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Stability of rotatory solitary states in Kuramoto networks with inertia

Vyacheslav O. Munyayev ,1 Maxim I. Bolotov ,1 Lev A. Smirnov ,1,2 Grigory V. Osipov,1 and Igor V. Belykh 3,1,*

1Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
2Institute of Applied Physics, Russian Academy of Sciences, Ul’yanova Str. 46, Nizhny Novgorod 603950, Russia

3Department of Mathematics and Statistics, Georgia State University, P.O. Box 4110, Atlanta, Georgia 30302, USA

(Received 14 December 2021; accepted 3 February 2022; published 18 February 2022)

Solitary states emerge in oscillator networks when one oscillator separates from the fully synchronized cluster
and oscillates with a different frequency. Such chimera-type patterns with an incoherent state formed by a single
oscillator were observed in various oscillator networks; however, there is still a lack of understanding of how
such states can stably appear. Here, we study the stability of solitary states in Kuramoto networks of identical
two-dimensional phase oscillators with inertia and a phase-lagged coupling. The presence of inertia can induce
rotatory dynamics of the phase difference between the solitary oscillator and the coherent cluster. We derive
asymptotic stability conditions for such a solitary state as a function of inertia, network size, and phase lag that
may yield either attractive or repulsive coupling. Counterintuitively, our analysis demonstrates that (1) increasing
the size of the coherent cluster can promote the stability of the solitary state in the attractive coupling case and
(2) the solitary state can be stable in small-size networks with all repulsive coupling. We also discuss the
implications of our stability analysis for the emergence of rotatory chimeras.
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I. INTRODUCTION

Networks of phase oscillators are often used to model
cooperative dynamics in various biological and man-made
systems, ranging from neuronal networks [1] and populations
of chemical oscillators [2] to laser arrays [3] and power grids
[4]. The Kuramoto network of first-order phase oscillators
[5,6] is a widely adapted model of a phase oscillator network
which can exhibit complex spatiotemporal dynamics during
the transition from incoherence to full synchronization [7–13].
When oscillators in the Kuramoto model have heterogeneous
frequencies, this transition is typically accompanied by partial
synchronization which emerges when the network splits into
clusters of coherent and incoherent oscillators [7,14,15]. In
the case of identical oscillators, partial synchronization can
turn into chimera states that represent fascinating patterns in
which even structurally identical oscillators can break into
two, possibly asymmetric groups of coherent and incoherent
oscillators [16–19]. Chimera states were extensively studied
in the Kuramoto model as well as in other networks of oscilla-
tory systems [19–28], including coupled chemical oscillators
[2], networks of metronomes [29], coupled pendula [30],
pedestrians on a bridge [31], optical systems and lasers [32],
and continuous media [33,34].

The second-order Kuramoto model with inertia is com-
monly used for describing networks of oscillators capable
of adjusting their natural frequencies as, for example, in
the adaptive frequency model of firefly synchronization [35]
and power grid systems [36]. The inclusion of inertia yields
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two-dimensional intrinsic oscillator dynamics, thereby mak-
ing the cooperative dynamics of the second-order Kuramoto
model substantially more complex than of its classical first-
order counterpart. These inertia-induced dynamics include
complex and hysteretic transitions from incoherence to full
synchronization [37–43], bistability of synchronous clusters
[44], chaotic intercluster dynamics [45], chimeras [46–48],
and solitary states [49,50]. Solitary states emerge in a net-
work at the edge of full synchronization when all but one
oscillator synchronize in a synchronous cluster, while the
remaining “solitary” oscillator has either a constant phase
shift with respect to the synchronous cluster or rotates
with a different frequency. The emergence of such solitary
states in networks of identical second-order Kuramoto os-
cillators was numerically studied in [47,50]. In particular,
Maistrenko et al. [47] showed that solitary states, termed
weak chimeras, which are formed by a two-oscillator syn-
chronous cluster and one incoherent oscillator can appear
even in the smallest three-node of Kuramoto oscillators with
inertia. Alternatively, solitary states can be viewed as a par-
ticular case of multicluster synchronization whose existence
and stability were analyzed in two- and three-population Ku-
ramoto networks [44,45]. More precisely, Belykh et al. [44]
analytically studied the emergence and coexistence of stable
clusters in a two-population network of identical second-order
Kuramoto oscillators. The two populations of different sizes
N and M could naturally split into two clusters where the
oscillators synchronize within a cluster while creating a phase
shift between the clusters. The dynamics of this phase shift
is governed by a driven pendulum equation, and therefore
the phase shift can be constant or can vary from −π to π ,
inducing a two-cluster pattern with a periodically varying
phase shift. The phase space of the pendulum equation is a
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cylinder determined by a 2π -periodic angle and the angular
velocity. Therefore, the phase shift varying from −π to π

corresponds to a whirling motion which wraps around the
cylinder and is termed a rotating phase shift. The analysis
performed in [44] yielded necessary and sufficient conditions
for the stability of two-cluster synchronization with a constant
phase and also provided a proof-of-concept stability condition
for two-cluster synchronization with a rotating phase shift.
These stability results are directly applicable to solitary states
in the two-population network with one population composed
of a single oscillator M = 1, under the constraint that the
intracoupling within each population is not equal to the in-
tercoupling between the populations.

In this paper, we seek to relax this constraint and derive
stability conditions for solitary states in the second-order
Kuramoto model of identical oscillators with homogeneous,
phase-lagged Kuramoto-Sakaguchi coupling. In this setting,
such solitary states may only have a stable rotatory phase shift
between the solitary oscillator and the rest of the network.
Apart from the conservative proof-of-concept condition [44],
there is a lack of analytical results on the stability of rotatory
solitary states. Here we aim to close this gap by performing an
asymptotic stability analysis of solitary states and providing
approximate stability bounds that relate inertia, network size,
and phase lag. The phase lag is allowed to change from 0 to
π, so that the coupling may be attractive or repulsive. In par-
ticular, our analysis predicts that increasing the network size,
and therefore the size of the coherent cluster in a network with
all attractive coupling, can promote the stability of a rotatory
solitary state. We find this dependence counterintuitive as one
would expect that such an increase would make the “mass” of
the coherent cluster greater, thereby enhancing its “gravitation
force” that would attract the solitary oscillator back to the
cluster. Instead, the opposite happens. Through analysis and
numerics, we also demonstrate that rotatory solitary states can
be stable in small-size networks with all repulsive coupling.

The emergence of solitary states as a result of competing
attractive and repulsive coupling in the first-order Kuramoto
model with mixed coupling was previously studied in the
cases of identical [51] and nonidentical oscillators [52].
Our analysis of rotatory solitary states in the second-order
Kuramoto model that are impossible in its first-order coun-
terpart points to a different role of purely repulsive coupling.
We hypothesize that this effect might be similar to synchro-
nization in inhibitory networks of bursting neurons in which a
global (possibly, weak) inhibitory drive from a single neuron
(representing the solitary oscillator) can synchronize a group
of neurons despite their mutual (possibly, strong) repulsive
inhibitory connections, provided that a balance between the
relative phases of the coupling forces is maintained [53,54].

