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Emergence of the London Millennium Bridge
instability without synchronisation
Igor Belykh 1,2✉, Mateusz Bocian 3,4, Alan R. Champneys5, Kevin Daley 1, Russell Jeter1,

John H. G. Macdonald 6 & Allan McRobie7

The pedestrian-induced instability of the London Millennium Bridge is a widely used example

of Kuramoto synchronisation. Yet, reviewing observational, experimental, and modelling

evidence, we argue that increased coherence of pedestrians’ foot placement is a consequence

of, not a cause of the instability. Instead, uncorrelated pedestrians produce positive feedback,

through negative damping on average, that can initiate significant lateral bridge vibration over

a wide range of natural frequencies. We present a simple general formula that quantifies this

effect, and illustrate it through simulation of three mathematical models, including one with

strong propensity for synchronisation. Despite subtle effects of gait strategies in determining

precise instability thresholds, our results show that average negative damping is always the

trigger. More broadly, we describe an alternative to Kuramoto theory for emergence of

coherent oscillations in nature; collective contributions from incoherent agents need not

cancel, but can provide positive feedback on average, leading to global limit-cycle motion.
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Synchronisation of coupled near-identical oscillators leads to
emergent order in both natural and engineered complex
systems1–8. The theory of weakly coupled near-identical

oscillators, due to Kuramoto9,10, has proved remarkably successful
in explaining these phenomena. The pedestrian-induced instability
on the opening day of the London Millennium Bridge11 is often
used as the canonical example; a threshold number of walkers
enabled them to synchronise their footsteps with each other at a
bridge natural vibration frequency12. However, since then, a number
of publications have cast doubt on this explanation13–18. Yet, the
explanation that Kuramoto-style synchronisation of the phase of
walkers’ foot placements remains part of the scientific zeitgeist19.

In this work, we propose an alternative theory by arguing
strongly for the more likely explanation that any synchronisation
of pedestrians’ foot placement is a consequence of, not a cause of
the instability; a result that is consistent with observations on
almost 30 bridges. Instead, we explain how uncorrelated pedes-
trians produce negative lateral damping on average to initiate
significant bridge vibration, over a range of bridge natural fre-
quencies. We present a simple formula that quantifies the effec-
tive total negative damping per pedestrian, and the contributions
towards it from three distinct effects. We also show how this
formula predicts the critical number of pedestrians in three dis-
tinct simulation models, including one that has a strong pro-
pensity for synchronisation20. The models also point to an almost
universal frequency dependence of the instability criterion. More
broadly than implications on design criteria for safe human-
structure interaction, our work points to an alternative mechan-
ism for emergence of collective behaviour in complex systems.

Kuramoto-like synchronisation analysis has so-far been unable
to explain many of the instability features observed on the Lon-
don Millennium Bridge and many other bridges (see Tables 1 and
2 below for a complete summary of known observations). The
main features of this instability are: (1) bridges can exhibit large
vibration amplitudes in more than one mode of vibration
simultaneously, which need not be tuned to a particular walking
frequency13,21; (2) a critical number of pedestrians is required in
order to cause an instability22,23; (3) evidence of pedestrian
footstep synchronisation8,24 is scant, with the most definitive
study estimating only 20% of the crowd walked in time with the
bridge motion25; (4) engineering consultants Arup, who re-
engineered the London Millennium Bridge, found that each
pedestrian added, on average, effective negative damping22; ret-
rofitting additional dampers successfully cures the problem26.

One of the first to call into question the synchronisation
explanation of the London Millennium Bridge instability was
Nobel prize winner Brian Josephson, writing four days after the
bridge’s opening27:

“The Millennium Bridge problem has little to do with
crowds walking in step: it is connected with what people do
as they try to maintain balance if the surface on which they
are walking starts to move, and is similar to what can
happen if a number of people stand up at the same time in a
small boat. It is possible in both cases that the movements
that people make as they try to maintain their balance lead
to an increase in whatever swaying is already present, so
that the swaying goes on getting worse.”

Intuitive reasoning, underlying Josephson’s argument and
Arup’s observations, suggests that to retain balance, each pedes-
trian should seek to lose angular momentum within their frontal
plane. Further, Barker28 identified a stepping mechanism
whereby forces to the left and right do not necessarily average out.
Therefore, on average, lateral vibration energy is transferred from
the pedestrian to the bridge vibration mode. In effect, each
pedestrian applies negative damping to the bridge.

In fact, the situation is more subtle. The interaction force at the
bridge vibration frequency can be decomposed into components
in phase with the bridge’s acceleration and in phase with the
bridge’s velocity. The former changes the effective inertia of the
bridge motion, whereas the latter changes the bridge’s effective
damping29,30. Paradoxically, for some specific combinations of
the bridge vibration and pedestrian walking frequencies, a theo-
retical argument suggests18,31 that the pedestrian can effectively
extract energy from the bridge, which has been confirmed in
laboratory treadmill tests15,32,33.

