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Antiresonance in switched systems with only unstable modes
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Antiresonance is a key property of dynamical systems that leads to the suppression of oscillations at select
frequencies. We present the surprising example of a switched system that alternates between unstable modes,
but exhibits antiresonance for a wide range of switching frequencies. We elucidate the stabilization mechanism
and characterize the range of antiresonant frequencies for periodic and stochastic switching. The demonstration
of antiresonance in a minimalistic variation of the Stuart-Landau model opens the door for a new paradigm in
the study and design of switched systems.
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Introduction. Switched dynamics are pervasive in theoret-
ical physics, neuroscience, and engineering [1]. For example,
the temporal patterning of interactions in active matter dis-
continuously evolves as their comprising units change their
spatial organization [2–5]. Likewise, synchronization in brain
networks emerges from sporadic, on-off synaptic interactions
between spiking and bursting neurons [6]. Switch logic is
also ubiquitous in engineering systems, such as converters and
communication networks [7,8].

Switched systems consist of multiple modes, each with
autonomous dynamics [9,10]. Stability of the modes does not
univocally determine the stability of a switched system: A
number of analytical studies documented a critical role of the
switching frequency [11–15], which was also registered in
applications to complex systems [16–22]. Notably, switched
systems with only stable modes can become unstable at se-
lect switching frequencies [23,24]. This phenomenon can be
viewed as an internal resonance [25], wherein the switching
frequency does not allow the dynamics in each of the stable
modes to decay before the onset of a new switch.

Heraclitus’ theory of the unity of opposites has sel-
dom defeated our intuition of physical processes, from the
particle-wave duality in quantum mechanics [26] to the
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matter/antimatter asymmetry problem [27]. Antiresonance
continues to be extensively investigated in acoustics [28], op-
tics [29], biology [30], and quantum physics [31], with a focus
on smooth, stable systems. On the other hand, antiresonance
of switched systems with only unstable modes has never been
documented.

Is it possible to induce antiresonance in the form of stable
response of a system switching between two unstable modes?
Here, we provide a positive answer to this question by offering
the first example of a switched system composed of only
unstable modes that displays a stable response in a finite range
of switching frequencies. Our system has an unstable average
that hinders stability in the fast-switching limit, and the in-
stability of both modes hampers stability for slow-switching
frequencies.

Governing equations. We consider a two-dimensional non-
linear switched system with complex state vector z(t ) =
x(t ) + iy(t ), alternating between two modes, according to a
binary signal s(t ) that switches between 0 and 1. Initially, we
focus on a periodic signal of period T with a duty cycle δ,
such that the switch is on for δT units of time and is off for
(1 − δ)T units of time; later, we explore stochastic switching.
Our example is a minimalistic variation of a Stuart-Landau
oscillator of the form

s = 0 : ż = (1 + iω)z + iω
z3

|z|2 ,

s = 1 : ż = (1 + iω)z − iω
z3

|z|2 ,

(1)

where ω is the radian frequency [32].
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FIG. 1. Streamlines of the two unstable modes of the switched
system given in (1) for ω = 2, with color indicating the intensity of
the vector field for s = 0 (left) and s = 1 (right).

The function f (z, z∗) = z ± iω z3

|z|2 , where z∗ indicates
complex conjugate, introduces rotational noninvariance.
Specifically, f (zeiχ , z∗e−iχ ) �= eiχ f (z, z∗) [33]. This symme-
try breaking is a key difference from a standard oscillator [34].
Lack of rotational invariance has been extensively investigated
in Stuart-Landau models, describing anisotropic Heisenberg
spin systems [35] and chimera deaths in networks [36].

Another key difference is the lack of differentiability at the
origin, which acts as a hybrid fixed point. Although unsta-
ble, this fixed point has features of an unstable node and a
stable focus (see Fig. 1). A typical trajectory will first rotate
about the origin, reducing its distance from it like a stable
focus, and then it will escape to infinity along the principal
unstable direction like an unstable node. The principal unsta-
ble directions are the y and x axis for the first (s = 0) and
second (s = 1) modes, respectively. The interplay between
the contrasting features of the modes is the driver for the
antiresonance of the switched system. The nonlinearity in
(1) can be viewed as a feedback to the standard oscillator,
similar to classical nonlinear feedback systems to manipulate
temporal states of single physical oscillators [37] and achieve
demand-controlled network synchronization [38].