The layout of this paper is as follows. In Sec. II we intro-
duce the oscillator network model and state the problem under
consideration. In Sec. III we study the existence of solitary
states and show that the dynamics of the phase difference
between the solitary oscillator and synchronous cluster is gov-
erned by the classical pendulum equation with damping and
constant torque. This dynamics can induce a rotatory solitary
state. In Sec. IV we analyze the variational equations for the
stability of the rotatory solitary state and obtain the main
stability results of this paper. We also numerically validate

our theoretical results. In Sec. V we numerically analyze
attraction basins of solitary networks states in different size
networks and show that rotatory solitary states are resilient
patterns that robustly appear from a large set of randomly
chosen initial conditions. Section VI contains concluding
remarks and discussions. Appendixes A and B contain deriva-
tions of the stability conditions.

II. NETWORK MODEL AND SOLITARY STATES

We consider a globally coupled network of two-
dimensional Kuramoto oscillators with inertia:

mθ̈i + θ̇i = ω + 1

N

N∑
j̃=1

sin (θ j − θi − α), (1)

where variables θi ≡ θi (mod2π ), i = 1, . . . , N represent the
oscillators’ phases. The oscillators are assumed to be iden-
tical, with identical frequency ω, inertia m, and phase lag
α ∈ [0, π ) that represents the Kuramoto-Sakaguchi coupling
[55]. System (1) has complete synchronization manifold
D(1) = {θ1 = · · · = θN }, which is locally stable for any α ∈
[0, π/2) and unstable for any α ∈ (π/2, π ) [7]. As a result,
the Kuramoto-Sakaguchi coupling is termed attractive for
α < π/2 and repulsive for π/2 < α < π. Due to the all-to-
all symmetric coupling, the network decomposition supports
the complete set of all possible clusters. These clusters are
represented by disjoint groups of oscillators defined by the
equalities of the oscillator states. In this paper we will focus on
the dynamics and stability of a particular two-cluster partition
that corresponds to a solitary state and is determined by the
manifold

D(2) =
{
θ1 = �s, θ̇1 = �̇s,

θ2 = · · · = θN = �, θ̇2 = · · · = θ̇N = �̇

}
. (2)

This cluster pattern is termed a solitary state in which a single
nonsynchronized oscillator forms the first cluster while the
remaining oscillators compose the second synchronized clus-
ter. The phase difference between the first and second clusters
may be time-dependent and periodically vary from −π to π.

The choice of the first oscillator as the solitary oscillator in
D(2) is arbitrary, and due to the symmetry, there are N − 1
other solitary states that have identical dynamical and stability
characteristics. The emergence of a particular solitary state
depends on the choice of initial conditions.

The dynamics on solitary state manifold D(2) is governed
by the four-dimensional system

m�̈s + �̇s = ω − 1

N
sin α + N − 1

N
sin (� − �s − α),

m�̈ + �̇ = ω − N − 1

N
sin α + 1

N
sin (�s − � − α).

(3)

We seek to characterize possible dynamics of system (3) and
derive approximate conditions for transversal stability of soli-
tary state manifold D(2), thereby revealing the role of inertia,
the network size, and the phase lag in the emergence of stable
solitary states.
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III. EXISTENCE OF ROTATORY SOLITARY STATES

Introducing the difference between the phases of the soli-
tary oscillator and synchronous cluster, X = �s − �, and
subtracting the second equation from the first equation in (3),
we obtain

mẌ + Ẋ = 1

N
{(N − 2) sin α − [(N − 1) sin (X + α)

+ sin (X − α)]}. (4)

Note that the phase difference X between the 2π -periodic
phases �s and � is bounded by 0 and 2π.

A. Transformation to the pendulum equation

As in [44], we simplify the expression in the curly brackets
in (4) by means of the trigonometric identity

(N − 1) sin (X + α) + sin (X − α)
= [N cos α sin X + (N − 2) sin α cos X ] = R sin(X + δ),

where

R =
√

(N − 1)2 + 1 + 2(N − 1) cos 2α (5)

and δ = arccos( N
R cos α). We then rescale time t = N

ρR t̂,

where t̂ is a new time and ρ =
√

N
mR and use substitution

X + δ = 	 to turn (4) into the pendulum equation

d2	

dt̂2
+ ρ

d	

dt̂
+ sin 	 = γ , (6)

where γ = N−2
R sin α represents constant torque. Pendulum

equation (6) is well known to exhibit oscillatory dynamics,
determined by a stable rotatory limit cycle that may coexist
with a stable fixed point [56]. The rotatory limit cycle corre-
sponds to the phase intercluster difference which periodically
oscillates, while making complete turns around the cylinder
(	 mod 2π, 	̇ = v), where 	 is an angle and the angular
velocity v is a real number. The relation between pendulum
equation (6) and intercluster dynamics of the second-order
two-population Kuramoto system was studied in detail for α ∈
[0, π/2) in [44]. Here we briefly discuss subtle differences
imposed by the homogeneous coupling in the one-population
network (1) and α ∈ [π/2, π ).

Case 1. Attractive coupling with α ∈ [0, π/2). The well-
known stability diagram [44,56] for pendulum equation (6)
contains three regions of distinct dynamics as a function of
damping parameter ρ and constant torque γ (Fig. 1). These
regions are separated by homoclinic bifurcation curve γ =
T (ρ), often called the Tricomi curve [57], and saddle-node
bifurcation line γ = 1. While there is no exact equation for the
homoclinic bifurcation curve, it can be approximated rather
precisely [44] as

γ = T (ρ) = 4

π
ρ − 0.305ρ3. (7)

In Region A under curve (7), pendulum system (6) has two
fixed points on the cylinder: a stable fixed point 	e = arcsin γ

and a saddle 	s = π − arcsin γ . In Region B, bounded by the
homoclinic bifurcation curve and the saddle-node bifurcation
line, these fixed points co-exist with a rotatory stable limit

 

FIG. 1. Bifurcation diagram (ρ, γ ) for pendulum equation (6).
The blue solid curve calculated via (7) corresponds to a homoclinic
bifurcation of the saddle which gives birth to a stable rotatory limit
cycle. The green dashed line indicates a saddle-node bifurcation. The
rotatory limit cycle exists in Regions B and C.

cycle 	c(t ), emerged from a homoclinic orbit of saddle 	s

at γ = T (ρ). Finally, in Region C, system (6) only has the
limit cycle 	c(t ).

Note that stable fixed point 	e corresponds to phase differ-
ence Xe = 	e − δ = 0 in the original system (4). In contrast
to the two-population setting in [44] with a nonzero constant
phase shift Xe, system (4) yields the zero constant phase dif-
ference so that the corresponding solitary state simply turns
into complete synchronization. Therefore, network (1) may
only have stable rotatory solitary states with nonzero phase
difference X (t ), governed by stable limit cycle x(t ) ≡ Xc(t ) =
	c(t̂ ) − δ. Figure 2 illustrates the existence of such a solitary
state with rotatory phase difference x(t ).