Until now, it has been hard to quantify this negative damping
effect in a model-independent way. A number of theories have
been proposed for its physical origin17,18,28,31; however, it is not
clear whether negative damping can be a consequence of
synchronisation34 or vice versa.

In this paper, we provide a compelling answer to this question
in a multi-pronged approach: a comprehensive review of obser-
vational evidence; a new model-independent expression for the
average negative damping effect; a detailed explanation of how
negative damping is a natural consequence of pedestrian motion
on average; simulation studies of several simple models for
bridge-deck interaction; a careful explanation of the subtlety of
the problem, for example, on the frequency dependence of the
negative-damping effect and how synchronisation (or more pre-
cisely, coherence) of foot placements can have either an accent-
uating or moderating effect on the underlying instability. Further
details are presented in “Methods” and in the Supplementary
Information. We point to a broader scientific lesson of the Lon-
don Millennium Bridge story: there is an emergent instability
with an underlying frequency that can be excited by the uncor-
related behaviour of individual agents, who do not need to act in
a coordinated manner. We suggest that such a paradigm may be
helpful to explain other emergent oscillatory phenomena that
have previously been ascribed to Kuramoto-style synchronisation;
specifically the emergence of global economic cycles and the
coordinated response of tiny hair-like structures within animal
hearing organs.

Results
Review of observational and experimental evidence. When
crossing a bridge, most people take for granted that the bridge
will remain steady and support them, but history shows that this
is not always the case. The first documented pedestrian bridge
incident dates back to April 12, 1831 when one of Europe’s first
suspension bridges, England’s Broughton Suspension Bridge,
collapsed due to dynamical instability induced by marching
troops. The prevailing wisdom since is that soldiers should avoid
marching in step, in case their stepping frequency might resonate
with a natural (vertical) vibration frequency of the bridge. It is
now established practice that soldiers are given the command to
“break step” upon crossing a bridge to avoid just such a phe-
nomenon. Vertical vibrations of bridges due to random excitation
from pedestrians are still of concern, but prior to the year 2000
lateral vibrations were given little attention. This was because, for
normal walking, the lateral component of the ground reaction
force is an order of magnitude smaller than the vertical compo-
nent and in the absence of coherence between pedestrians the
resulting bridge responses were assumed to be negligible.

The London Millennium Bridge was designed as a collabora-
tion between engineers, architects, and artists, as a very low
profile suspension bridge. Without visually intrusive vertical
cables, the intention was that the structure would appear from the
side to be like a mysterious long blade, spanning the river with
little visible support. The unusual geometry of the slender span
contributed to the bridge having greater flexibility than most
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bridges in the lateral direction, giving natural frequencies similar
to typical pedestrian stride frequencies, while its relatively low
mass also made it susceptible to significant vibrations. There is a
widely available video that shows dozens of people rocking from
side to side on the London Millennium Bridge’s opening day,
seemingly in time with the bridge, which is often used as
compelling evidence for pedestrian synchronisation in popular
media19. However, we encourage the reader to look again. A
distinction needs to be made between synchronisation of head
and upper body movements (readily seen in videos) and
synchronisation of footfalls on the deck. We are not aware of
any video footage that establishes that footfall synchrony
occurred. Indeed, there is possible evidence in that video of lack
of footfall synchrony, because pedestrian forward velocities vary
widely. Moreover, a walker providing an effective negative
damping force to the bridge, necessarily at the bridge frequency,
will exhibit a component of upper body motion at that frequency.

In fact this same phenomenon of a lateral instability of
pedestrian bridges had been seen before, and there is evidence
going back to 1972. The complete list of pedestrian bridges that
are known to have developed lateral oscillation due to pedestrian
motion runs to at least 30 separate examples; see Table 1 for a list
of those for which there are detailed scientific reports and Table 2
for others for which quantitative evidence is not available. Note in
the final column of these tables the scant evidence for pedestrian
synchronisation being observed.

The geography of such crowd-induced instability events is truly
worldwide. It includes the massive Bosphorus Bridge linking Asia
and Europe35 and an icon of Lower Manhattan, the Brooklyn
Bridge which started swaying as a crowd of pedestrians trudged
across during the 2003 blackout. When packed shoulder to
shoulder with pedestrians, the bridge started vibrating making
pedestrians lose balance and feel seasick36. The Brooklyn Bridge
repeatedly experienced crowd-induced instabilities during the
2011 protest and 2011 New Year’s celebration34 raising the
concern that “Manhattans’s emergency exit”—as the bridge is
sometimes called—is not built for crowds.