In principle, one can construct a range of oscillators that
possess the same structure as (1) by manipulating the Stuart-
Landau model [33] to capture richer dynamics at the onset
of oscillations. Our choice is motivated by the possibility to
pursue a completely analytical treatment of the problem.

Slow- and fast-switching limits. In the limit case T � 1
(the rate of growth of each mode) the switched system is
unstable, as it would spend a large fraction of time in one of
the unstable modes before it could reswitch to the other [12].
After spiraling toward the origin for almost an entire quadrant,
each trajectory will approach the principal unstable direction
of the mode and travel away from the origin. Switching will
cause the trajectory to experience a sudden turn and after each
period, the distance from the origin will increase (see Fig. 2).

An unstable response is also registered for the fast-
switching case, in which T � 1 (see Fig. 2). This result is
explained by examining the average system [13], obtained by
averaging (1),

ż = (1 + iω)z + i(1 − 2δ)ω
z3

|z|2 . (2)
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FIG. 2. Trajectories of the periodically-switched system in (1)
for ω = 2 and δ = 0.5 and different values of T (left): T = 0.1 (solid
red), T = 2 (green), and T = 5 (dashed red). Initial condition is (1,0)
for all cases. Streamlines of the average system in (1) for ω = 2 and
δ = 0.5, with color indicating the intensity of the vector field (right).

Similar to the individual modes, all the trajectories, except for
the origin, spiral out to infinity.

Although often used in the analytical treatment of switched
systems [12,13], the slow- and fast-switching limits offer a
close representation of the switched system when the switch-
ing period is much larger and smaller than the timescale of
the individual modes. Predicting the onset of an antiresonance
requires the study of the nonlinear interplay between the
intrinsic dynamics of each mode at intermediate switching
frequencies.

Antiresonance at intermediate switching. Surprisingly,
there is a wide range of intermediate switching periods that
induce the stability of the switched system so that the origin
becomes a stable focus (see Fig. 2). The stabilization mecha-
nism relies on switching slow enough to be attracted toward
the origin during the rotation, but fast enough to avoid reach-
ing the unstable principal directions. For ω = 2 and δ = 0.5,
simulations suggest that the range of T that guarantees conver-
gence toward the origin is T ∈ (1.18, 4.26). The emergence of
this antiresonant response is completely open-loop, whereby
switching takes place without knowledge of the present state
of the system. Below, we prove the existence of this antires-
onance window and characterize its size as a function of the
system parameters.

Mathematical analysis of stability. System (1) is conve-
niently written in polar coordinates as z = r exp(iθ ),

ṙ = r + ωr(2s − 1) sin 2θ, (3a)

θ̇ = ω − ω(2s − 1) cos 2θ. (3b)

This representation indicates that the nonlinearity is limited
to the angular coordinate and that the system has a triangular
structure, with the angular coordinate evolving independent
of the radial one. This structure is amenable to a closed-form
solution, which we later use to gain insight into stochastic
switching.

To study the stability of the periodically-switched system,
we perform the change of variable ρ = 1/r, so that (3a) be-
comes

ρ̇ = −ρ − ωρ(2s − 1) sin 2θ. (4)
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This change of variables maps the origin to infinity and vice
versa, thereby turning antiresonance of nonlinear system (1)
into the resonance of an analytically-tractable linear system.
Expanding on these studies, we constructively determine the
range of switching frequencies that lead to antiresonance of
(1) for any selection of δ and fully characterize the basin of
attraction.

For ζ = [ρ cos θ, ρ sin θ ]T, we obtain the following linear
switched system:

ζ̇ (t ) = A(t )ζ (t ), with A(t ) =
[ −1 −2ωs(t )

2ω(1 − s(t )) −1

]
.

(5)

System (5) periodically switches between two linear modes
determined by two Hurwitz matrices, A0 when the switch is
off (s = 0) and A1 when the switch is on (s = 1), such that

A0 =
[−1 0

2ω −1

]
and A1 =

[−1 −2ω

0 −1

]
. (6)

These matrices have repeated eigenvalues λ = −1, yielding a
stable degenerate node in both modes.