Case 2. Repulsive coupling with α ∈ (π/2, π ). In this case,
the dynamics of pendulum equation (6) is essentially the same
as for α ∈ [0, π/2), except for an important caveat that fixed
points 	e = arcsin γ and 	s = π − arcsin γ exchange their
roles and become a saddle and a stable fixed point, respec-
tively. Therefore, the constant nonzero phase shift, defined
by 	s = π − arcsin γ , yields a solitary state with a constant
phase difference. However, this solitary state is always un-
stable (see the next section for the proof), so that network (1)

10 20 30 40 50
oscillator index i

−π

0

π

θ i x(t)

FIG. 2. Snapshot of a rotatory solitary state in network (1) of 50
oscillators. Time-varying x(t ) governs the phase difference between
the solitary oscillator (blue open circle) and the synchronous cluster
(purple circles). Parameters are ω = 1, m = 20, and α = π/6.
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FIG. 3. Existence and stability diagrams for the rotatory solitary state. The black solid line depicts the existence boundary defined by
homoclinic bifurcation curve (9). The blue (red) region corresponds to local stability (instability) of the rotatory solitary state, evaluated via
numerically calculated characteristic exponents of variational equation (15). The thick dashed yellow line corresponds to analytical curve (17).
The dotted yellow lines are analytical boundaries (20) for the parametric resonance region (red crescent-shaped area). The orange point whose
vicinity is zoomed-in in the left insets of panels (b) and (c) indicates the prediction of the lowest point of the parametric resonance region via
(21). The upper right insets detail the shape of analytical curve (17) in the region around α = π/2 and small m. Notice the stability region for
α > π/2 where the coupling is repulsive. (a) N = 3; (b) N = 4; (c):N = 5; (d) N = 50. Parameter ω = 1.

may only have stable rotatory solitary states for all α ∈ (0, π ).
Regions 1–3 for the repulsive coupling are bounded by curves
(7) with negative γ and curve γ = −1.

Therefore, in both attractive and repulsive coupling cases,
the existence region for rotatory solitary states is determined
by condition γ � T (ρ). In terms of difference system (4) and
the original parameters of system (1), this condition takes
the form

N − 2

R
|sin α| � T

(√
N

mR

)
, (8)

where T (·) and R are given in (7) and (5), respectively. The
equality sign in (8) yields the bound for the existence of
rotatory solitary states (the black lines in Fig. 3):

m(α) = N

R[T −1(|sin α|)]2 , (9)

where T −1 is the inverse function of T . It follows from (9)
that increasing network size N also increases the size of the
existence region for a rotatory solitary state (see Fig. 3).

B. Analytical estimates for the rotatory limit cycle

The solution for rotatory limit cycle x(t ) which governs
the dynamics of the intercluster phase difference cannot be
written in close form. When the parameters of pendulum sys-
tem (6) are chosen slightly above the homoclinic bifurcation
curve T (ρ), the rotatory limit cycle x(t ) inherits the shape of
the homoclinic orbit of saddle 	s for α ∈ (0, π/2) (	e for
α ∈ (π/2, π )). As a result, the limit cycle spends most of the
time in the vicinity of the saddle while making fast excursions
around the cylinder, and therefore, x(t ) can be approximated
by the coordinate of the saddle. This conservative, proof-of-
concept bound was used in [44,45] to analyze the stability
of intercluster rotatory dynamics. In the following, we will
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derive less conservative analytical estimates for rotatory so-
lution x(t ) which are applicable to much broader parameter
regions, thereby enabling a general analytic stability analysis
of rotatory solitary states.

We apply the Lindstedt-Poincaré method [58] to approxi-
mate the rotatory, periodic solution x(t ) in the case of large
inertia, m � 1. The method introduces a scaled time and
seeks the solution and the time scaling as an asymptotic
series, thereby removing secular terms; i.e., terms that grow
without bounds. This approximate solution derived in the limit
of large inertia has the form

x(t ) = ωxt + ε2

�p
(cos ωxt − 1 + �−1

p cos α sin ωxt )

+ ε4

4�3
p

[
cos α(cos 2ωxt − 1)+ cos2α−�2

p

2�p
sin 2ωxt

]

+ · · · + o(ε8),

ωx = �p− ε4

2N2�3
p

[(N−1)2 + 1 + 2(N−1) cos 2α]

+ · · · + o(ε8), (10)

where �p = N−2
N sin α and ε = 1/

√
m � 1 is a small pa-

rameter. The complete solution with higher-order terms
corresponding to coefficients ε3, . . . , ε8 along with its deriva-
tion are given in Appendix A. The inclusion of the terms up to
the eight power is necessary for the stability conditions using
(10) to adequately describe the stability boundary (the dashed
yellow line in Fig. 3) and its curvature at the values of α

close to π/2. This point will be discussed in more detail in
the next section. We will also demonstrate that the predictive
power of approximate solution (10) extends far beyond the
large inertia case and yields remarkably close stability bounds
for relatively small inertia m > 5.

IV. STABILITY ANALYSIS

To derive analytical stability conditions for the emergence
of solitary states in the network, we seek to prove the local
transversal stability of solitary state manifold D(2). To do
so, we first introduce infinitesimal difference variables for the
oscillators from the synchronous cluster:

ξk = θk+1 − θk, k = 2, . . . , N − 1. (11)

We then subtract the (k + 1)-th equation from the kth
equation in system (1) and by virtue of (11) obtain the fol-
lowing variational equations for the transversal stability:

mξ̈k + ξ̇k +
[

N − 1

N
cos α + 1

N
cos (X − α)

]
ξk = 0, (12)

where k = 2, N − 1 and phase difference X between the soli-
tary state and the synchronous cluster is governed by system
(4). The stability of this linearized second-order differential
equation with a possibly time-varying coefficient via X (t )
implies the local transversal stability of D(2). Note that (12)
is a system of uncoupled identical equations such that the
stability of one equation implies the stability of all the others.
Therefore, hereafter we will only investigate the stability of
one of the kth equations, omitting subscript k.

A. Instability of solitary states with a constant phase difference

As shown in Sec. III, constant phase difference X
is nonzero only for α ∈ (π/2, π ) so that X = Xs =
2 arctan( N

N−2 cot α). Substituting X = Xs into variational
equation (12) and removing subscript k, we obtain the linear
differential equation with constant coefficients:

mξ̈ + ξ̇ +
[

N − 1

N
cos α + 1

N
cos (Xs − α)

]
ξ = 0. (13)

Its characteristic equation takes the form

s2 + 1

m
s + 1

m

(N − 2)N cos α

(N − 2)2 sin2 α + N2 cos α2
= 0. (14)

Note that the third term in (14) is always negative in the
considered range of α ∈ (π/2, π ) since cos α < 0. Therefore,
one of the roots s1,2 is positive so that linear differential
equation (13) is unstable. Thus, the solitary state with a con-
stant phase shift is always unstable, and only rotatory solitary
states can stably emerge in network (1).

B. Stability of rotatory solitary states

Time-varying dynamics of phase shift X (t ) governed by
rotatory limit cycle x(t ) transform the variational equation
(13) into

mξ̈ + ξ̇ +
{

N − 1

N
cos α + 1

N
cos [x(t ) − α]

}
ξ = 0. (15)

Due to the presence of the time-varying coefficient, a com-
plete stability analysis of variational equations (15) for the
full range of parameters seems to be out of reach. Instead, we
seek to quantify all possible scenarios of emergent instability
in (15) and derive approximate explicit bounds for the loss
of stability in the case of large inertia m and study their
applicability to smaller m.

