pedestrian lateral oscilla-
tions in the absence of bridge movement. Setting ÿ = 0 in the first equation of (1), we decouple the system
and obtain the equation of unperturbed pedestrian motion

ẍ+ λ
{
ẋ2 + ν2

[
a2 − (x− p sgnx)2

]}
ẋ− ω2

0(x− p sgnx) = 0. (3)
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Note that this is a nonlinear piecewise-smooth model with a van der Pol-type self-sustained oscillatory
mechanism. This piecewise-smooth model switches between two nonlinear equations for x < 0 (the left
stance leg) and x > 0 (the right stance leg). A remarkable feature of this model is that, in contrast to its
counterparts like the van der Pol-type equation, it allows finding an explicit solution in the form of a stable
limit cycle, thereby yielding analytical expressions for the limit cycle amplitude and period as functions of
the parameters [32].

3.1. Amplitude and period of pedestrian lateral oscillations

Let us formulate and prove the following two assertions.
1. Piecewise-smooth system (3) has a unique stable limit cycle with x(t) and ẋ(t) defined by

x = [p− a cosh(ω0t)] sgn x, ẋ = −aω0 sinh(ω0t) sgnx. (4)

2. The period of the limit cycle is

T ≡ 1

ω1
=

4

ω0
ln

(
p/a+

√
(p/a)2 − 1

)
. (5)

The x- and ẋ-amplitudes of the limit cycle are p− a and aω0 sinh(ω0τ), respectively.
The proof of these assertions can be constructed as follows.
For convenience, system (3) can be re-written in the form

ẋ = u,
u̇ = −λ

{
ẋ2 + ω2

0

[
a2 − (x− p sgnx)2

]}
u+ ω2

0(x− p sgnx).
(6)

We choose
V = u2 − ω2

0(x− p ˆsgnx)2 + ω2
0a

2 (7)

as a candidate Lyapunov function V to prove the uniqueness and stability of the limit cycle in system (6) in
the region of interest |x| < p. Note that the level V = 0 that yields a closed curve is a Hamiltonian level in
the conservative system (6) with λ = 0 (see [32] for details). We also notice that within the region of interest
|x| < p, V is positive (negative) for x and u, lying outside (inside) the level curve V = 0. The limitation
|x| < p ensures the pedestrian balance control, since for |x| > p the pedestrian inevitably falls in the lateral
direction. The points (x = p, u = 0) and (x = −p, u = 0) are saddle fixed points of system (6) that limit the
domain of attraction (see Fig. 2 in [32]).

The derivative of V along the trajectories of system (6)

V̇ = −2λu2V (8)

is negative (positive) definite when V is positive (negative). As a result, the trajectories of system (6)
converge to the level V = 0 which represents a unique, stable piecewise-smooth limit cycle (see Fig. 2).

The solution of the differential equation that corresponds to V = 0,

(ẋ)2 = ω2
0(x− p sgnx)2 − ω2

0a
2, (9)

is given by x = sgn (p− a coshω0t). This solution yields the limit cycle (4).
Using (4), we calculate the period T of the limit cycle. The motion along the limit cycle from the

point x = p− a and ẋ = 0 to the point

x = 0, ẋ = aω0 sinh(ω0τ) (10)
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Fig. 2. (a) The limit cycle in the pedestrian model (3) in the absence of bridge oscillations. The non-smooth
shape of the limit cycle is due to the switching from one leg to the other at x = 0. (b) The acceleration
time series for pedestrian’s lateral oscillations. Parameters are the damping due to walking λ = 23.25 cm−2,
pedestrian mass m = 76.9 kg, effective leg length L = 1.17 m, p = 0.063 m, a = 0.047 m, and ω0 =

√
g/L =

2.89 Hz.

comprises one-quarter of a period

τ =
1

ω0
ln

(
p/a+

√
(p/a)2 − 1

)
. (11)

Formula (11) yields T = 4τ and the sought expressions for the x- and u- amplitudes of the limit cycle.
It follows from (3) that the period T of the limit cycle is controlled by parameters ω0, p, and a, but

this period is most sensitive to the ratio p/a. In particular, the period becomes very small for a → p, so that
the gait size in the direction transverse to the motion direction becomes very small and the pedestrian rapidly
switches weight between legs. On the contrary, when a → 0, the period becomes infinite, so the pedestrian
never switches to the other leg. Thus, one can obtain the full range of pedestrian lateral oscillation frequencies,
from zero to infinite, by simply varying the parameter a. Figure 2 demonstrates the limit cycle of system
(3) together with its acceleration time series for realistic parameters of unperturbed human walking.

4. PEDESTRIAN–BRIDGE DYNAMICS

We now analyze how the ratio between the bridge natural frequencies and the frequencies of pedes-
trian’s lateral oscillations influences the instability occurence.

The question of whether a pedestrian can excite bridge oscillations or damps them was recently
addressed in [18] via assessing the mean negative damping. However, these calculations were performed for
a pedestrian–bridge system, wherein the bridge motion was sinusoidal and independent from the pedestrian
dynamics.

This setup corresponds to the low mass ratio (light pedestrian/heavy bridge), such that the force from
a single pedestrian has a negligible effect on the bridge. However, for higher mass ratios the pedestrian–
bridge interactions become significant and can produce various nonlinear effects in the bidirectionally coupled
pedestrian–bridge system (1).