Similar dynamics have been considered in Refs. [23,24], in
the context of stochastic switching for continuous and discrete
systems, respectively. The main differences with respect to the
present analysis are: (i) our analysis is for a general value of δ,
while the setups in Refs. [23,24] assume equal probability for
the on and off states, (ii) we constructively demonstrate a com-
pact window of stability for the switching rate and provide
a closed form result for it, while Ref. [24] identifies integer
values that are pertinent to discrete dynamics and Ref. [23]
only points at the existence of a rate that guarantees instabil-
ity, and (iii) we address the dependence on initial conditions
toward the characterization of the basin of attraction of the
original switched system, which is not part of the analysis in
Refs. [23,24].

The stability of a linear periodically-switched system (5)
can be examined using classical Floquet theory [39]. Given
the transition matrix 	(t, τ ), we compute the T -periodic func-
tion P(t ) and the constant (possibly complex) matrix R

R = 1

T
log[	(T, 0)],

P(t ) = 	(t, 0) exp(−Rt ). (7)

Through P(t ), we define a Lyapunov transformation that
converts the original switched system into an ancillary, time-
invariant one with state matrix equal to R [40]. The entire
stability analysis of nonlinear system (1) reduces to the study
of the eigenvalues of R, the so-called characteristic exponents.

The linear switched system is (uniformly and exponen-
tially) asymptotically stable if and only if all the charac-
teristic exponents have negative real parts. The computation
of the characteristic exponents requires the calculation of
the two-dimensional monodromy matrix 	(T, 0), given by
	(T, 0) = exp(δTA1) exp[(1 − δ)TA0]. By taking the log-
arithm of the matrix and computing its eigenvalues, we
analytically determine the two characteristic exponents,
as functions of δ, ω, and T (see Fig. 3). Specifically,

FIG. 3. Real part of the characteristic exponents of the linear
periodically-switching (5) as functions of T for δ = 0.5 and different
values of ω: ω = 1 (top), ω = 2 (middle), and ω = 3 (bottom). Red
regions identify values for which the real parts of both the exponents
are negative and green regions values for which one is positive.

we determine

λ = − 1 − log 2

T
+ 1

T
log[2 − 4ωT (δ(1 − δ)ωT

±
√

δ(1 − δ)(−1 + δ(1 − δ)ω2T 2))]. (8)

In agreement with simulations in Fig. 2, small and large
values of the switching periods result into an unstable dynam-
ics, that is, negative characteristic exponents of the ancillary,
linear system [41]. For sufficiently large values of ω, one of
the characteristic exponents becomes positive, thereby trigger-
ing the instability of the ancillary system. Such an instability,
in turn, manifests into the stable dynamics of the original
nonlinear system.

There is a wide range of values of T for which the original
system is asymptotically stable (uniformly and exponentially)
with a basin of attraction that comprises the whole phase
space, except of a principal instability direction. Such a di-
rection corresponds to the eigenvector of R that is associated
with the eigenvalue with negative real part. In general, for
T > 1/(ω

√
δ(1 − δ)), R has two real eigenvectors that coin-

cide at a phase − arctan
√

(1 − δ)/δ for T = 1/(ω
√

δ(1 − δ))
and then separate one from each other as T increases. In the
limit of T → ∞, they approach 0 and −π/2, with the latter
corresponding to the eigenvalue with the smaller real part,
that is, the principal unstable direction of the original system
[42]. Within the window of stability of the original system,
the principal direction will thus vary in an interval contained
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between − arctan
√

δ/(1 − δ) and −π/2; for example, for
ω = 1 and δ = 0.5, it varies between −1.06 and −1.45.

Extension to stochastic switching. While the proposed
analytical treatment strictly applies to periodic switching, in-
sight into the antiresonance of system (1) to more complex
switching processes could be garnered by examining the po-
lar representation in (1). Equation (3b) admits the following
solution:

s = 0 : θ (t ) = arctan[2ω(t − ti ) + tan θ (ti )],
s = 1 : θ (t ) = −arccot[2ω(t − ti ) + cot θ (ti )],

(9)

where ti is the instant of switching.
With knowledge of the time evolution of the angular co-

ordinate in (9), we can solve (3a) for the radial coordinate to
obtain

s = 0 :
r(t )

r(ti )
= exp(t − ti )

√
1 + tan2 θ (ti )

1 + (2ω(t − ti ) + tan θ (ti ))2
,

s = 1 :
r(t )

r(ti )
= exp(t − ti )

√
1 + cot2 θ (ti )

1 + (2ω(t − ti ) − cot θ (ti ))2
,

(10)

where we made evident the linearity by factoring the initial
condition on the left-hand-sides of the equations.