Note that the trace of the monodromy matrix of
equation (15)

A =
(

0 1
− 1

m

{
N−1

N cos α + 1
N cos [x(t ) − α]

} − 1
m

)
(16)

is Tr A = −1/m. Therefore, by virtue of Liouville’s formula,
we can interconnect the eigenvalues of A (Floquet characteris-
tic multipliers μ1 and μ2) via identity μ1μ2 = exp (−Tx/m),
where Tx is the period of limit cycle x(t ). In general, there
are three possible bifurcation scenarios by which the triv-
ial solution of linear variational equation (15) can lose its
stability. In the case of real multipliers μ1 and μ2, these
scenarios are associated with (1) a bifurcation when one of
the multipliers equals +1 and (2) a bifurcation when one
of the multipliers equals −1. In the case of complex multi-
pliers, the instability emerges if the multipliers cross the unit
circle. Observe that when multiplies μ1 = z and μ2 = z are
complex conjugates, their product zz = |z|2 = exp (−Tx/m)
where | · | is the modulus of a complex number. This prod-
uct |z|2 < 1 when m > 0. Therefore, the complex multipliers
of matrix A are always located inside the unit circle, and
therefore, this third bifurcation transition to instability is im-
possible in system (15). Thus, we shall find the conditions
under which system (15) is close to multiplier +1 and −1
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bifurcations, thereby deriving bounds for the system’s insta-
bility explicit in the parameters of network (1). Note that
multiplier +1 and −1 bifurcations in linearized system (15)
differ from their corresponding counterparts of a nonlinear
system such as pitchfork and period-doubling bifurcations
which yield additional periodic solutions in a nonlinear sys-
tem. On the contrary, the multiplier +1 and −1 bifurcations
in the linearized system may only change the stability of the
trivial solution, transforming it into a saddle.

Scenario A. We first aim to find an approximate bifurca-
tion curve associated with stability loss via the multiplier +1
bifurcation. Our analysis leads to the following assertion.

Statement 1. (Stability loss near the transition from attrac-
tive to repulsive coupling.) Solitary state D(2) with rotatory
phase difference x(t ) loses its local transversal stability for
large inertia m � 1 at a critical value of phase lag α which is
approximated by

αc=π

2
+ N

2m(N − 2)2 −N3(18N2 − 27N + 13)

96m3(N − 2)6 +o
(
m−3).

(17)

Proof. The proof of Statement 1 is based on an asymp-
totic analysis of characteristic exponents � and �̂, associated
with multipliers μ1 and μ2 of Eq. (15), respectively. Simi-
larly to the analysis performed in Appendix A for finding
an approximate solution (10) for rotatory limit cycle x(t ) in
pendulum-type Eq. (4), we seek and approximate solution
ξ (t ) = e�tζ (t ) of variational equation (15) via expanding both
2π -periodic function ζ and � as power series of small pa-
rameter ε = 1/

√
m. Taking into account the terms up to the

eighth order of ε, we obtain an approximate expression for
characteristic exponent �. Setting � = 0 corresponding to
multiplier μ1 = +1, and solving this equality for α, we obtain
the approximate bound (17). The details of this derivation are
delegated to Appendix B.

Remark 1. The proof given in Appendix B also indicates
that characteristic exponent � is negative (positive) for α <

αc (α > αc) in the vicinity of αc, thereby analytically demon-
strating that increasing α near π destabilizes the rotatory
solitary state.

Figure 3 indicates that bound (17) (the dashed yellow line)
predicts the actual change of stability around α = π/2 re-
markably well even for intermediate values of inertia m. The
predictive power of (17) improves significantly with increas-
ing the network size (compare the insets in Fig. 3).

The bound (17) also predicts the stability of the rotatory
solitary state in a small region of α > π/2, corresponding
to the repulsive coupling [see the insets in Figs. 3(a)–3(c)
for N = 3, 4, 5]. Although, it is expected that the repulsive
coupling promotes desynchronization between the solitary
oscillator and the synchronous cluster, we find it surprising
that this coupling also maintains synchronization within the
synchronous cluster. Figure 4(a) displays the onset of a ro-
tatory solitary state in three-oscillator network (1) with the
parameters from the stability region of the inset in Fig. 3(a)
with α > π/2, yielding (weakly) repulsive coupling. Increas-
ing α strengthens the repulsive coupling and destroys the
solitary state [Fig. 4(b)].

0 100 200 300
t

0

1

θ̇ i

0 100

(a)

(b)

200 300
t

0

1

θ̇ i

FIG. 4. (a) Time series of a stable rotatory solitary state induced
by weakly repulsive coupling for α = π/2 + 0.02. The established
difference between the angular velocities θ̇i of the solitary oscillator
(blue) and two synchronized oscillators (red and green) is always
positive, thereby yielding the rotatory solitary state. Initial conditions
θi(0) and θ̇i(0) are evenly distributed within [−π, π ] and [0, 2], re-
spectively. (b) Increased α = π/2 + 0.2, making the repulsive force
stronger, destabilizes the solitary state. Other parameters are N = 3,
m = 20, ω = 1.2.

Scenario B. To relate the multiplier −1 bifurcation to a
resonant ratio of the natural frequency of system (15) and the
frequency of its driving force x(t ), we transform (15) into

ξ̈ + 1

m
ξ̇ + �̂2{1 + q cos [x(t ) − α]}ξ = 0, (18)

where �̂ =
√

N − 1

mN
cos α and q = 1

(N − 1) cos α
. Note that

Eq. (18) represents a variation of the damped Mathieu
equation (also known as a parametric oscillator) that ex-
hibits parametric resonance when time-dependent parameters
vary at roughly twice the natural oscillator frequency [59].
Therefore, we expect variational system (18) to become un-
stable via parametric resonance when the frequency of limit
cycle x(t ), ωx, defined in (10), approximately matches the
double natural frequency of system (18) for small q, i.e., when

ωx ≈ 2�̂ for N � 1. (19)

This parametric instability emerging at the double frequency
of perturbations of the solitary state can be viewed as an
analog of instabilities caused by a period-doubling bifurcation
in nonlinear systems, associated with a multiplier −1 bifur-
cation. Analyzing solutions of (18) under condition (19), we
derive the following instability criterion.

Statement 2. (Instability via parametric resonance.) A.
Solitary state D(2) with rotatory phase difference x(t ) be-
comes transversely unstable in a region of parameters (α, m)
whose boundary can be approximated under the assumption
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of m, N � 1 via the implicit function[√
(N − 1) cos α

mN
− (N − 2) sin α

2N

]2

= 1

16mN (N − 1) cos α
− 1

4m2
. (20)

B. The minimum value of inertia m required for this reso-
nance instability to emerge can be approximated by

m∗ = 4N
N − 1

N − 2

√
N2 − 4N + 3, (21)

which together with α∗ = arcsin( 1
N−2 ) yield the lowest point

of the resonance instability region in the (α, m) plane (the
orange points in Fig. 3).