We perform the following numerical experiment. We choose pedestrian walk and bridge natural
frequencies ω1 and Ω0 as control parameters and vary them to create a uniform multipoint grid of natural
frequencies ω1 and Ω0, where Ω0 ranges from 0.1 to 3 Hz and ω1 ranges from 0.3 to 5.8 Hz.

For each point of the grid, representing a particular combination of parameters (ω1,Ω0), we numer-
ically integrate system (1) with pedestrian initial conditions x(0) = p − a (p=0.063 m, a=0.047 m) and
ẋ(0) = 0 m/s and bridge initial conditions y(0) = 0.03 m and ẋ = 0.03 m/s for t = 30 s. We determine
the average bridge amplitude ymax for the last 10 s and compute the mean frequencies of the pedestrian and
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Fig. 3. Bridge amplitude ymax after the time t = 30 s
as a function of 200 different combinations of bridge
and pedestrian natural frequencies Ω0 and ω1, yield-
ing frequency ratios Ω/ω. Here, Ω and ω are the nu-
merically calculated bridge and pedestrian frequen-
cies whose ratio corresponds to different combina-
tions of Ω0 and ω1 (blue points). The dashed hor-
izontal line represents the initial level of bridge os-
cillations with y(0) = 0.03 m and ẏ = 0.001 m/s.
The thin red line corresponds to final ymax = 0.297
after t = 30 in the absence of the pedestrian mo-
tion. The points above the red line indicate amplified
pedestrian-induced bridge oscillations. The points
below the red line yield combinations of Ω and ω for
which the pedestrian damps the bridge oscillations.
The points indicated by the red and pink triangles
correspond to the maximum and minimum values of
the amplitude resonance curve near the 1 : 1 reso-
nance. Other bridge parameters are M = 3000 kg
and h = 0.001 Ns/m. Pedestrian parameters are as
in Fig. 2, except for varying ω1. The integration step
varies with an upper bound of 0.001.

bridge oscillations. These numerically calculated frequencies ω and Ω differ from the natural frequencies ω1

and Ω0 due to the bidirectional pedestrian–bridge interactions and the mutual adaptation of the pedestrian
stride to the bridge motion, and vice versa. This leads to a non-uniform distribution of the blue points across
the parameter range Ω/ω in Fig. 3. For a small bridge damping coefficient h typical of light rope bridges,
the oscillations of the initially excited bridge decay very slowly in the absence of a pedestrian.

More specifically, the initial bridge amplitude y(0) = 0.03 m (depicted by a dashed black line in
Fig. 3) only decays to y(30) = 0.0297 m (depicted by a red thin line, almost coinciding with the black
line and barely seen in Fig. 3). Therefore, the points above (below) the red reference line indicate the
amplification (suppression) of bridge oscillations by the pedestrian. Paradoxically, different combinations of
Ω and ω yielding the same or close frequency ratios can either significantly enhance bridge oscillations (see,
e. g., the red triangle) or damp them (the pink triangle). Remarkably, in both cases, the pedestrian and
bridge are anti-phased; however, the amplitudes of the bridge and pedestrian stride differ significantly (see
Fig. 4). The potential bistability of pedestrian lateral oscillations induced by bridge vibrations, which was
analytically predicted in [32], can also be another factor supporting the co-existence of drastically different
levels of bridge vibrations.

The non-uniform distribution of the points above and below the reference red line ymax = 0.0297 m
also indicates that a pedestrian can induce significant bridge instability outside the resonance-frequency
range (see the cloud of points above the reference line in a wide range of Ω/ω from about 1 to 2).

5. CONCLUSIONS

Despite the significant interest of physicists and engineers, the understanding of how walking pedes-
trians and footbridges interact is far from being complete. In this paper, we have contributed to an improved
understanding of the role of a single pedestrian in initiating or mitigating lateral bridge instabilities. We have
used a dynamical model of an active inverted pendulum for lateral oscillations of the pedestrian center of
mass to characterize how bridge oscillations can be enhanced or suppressed by resonance and non-resonance
effects.
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Fig. 4. Time series for the pedestrian center of mass x(t) and bridge y(t) oscillations (black and blue lines,
respectively) for two combinations of Ω and ω corresponding to resonance values close to Ω/ω = 1. (a)
Ω = 1.71 and ω = 1.37 (the red triangle in Fig. 3, the pedestrian amplifies bridge oscillations). (b) Ω = 2.68
and ω = 2.72 (the pink triangle in Fig. 3, the pedestrian contributes to the suppression of bridge oscillations).

We have shown a complex dependence of the bridge instability on the ratio between the pedestrian
and bridge oscillation frequencies. Surprisingly, two different combinations of frequencies that yield the same
or close ratios can lead to two distinct dynamical scenarios: one combination amplifies bridge oscillations,
whereas the other suppresses them.

Remarkably, the frequency ratios that correspond to the bridge instability are not restricted to cases
where the bridge oscillation frequency is close to pedestrian walking frequencies. Pedestrians with walking
frequencies that fall into the stability or instability ranges may be present on a bridge, thereby pointing to
the non-trivial problem of assessing the overall nonlinear impact of crowd dynamics on bridge instability.
Our results and nonlinear models should enable bridge designers to better estimate the range of potentially
dangerous frequency ratios and develop more accurate design criteria to avoid human-induced instability of
a wide range of structures.

This work was supported by the Ministry of Science and Higher Education of the Russian Federation
(project No. 0729-2020-0036, I. V.B. and V.N.B.), the Russian Science Foundation (project No. 19-12-
00367, V.N.B.), and by the National Science Foundation (USA) (project No. DMS-1909924, I. V.B. and
K.M.D.)
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