Equations (9) and (10) are valid for any choice of the
system parameters and switching process. As an example of
stochastic switching, we consider the case where we retain the
same switching instants as the periodic process, but the value
of s(t ) is drawn with equal probability between 0 and 1 (this
approach could also be adapted to study Markovian switching
processes [43]). We simulate (9) and (10) for 1000 switches
and 1000 realizations of the stochastic switching sequences.
The initial angle θ (0) is drawn uniformly at random from 0
to 2π and convergence is ascertained by comparing the initial
with the final radius.

Predictably, for small values of ω, we do not obtain the
spiraling trajectories that are required for the stabilization of
the origin, thereby hindering antiresonance through stochastic
switching (see Fig. 4). For larger values of ω, we observe
the onset of antiresonance through stochastic switching, but
the range of antiresonance periods considerably narrows with
respect to the periodic case [44]. This phenomenon is due
to the nonlinearity of the system, which reduces the set of
favorable switching sequences as the period increases.

Conclusions. Stabilization of unstable systems via periodic
or stochastic perturbations is a critical problem in nonlinear
dynamics, with applications in physics, biology, and engineer-
ing. Just as an oscillating suspension can stabilize the inverted
configuration of the classical Kapitza’s pendulum [45], vibra-
tional stabilization is used in hovering insects and flapping
wing micro-air vehicles [46]. Common to these examples is
the existence of some stable dynamics that could facilitate the
stabilization of the system.

Surprisingly, the same phenomenon can be observed with-
out any stable dynamics to fall back on, like in the case of
synchronization in temporal networks of Rössler or Duffing
oscillators [47] and prey-predator metapopulations [48]. Sim-
ulations revealed the existence of windows of opportunity
for the time scale of the network evolution, where the syn-

FIG. 4. Probability of converging to the origin for stochastic
versus periodic switching in system (1) as functions of T for δ = 0.5
and different values of ω: ω = 1 (top), ω = 2 (middle), and ω = 3
(bottom). Black dots correspond to stochastic switching, and solid
lines to periodic switching. Color coding follows Fig. 3: red and
green lines identify values of T for which periodic switching leads
to instability and stability, respectively.

chronous state can be stabilized. Whether this phenomenon
was due to the high-dimensional, nonautonomous nature of
the variational equations describing the error dynamics or to
a more profound structural property of the chaotic coupled
dynamics has remained elusive.

Here, we offered compelling evidence in favor of a
structural property that should underlie the stabilization phe-
nomenon. We provided the first analytically-tractable example
of antiresonance in a two-dimensional switched system with
only two unstable modes, described by variation of a Stuart-
Landau model. Remarkably, the average dynamics of the
switched system is unstable, thereby prohibiting stabilization
through fast-switching, and the unstable dynamics of each
mode ensures instability at low switching frequencies. Yet, the
system acquires stability in a range of intermediate switching
frequencies.

Our example indicates that stabilization is possible because
of a hybrid type of unstable dynamics, characterized by a fixed
point that has features of an unstable node and a stable focus.
This structural property is common to saddle-focus dynamics
of Rössler, Duffing, and prey-predator models, which display
an equivalent behavior in higher dimensions. We conjecture
that this dynamics is responsible for a latent stability that can
be effectively explored while switching in the antiresonance
frequency range, thereby supporting the emergence of win-
dows of opportunity in synchronization problems. In loose
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terms, the stabilization mechanism can be explained using
the analogy of juggling a hot potato between two hands: The
system must spend some time in one mode (one hand) to take
advantage of its latent stability property (the time it takes to
acquire a firm control of the potato) and then it must leave this
mode before its inherent instability manifests (before the hand
gets burned).

The simplicity and richness of our system make the case
for it to become a nonlinear dynamics textbook example
of “impossible” stable dynamics emerging from antiresonant
switching between unstable modes. We hope that our system
can find a home close to some illustrious, two-dimensional

cases of counterintuitive nonlinear dynamics, like Vinograd’s
example of a system that is unstable but convergent to the
origin [49].
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