Proof. By virtue of (19), we introduce a small param-
eter β = �̂ − ωx/2 � 1 and seek a solution of variational
equation (18) in the form

ξ (t ) = a(t ) cos
ωxt

2
+ b(t ) sin

ωxt

2
, (22)

where a(t ) and b(t ) are as yet undetermined slowly varying
coefficients dependent on β. To eliminate the arbitrariness in
the introduction of two functions a(t ) and b(t ), we impose the
constraint

ȧ(t ) cos
ωxt

2
+ ḃ(t ) sin

ωxt

2
= 0. (23)

Substituting solution (22) into (18) and taking into account
(23), we can separate the equations governing the evolutions
of a(t ) and b(t ) as follows:

ȧ = − 1

m

(
a sin2 ωxt

2
− b

2
sin ωxt

)
+ 2

ωx

{
β
(
�̂ + ωx

2

)
+ q�̂2 cos [x(t ) − α]

}(a

2
sin ωxt + b sin2 ωxt

2

)
,

ḃ = 1

m

(a

2
sin ωxt − b cos2 ωxt

2

)
− 2

ωx

{
β
(
�̂ + ωx

2

)
+ q�̂2 cos [x(t ) − α]

}(
a cos2 ωxt

2
+ b

2
sin ωxt

)
.

(24)

We assume that the inertia and network size are sufficiently
large such that m � 1 and N � 1, making parameters m−1 �
1 and q � 1. Therefore, the right-hand sides of (24) contain
small parameters m−1, q and β, thereby allowing the appli-
cation of the Van der Pol averaging method [56]. To perform
such averaging of the right-hand side of (24) over the period
of x(t ), Tx, in the first order of approximation, we take into
account only the leading term in (10) so that x(t ) ≈ ωxt .
Under this condition, time averaging of (24) yields

ȧ = −a

2

(
1

m
− q�̂2

ωx
sin α

)
+ b

ωx

[
β(ωx + β )− q�̂2

2
cos α

]
,

ḃ = − a

ωx

[
β(ωx + β )+ q�̂2

2
cos α

]
− b

2

(
1

m
+ q�̂2

ωx
sin α

)
.

Since only the first approximation is considered, we set β2 =
0 and �̂/ωx = 1/2 to obtain

(
ȧ
ḃ

)
=

⎛
⎜⎝− 1

2m
+ q�̂

4
sin α β− q�̂

4
cos α

−β− q�̂

4
cos α − 1

2m
− q�̂

4
sin α

⎞
⎟⎠

(
a
b

)
. (25)

The roots of the characteristic equation associated with linear
system (25) are

p1,2 = − 1

2m
±

√(
q�̂

4

)2

− β2.

Thus, system (25) is unstable if

1

2m
<

√(
q�̂

4

)2

− β2. (26)

Under this condition, functions a(t ) and b(t ) grow with-
out bounds, making solution (22) unstable and inducing
parametric resonance instability in variational equation (18).

Expressing �̂, q, β via the original parameters of network (1)
and using the first order approximation ωx ≈ �p = N−2

N sin α

[cf. (10)], we arrive at approximate bound (20) that predicts
the emergent instability via parametric resonance. This com-
pletes the proof of Part A.

The critical point of implicit function (20) corresponding
to the lowest point of the instability region in the (α, m) plane
could have been identified directly from (20); however, these
calculations are cumbersome and are not given here. Instead,
we seek to find a locus of points inside the instability region,
given by the condition β = 0, i.e., 2�̂ = ωx ≈ N−2

N sin α. Ex-
pressing these constants via α and m, we obtain

mlocus(α) = 4N
N − 1

(N − 2)2

cos α

sin2 α
. (27)

It follows from (26) that the locus of points lies inside the
parametric resonance instability region if 1

2m <
�̂q
4 :

m > 4N (N − 1) cos α. (28)

Making inequality (28) an equality, solving it for cos α, and
using the obtained expression to replace the trigonometric
terms in (27), we arrive at condition (21). Similarly, solving
this equality together with (27), we obtain α∗ = arcsin( 1

N−2 )
which corresponds to m∗. This completes the proof of Part B.

Figure 3 compares our analytical bounds (20) and (21) with
the numerically calculated parametric resonance region (the
red crescent-shaped region) and shows that the bounds predict
the location of the instability region quite well, especially for
N � 4. The gap between two branches (dotted yellow lines)
of bound (20) for N = 3 [Fig. 3(a)] is due to a singularity of
function (20) close to the cusp point of the instability region.
Yet the upper branch of bound (20) practically coincides with
the upper border of the instability region even for the small-
est network size, N = 3. Remarkably, our analytical bounds,
consistent with the direct numerical simulations, indicate that

024203-7



VYACHESLAV O. MUNYAYEV et al. PHYSICAL REVIEW E 105, 024203 (2022)

FIG. 5. The lowest point of the parametric resonance region,
(α∗, m∗), calculated via (21), as a function of network size N. Note
that increasing N shifts the point to higher values of m, thereby
pushing the instability region in the upward direction and enlarging
the overall stability region for the rotatory solitary state.

the size of the parametric resonance region decreases when N
increases [Figs. 3(a)–3(d)].

Figure 5 provides a more detailed description of the evolu-
tion of the parametric resonance region via the change of its
lowest point as a function of N. Thus, increasing the network
size in the range α ∈ (0, π/2) where the coupling is attractive
increases the stability region via (1) shrinking the paramet-
ric resonance region towards its eventual disappearance at
large N and (2) making the existence boundary, homoclinic
bifurcation curve (9) surround a larger region of the (α, m)
parameter plane (see the evolution of the solid black curve
in Fig. 3). Note that such an increase of N makes the size
of the synchronous cluster, N − 1, larger, supposedly promot-
ing complete synchronization in the network and attracting
the solitary oscillator. Counterintuitively, the above analysis
shows that this not the case.

Figure 6 illustrates how the rotatory solitary state loses its
stability via Scenarios A and B while passing the parametric
resonance region and entering the repulsive coupling region
in Fig. 3(b) for a fixed m. Note the double-oscillation fre-
quency of the solitary oscillator with index n = 4 in Fig. 6(a)
corresponding to the parametric resonance region. Also note
in Fig. 6(d) that the strong repulsive coupling turns the
solitary state into a fascinating dynamical pattern such as
a generalized splay state [60] in which the oscillators are
frequency synchronized, yet possessing a vanishing order
parameter.

V. PREVALENCE OF ROTATORY SOLITARY STATES

The stability analysis performed in Sec. IV indicates
that rotatory solitary states can be locally stable in a wide
range of network parameters. However, these stable solitary
states typically coexist with other stable regimes, notably
with full synchronization when the coupling is attractive for
α ∈ (0, π/2). To test the prevalence of stable rotatory soli-
tary states to significant changes in the initial conditions
and estimate the corresponding basins of attraction, we per-
form a numerical experiment reported in Fig. 7. For each
value of α ∈ (0, π ), we perform 1000 numerical runs of
the network from randomly chosen initial conditions (see

1

2

3

4
n

(a)

1

2

3

4

(b)

1

2

3

4

(c)

0 200 400 600 t

1

2

3

4

(d)

−π 0 π

FIG. 6. Illustration of Scenarios A and B for emergent insta-
bility of the rotatory solitary state in the four-oscillator network,
corresponding to Fig. 3(b). Time series of phase differences θn(t ) −
θ1(t ), n = 1, . . . , 4 for varying α and fixed m = 60. Oscillator with
index n = 1 is used as a reference, while the solitary oscillator has
index n = 4. The horizontal color bar uses the full range of θn ∈
[−π, π ]. (a) Scenario B for α = 0.45 that belongs to the parametric
resonance region in Fig. 3(b): the rotatory solitary state is unsta-
ble and evolves into a periodic cluster regime. (b). Stable rotatory
solitary state for α = π/3. (c) Scenario A for α = π/2 + 0.01: the
unstable solitary state turns into a chaotic cluster regime. (d) Unsta-
ble solitary state becomes a generalized splay state for α = 5π/6.
Initial conditions are chosen randomly as small perturbations of the
solitary state. Parameter ω = 1.

the captions of Fig. 7 for details) and count the number
of times a solitary state emerges in the network. We also
register the probabilities of the other outcomes which in-
clude full synchronization and generalized splay states.
Our simulations indicate a high occurrence probability
of solitary states in small networks in a range of α ∈
(π/3, π/2) where the emergence of solitary states is
more probable than of full synchronization. Remarkably,
solitary states become a dominant regime with proba-
bility p close to 1 in a region of α around π/2 in
the three- and four-oscillator networks (see two upper
panels in Fig. 7). However, their emergence in this pa-
rameter region becomes improbable in the five-oscillator
network (third panel in Fig. 7). Figure 8 displays a
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0.0

0.5

P

(a) N = 3

0.0

0.5

1.0

(b) N = 4

0.0

0.5

1.0

(c) N = 5

π/4 π/2 3π/4 α
0.0

0.5

1.0

(d) N = 50

FIG. 7. Probability of dynamical regimes’ onset (blue crosses, a solitary state; purple solid circles, full synchronization; green empty
circles, a generalized splay state; red triangles, other regimes). Random initial conditions θi(0) and θ̇i(0), i = 1, N are evenly distributed
within [−π, π ] and [−10, 10], respectively. Number of trials 1000. (a) N = 3; (b) N = 4; (c) N = 5; (d) N = 50. Parameters m = 20 and
ω = 1. The vertical black lines indicate the existence boundary of a solitary state. The light blue (light pink) region corresponds to the stability
(instability) of a solitary state. Note the high probability of emergence of solitary states for N = 3 and N = 4 at α close to π/2.

stable solitary state that coexists with full synchroniza-
tion and other regimes for the same value of network
parameters.

VI. CONCLUSIONS

Rotatory solitary states with one or more solitary oscilla-
tors can be viewed as particular examples of chimera states,
called “weak chimeras” [47]. While a rigorous stability anal-
ysis of a fully developed chimera with a multi-oscillator
incoherent state is typically out of reach for finite-size net-
works, solitary states can offer a unique test bed for the
development of stability approaches to large chimeras. In this
paper, we have developed such an approach and made signifi-
cant progress in understanding stability properties of rotatory
solitary states in finite size Kuramoto-Sakaguchi networks
with inertia.

We have extended the previous work on the emergence
of stable clusters in the second-order Kuramoto-Sakaguchi
model [44] by deriving asymptotic stability conditions for a

solitary state in which the phase difference between the soli-
tary oscillator and the remaining synchronous cluster changes
periodically. In particular, we have analytically predicted
two bifurcation scenarios by which such a solitary state can
lose its stability. The first, main scenario is associated with
the loss of stability near the transition from attractive to re-
pulsive coupling when phase lag α exceeds π/2. The unusual
feature of this well-known transition is that solitary states can
remain stable and even become more resilient to perturbations
in a range of weak repulsive coupling near α = π/2, provided
that the network size is small. The second, less common,
scenario is associated with parametric resonance instability
when the frequency of periodically varying phase difference is
approximately twice the characteristic frequency of transver-
sal perturbations of the solitary state. Through our asymptotic
analysis, we have also revealed a fascinating property of soli-
tary states to become stable in a larger region of parameters
with an increase in network size. This happens despite the
increase of synchronous cluster size that could supposedly
strengthen the force aiming to bring the solitary oscillator
back to the cluster.
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FIG. 8. Coexistence of a stable solitary state (a), full synchro-
nization (b), and a chaotic cluster regime (c) for N = 5, m = 80,
α = 1.2, ω = 1. The notations are as in Fig. 6. Random initial con-
ditions are chosen as in Fig. 7.

We have performed our asymptotic analysis under the
assumption of large inertia and large network sizes; how-
ever, our approximate bounds proved to be quite accurate
for intermediate values of inertia and small networks with
N > 3. The occurrence of stable rotatory solitary states in
the second-order Kuramoto-Sakaguchi model was previously
studied numerically in [47,49,50], and similar instability re-
gions were reported (see Fig. 1 for N = 3 in [47]). Our results
provide analytical support to this numerical study and reveal
the origins of emergent instability and their explicit depen-
dence on network size N , inertia m, and phase lag α.

Our analysis combined with the auxiliary system ap-
proach developed for identical oscillator networks in [45]
can be applied to solitary states with more than one solitary
oscillator, representing “stronger” chimeras as well as to
regular multicluster states. In such settings, the dynamics
of phase differences are governed by a system of coupled
pendulum-type equations [45]. Yet the approach from [45]
can characterize the multidimensional dynamics via a lower-
dimensional auxiliary system while our asymptotic analysis
can handle its stability.

Our approach is also applicable to solitary states in second-
order Kuramoto networks with mixed attractive and repulsive

connections. While the occurrence of solitary states in mixed
first-order Kuramoto networks was previously studied in de-
tail in [51,52], the addition of inertia which increases the
dimensionality of phase difference dynamics can induce un-
expected synergistic effects. These effects can emerge from a
combination of the two scenarios of instability and reverse the
roles of couplings, similarly to mixed networks of excitation
and inhibitory neurons [61]. These problems are a subject of
future study.
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APPENDIX A: APPROXIMATE SOLITARY STATE
SOLUTION

To derive an approximate periodic solitary state solution
for x(t ) under the assumption of large inertia, m � 1, we shall
follow the steps of the Lindstedt-Poincaré method [58]. Our
goal is to introduce a slow time and approximate the solution
and the time scaling via asymptotic series, while avoiding
secular terms.

Assume that t = √
m�τ , where the unknown parameter

� can be expanded as a power series of small parameter ε =
1/

√
m � 1:

� =
∞∑
j=0

ε j� j . (A1)

Rescaling the time in Eq. (4), we obtain the equation for x(τ ):

x′′ + ε�x′ + � 2

[
N − 1

N
sin (x + α) + 1

N
sin (x − α)

]

= � 2 N − 2

N
sin α, (A2)

where the prime notation is used to denote derivatives with
respect to τ . Without loss of generality, we disregard tran-
sients and consider the established limit cycle regime with
initial condition x(0) = 0 for x(τ ). We seek solution x(τ ) as
the following expansion:

x(τ ) = τ +
∞∑
j=0

ε jx j (τ ), (A3)

where x j are 2π -periodic functions of τ . Substituting (A1) and
(A3) into (A2) and setting the terms of the same order of ε to
zero, we first obtain

x′′
0 + � 2

0

[
N − 1

N
sin (τ + x0 + α) + 1

N
sin (τ + x0 − α)

]

= � 2
0

N − 2

N
sin α. (A4)
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The right-hand side of equality (A4) contains secular term
� 2

0
N−2

N sin α, which yields an unlimited growth of component
x0(τ ) (∼τ 2) in asymptotic series (A3), thereby contradicting
the assumption of the stable limit cycle. The contradiction
can be avoided by setting �0 = 0, which corresponds to
trivial solution x0(τ ) = 0. It directly follows from �0 = 0 and
x0(τ ) = 0 that x1(τ ) = 0, and for the second power of ε, we
obtain

x′′
2 + � 2

1

[
N − 1

N
sin (τ + α) + 1

N
sin (τ − α)

]

= �1

(
�1

N − 2

N
sin α − 1

)
. (A5)

Setting the secular term on the right-hand side of (A5) equal
to zero, we obtain �1 = N

(N−2) sin α
. In this case, the nontrivial

component x2(τ ) in the expansion (A3) becomes

x2(τ ) = �1(cos τ + �1 cos α sin τ − 1). (A6)

Similarly, we continue the power series expansion to find all
necessary terms � j and x j (τ ) in asymptotic series (A1) and
(A3). These terms up to the eight order of ε constituting the
approximate solution (10) are listed below and derived via
symbolic calculations in Mathematica v. 11:

ε3 : x′′
3 + 2�2(cos τ + �1 cos α sin τ ) = �2 ⇒ �2 = 0, x3(τ ) = 0,

ε4 : x′′
4 + 2�3(cos τ + �1 cos α sin τ ) + � 3

1 cos α cos 2τ + � 2
1

2

(
� 2

1 cos2α − 1
)

sin 2τ = �3

⇒ �3 = 0, x4(τ ) = � 3
1

4
cos α(cos 2τ − 1) + � 2

1

8

(
� 2

1 cos2α − 1
)

sin 2τ,

ε5 : x′′
5 + 2�4(cos τ + �1 cos α sin τ ) = �4 ⇒ �4 = 0, x5(τ ) = 0,

ε6 : x′′
6 +

[
2�5 − � 3

1

16

(
9� 2

1 cos2α + 13
)]

cos τ + �1 cos α

[
2�5 − � 3

1

16

(
5� 2

1 cos2α + 9
)]

sin τ + � 3
1

4

(
1 − � 2

1 cos2α
)

cos 2τ

+ � 4
1

2
cos α sin 2τ + 3

16
� 3

1

(
3� 2

1 cos2α − 1
)

cos 3τ + 3

16
� 4

1 cos α
(
� 2

1 cos2α − 3
)

sin 3τ = �5 − � 3
1

2

(
1 + � 2

1 cos2α
) ⇒

�5 = � 3
1

2

(
1 + � 2

1 cos2α
)
,

x6(τ ) = 1

24

(
5� 3

1 − 21�5
) + 1

8

(
7�5 − 2� 3

1

)
cos τ + �1

8

(
11�5 − 2� 3

1

)
cos α sin τ

+ 1

8

(
� 3

1 − �5
)

cos 2τ + � 4
1

8
cos α sin 2τ + 1

24

(
3�5 − 2� 3

1

)
cos 3τ + �1

24

(
�5 − 2� 3

1

)
cos α sin 3τ,

ε7 : x′′
7 + 2�6(cos τ + �1 cos α sin τ ) = �6 ⇒ �6 = 0, x7(τ ) = 0,

ε8 : x′′
8 +

[
2�7 − � 2

1

16
cos α

(
2� 3

1 + 3�5
)]

cos τ + �1

[
2�7 cos α + 1

16

(
2� 3

1 + 3�5
)]

sin τ

+ � 2
1

4
cos α

(
10�5 − � 3

1

)
cos 2τ + �1

4

(
� 3

1 − 11�5 + 12
� 2

5

� 3
1

)
sin 2τ + 5

16
� 2

1 cos α
(
2� 3

1 − �5
)

cos 3τ

+ 5

16
�1

(
3�5 − 2� 3

1

)
sin 3τ + � 2

1

2
cos α

(
�5 − � 3

1

)
cos 4τ + �1

4

(
2� 3

1 − 4�5 + � 2
5

� 3
1

)
sin 4τ = �7

⇒ �7 = 0,

x8(τ ) = � 2
1

288
cos α

(
43� 3

1 − 125�5
) − � 2

1

16
cos α

(
2� 3

1 + 3�5
)

cos τ + �1

16

(
2� 3

1 + 3�5
)

sin τ

+ � 2
1

16
cos α

(
10�5 − � 3

1

)
cos 2τ + �1

16

(
� 3

1 − 11�5 + 12
� 2

5

� 3
1

)
sin 2τ + 5

144
� 2

1 cos α
(
2� 3

1 − �5
)

cos 3τ

+ 5

144
�1

(
3�5 − 2� 3

1

)
sin 3τ + � 2

1

32
cos α

(
�5 − � 3

1

)
cos 4τ + �1

64

(
2� 3

1 − 4�5 + � 2
5

� 3
1

)
sin 4τ.

APPENDIX B: PROOF OF STATEMENT 1

Our goal is to asymptotically approximate characteris-
tic exponents � and �̂, associated with multipliers μ1 and

μ2 of Eq. (15), respectively. We assume that m � 1 and
N � 1 and seek solution ξ (t ) = e�tζ (t ), where ζ (t ) is a
Tx-periodic function. Similarly to the asymptotic analysis per-
formed in Appendix A, we rescale time t = √

m�τ , where

024203-11



VYACHESLAV O. MUNYAYEV et al. PHYSICAL REVIEW E 105, 024203 (2022)

� = ε�1 + ε5�5 + o(ε7) was calculated in Appendix A,
and substitute ξ (t ) into (15). We obtain the following
equation:

ζ ′′ +
(

1 + 2
�

ε2

)
ε�ζ ′ + � 2

{
�2

ε2
+ �

+ N − 1

N
cos α + 1

N
cos [x(τ ) − α]

}
ζ = 0, (B1)

where, as in Appendix A, the prime notation denotes deriva-
tives with respect to slow time τ and ε = 1/

√
m.

It is instructive to use the following substitution that helps
to get rid of singular terms proportional to the reciprocal of ε:

� = ε
√

λ − ε2/2. (B2)

Note that the other characteristic exponent, �̂, can be calcu-
lated from Liouville’s identity as follows:

�̂ = −ε
√

λ − ε2/2. (B3)

However, �̂ < 0 and therefore, does not induce instability and
can be ignored.

Substituting (B2) into (B1), we obtain

ζ ′′ + 2
√

λ�ζ ′

+ � 2

{
λ − ε2

4
+ N − 1

N
cos α + 1

N
cos [x(t ) − α]

}
ζ = 0.

(B4)

Equation (B4) is suitable for constructing a regular asymptotic
series for λ. To this end, we seek the 2π -periodic solution ζ (τ )
and λ in the form of the following expansions:

ζ (τ ) =
∞∑
j=0

ε jζ j (τ ), λ =
∞∑
j=0

ε jλ j, (B5)

where ζ j are 2π -periodic functions of τ . For the zeroth or-
der of ε we obtain ζ ′′

0 = 0 whose repeated integration gives
ζ0(τ ) = C, where C is an arbitrary constant of integration.
For definiteness, we set ζ0(τ ) = 1. For simplicity, we will
be setting all other arbitrary constants of integration obtained
from calculations of high-order terms ζk (τ ) equal to zero.
Thus, for the first order of ε, we obtain ζ ′′

1 = 0 and ζ1(τ ) = 0.
Continuing the series expansion in ε, we arrive at the follow-
ing sequence of equations and their solutions:

ε2 : ζ ′′
2 + � 2

1

(
λ0 + N − 1

N
cos α

)
+ � 2

1

N
cos(τ − α) = 0 ⇒ λ0 = −N − 1

N
cos α, ζ2(τ ) = � 2

1

N
cos(τ − α),

ε3 : ζ ′′
3 + � 2

1 λ1 + 2
√

λ0�1ζ
′
2 = 0 ⇒ λ1 = 0, ζ3(τ ) = −2

� 3
1

N

√
λ0 sin(τ − α),

ε4 : ζ ′′
4 + � 2

1

[
λ2 − 1

4
− 1

N
sin(τ − α)x2

]
+ 2

√
λ0�1ζ

′
3 + � 2

1

N
cos(τ − α)ζ2 = 0

⇒ λ2 = � 2
1

8N2

[
(N − 2)2 − (

N2 − 8N + 8
)

cos 2α
]
,

ζ4(τ ) = � 4
1

2N2

[
3(N − 1) cos τ + 2 cos α cos(τ − α) + (5N − 7) cos(τ − 2α) + N − 1

4
cos 2τ + 1

2
cos(2τ − 2α)

]
,

ε5 : ζ ′′
5 + � 2

1 λ3 + �1

(
λ2√
λ0

ζ ′
2 + 2

√
λ0ζ

′
4

)
+ � 2

1

N
cos(τ − α)ζ3 = 0 ⇒ λ3 = 0,

ζ5(τ ) = � 5
1

16N3
√

λ0

{(
25N2 − 48N + 24

)
sin(τ + α) + 2

(
31N2 − 60N + 28

)
sin(τ − α)

+ (
41N2 − 96N + 56

)
sin(τ − 3α) + 2(N − 1) cos α[(N − 1) sin 2τ + 4 sin(2τ − 2α)]

}
,

ε6 : ζ ′′
6 + � 2

1

[
λ4 − 1

2N
cos(τ − α)x2

2 − 1

N
sin(τ − α)x4

]
+ �1

(
λ2√
λ0

ζ ′
3 + 2

√
λ0ζ

′
5

)

+ � 2
1

[
λ2 − 1

4
− 1

N
sin(τ − α)x2

]
ζ2 + � 2

1

N
cos(τ − α)

(
ζ4 + 2

�5

�1

)
= 0

⇒λ4 = � 4
1

2N3
(N − 1)[(N − 2) cos 2α − N − 2] cos α,

ζ6(τ ) = � 6
1

16N3

[
(N − 1)2 cos(τ + 3α) + (

53N2 − 99N + 53
)

cos(τ + α) + (
128N2 − 232N + 103

)
cos(τ − α)

+ (
87N2 − 206N + 124

)
cos(τ − 3α) + (N − 1) cos(2τ + α) + (

2N2 + 1
)

cos(2τ − α)

+ (11N − 14) cos(2τ − 3α) + (N − 1)2

3
cos(3τ + α) + 11

9
(N − 1) cos(3τ − α) + cos(3τ − 3α)

]
,

024203-12
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ε7 : ζ ′′
7 + � 2

1 λ5 + �1

[(
− λ2

2

4λ
3/2
0

+ λ4√
λ0

+ 2
√

λ0
�5

�1

)
ζ ′

2 + λ2√
λ0

ζ ′
4 + 2

√
λ0ζ

′
6

]

+ � 2
1

(
λ2 − 1

4
− 1

N
sin(τ − α)x2

)
ζ3 + � 2

1

N
cos(τ − α)ζ5 = 0 ⇒ λ5 = 0,

ζ7(τ ) = − � 7
1

16N5
√

λ0

{
1

λ0

[
(N − 1)4

2
sin(τ + 5α) +

(
1807

64
N4 − 449

4
N3 + 341

2
N2 − 467

4
N + 121

4

)
sin(τ + 3α)

+
(

1953

16
N4 − 1899

4
N3 + 2831

4
N2 − 961

2
N + 251

2

)
sin(τ + α)

+
(

6525

32
N4 − 3197

4
N3 + 4751

4
N2 − 3171

4
N + 801

4

)
sin(τ − α)

+
(

2473

16
N4 − 2549

4
N3 + 3981

4
N2 − 697N + 369

2

)
sin(τ − 3α)

+
(

2863

64
N4 − 399

2
N3 + 1343

4
N2 − 252N + 71

)
sin(τ − 5α)

]

− N

16

[
N2(N − 1) sin(2τ + 2α) + 2

(
7N3 + 19N2 − 44N + 20

)
sin 2τ

+ (
17N3 + 183N2 − 400N + 192

)
sin(2τ − 2α) + 4

(
47N2 − 114N + 68

)
sin(2τ − 4α)

]

+ λ0
N2

27

[
6
(
N2 − 2N − 8

)
sin(3τ + α) + (49N − 49 + 108 cos 2α) sin(3τ − α)

]}
,

ε8 : ζ ′′
8 + � 2

1

[
λ6 + 1

6N
sin(τ − α)x3

2 − 1

N
cos(τ − α)x2x4 − 1

N
sin(τ − α)x6

]

+ �1

[(
− λ2

2

4λ
3/2
0

+ λ4√
λ0

+ 2
√

λ0
�5

�1

)
ζ ′

3 + λ2√
λ0

ζ ′
5 + 2

√
λ0ζ

′
7

]

+ � 2
1

{[
λ4 − 1

2N
cos(τ − α)x2

2 − 1

N
sin(τ − α)x4 + 2

N

�5

�1
cos(τ − α)

]
ζ2

+
[
λ2 − 1

4
− 1

N
sin(τ − α)x2

](
ζ4 + 2

�5

�1

)
+ 1

N
cos(τ − α)ξ6

}
= 0

⇒ λ6 = � 6
1

32N4
(N − 1)

[
4
(
N2 − 2N + 2

)
cos 4α + 2

(
N2 − 58N + 70

)
cos 2α + 4N2 − 133N + 133

]
.

Collecting the terms, we arrive at the final expression:

λ = −N − 1

N
cos α + � 2

1

8mN2
[(N − 2)2 − (N2 − 8N + 8) cos 2α] + � 4

1

2m2N3
(N − 1)[(N − 2) cos 2α − N − 2] cos α

+ � 6
1

32m3N4
(N − 1)[4(N2 − 2N + 2) cos 4α + 2(N2 − 58N + 70) cos 2α + 4N2 − 133N + 133] + o(m−3). (B6)

Recall that we seek to find the condition under which the trivial solution of variational equation (15) undergoes a bifurcation
associated with multiplier μ1 = +1 and, therefore, with characteristic exponent � = 0. Thus, setting � = 0 in Eq. (B2),
replacing λ with (B6) and solving for α, we derive the bound of Statement 1:

αc=π

2
+ N

2m(N − 2)2 −N3(18N2 − 27N + 13)

96m3(N − 2)6 + o(m−3). (B7)

To support the claim made in Remark 1, we analyze the sign of � near bifurcation curve (B7). To do so, we fix m and consider

� as a function of α. It follows from (B2) that
d�

dα
(αc) = dλ

dα
(αc) since ε is treated as a constant. This yields

d�

dα
(αc) = N − 1

N
+ N (N − 1)(8N + 3)

8m2(N − 2)4
+ o(m−3) > 0. (B8)
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Thus, characteristic exponent � increases near the bifurcation curve and becomes zero at the curve. Therefore, � < 0(� > 0)
for α < αc(α > αc) in the vicinity of αc. �
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