Coincidentally, one of the more recent examples of lateral
pedestrian instabilities is Squibb Park Bridge, also in Brooklyn (it
is a city of bridges, after all)37. Opened in 2013, this $3.9-million
wooden park bridge was purposefully designed to bounce lightly
but over time the increased bouncing and lateral swaying became
a safety concern for pedestrians38. Three years after it was initially
closed for $2.5-million repairs, the Squibb Park Bridge reopened
in April 201739 but was later demolished in 2019 amid concerns
of its structural integrity.

While the evidence of bridge instabilities is often anecdotal,
some direct measurements of bridge response characteristics are
available for recent crowd-induced instability events involving the
Toda Park Bridge in Japan40, Solférino Bridge in Paris41, the
London Millennium Bridge22, the Maple Valley Great Suspension
Bridge in Japan25, Singapore Airport’s Changi Mezzanine
Bridge21, the Clifton Suspension Bridge in Bristol, UK13, and
the Pedro e Inês Footbridge in Portugal23.

A particularly notable observation was the instability due to
crowds returning from an annual hot-air balloon festival across
Bristol’s iconic Clifton Suspension Bridge13. Since vibrations of
the bridge had been observed during previous crowd events,
Macdonald was commissioned by the bridge’s operating trust to
fit accelerometers to record the vibrations as the instability
occurred. Observations showed that two lateral modes of
vibration were excited simultaneously by the large pedestrian
crowd, neither of which was tuned to the average walking
frequency. Since then, the trust has stipulated that the bridge
must remain closed to all pedestrians and other traffic at peak
times during the balloon festival.

Analytical prediction. We have established a general expression
for the average contribution to the bridge damping of the inter-
action force of a single pedestrian over one gait cycle. We have
found that this increment σ can be written as the sum of three
components (see Methods):

σ1 coefficient of lateral bridge velocity-dependent

component of pedestrian foot force on bridge,

ignoring gait timing adjustment,

σ2 coefficient of lateral bridge velocity-dependent

component of force due to adjustment of

pedestrian lateral gait timing, and

σ3 coefficient of lateral bridge velocity-dependent

component of force due to adjustment to

forward gait :

The terms σ2 and σ3 depend on the timing of stepping
behaviour of pedestrians in response to the bridge motion.
However, in all our simulations, we have found σ1 to be the most
important effect in triggering large-amplitude vibrations (see
the Supplementary Information). This effect is perhaps counter-
intuitive, since it may be imagined that, in the absence of phase
synchrony between the bridge and pedestrian, the lateral foot
force on the bridge would average to zero. However, this is not
the case; see Fig. 1 for a detailed explanation.

The expressions for σ1–σ3 should be evaluated individually for
each pedestrian i and will depend on that pedestrian’s stride
frequency ωi as well as the vibration frequency Ω of the bridge in
the mode in question. Thus, we can write the total effective
damping coefficient cT of the bridge with N pedestrians as

cT ¼ c0 þ Nσðω;ΩÞ :¼ c0 þ ∑
N

i¼1
σðiÞ1 ðωi;ΩÞ þ σðiÞ2 ðωi;ΩÞ þ σðiÞ3 ðωi;ΩÞ

� �
;

ð1Þ
where c0 is the coefficient of natural (passive) damping of the
bridge, σðω;ΩÞ is the average damping coefficient per pedestrian,
and ω represents the mean pedestrian stride frequency.

We have found, over large ranges of pedestrian and bridge
frequencies, that σ < 0 on average. Imagine a thought experiment
in which pedestrians are added to a bridge deck one by one, then
when we reach a critical number

N ¼ Ncrit ¼ �c0=σ ð2Þ
of pedestrians, the overall modal damping cT of the bridge will
become negative. Negative damping will cause the amplitude of
the bridge vibration mode to grow exponentially.

Simulation results. To test this theory we have performed
simulations on three different mathematical models describing a
number of pedestrians coupled with a lateral bridge mode (see
Methods for model descriptions). In each case we take a parsi-
monious assumption, justified in the relevant literature, that
walking is fundamentally a process in which the stance leg acts as
a rigid strut, causing the body centre of mass (CoM) to act like an
inverted pendulum in the frontal plane18,31,42,43 during each
footstep. Rather than fall over, the step ends when the other leg
strikes the ground and, ignoring the brief double-stance phase
seen in realistic gaits, the pedestrian switches to an inverted
pendulum on that leg. We consider a single lateral vibration
mode of the bridge, forced by the motion of N pedestrians
walking in a direction perpendicular to this vibration. Any
interaction between pedestrians other than indirectly through the
bridge motion is ignored.
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The modelling and simulation process are illustrated schema-
tically in Fig. 2. We have simulated three different variants of the
pedestrian model. Model 118,31 is the simplest, based on
linearising the inverted pendulum in the frontal plane for small
angles. It assumes the sagittal-plane dynamics is independent of
the lateral foot position and that foot transitions occur at
regularly spaced prescribed times. At each transition the new
lateral foot position is governed by a biophysically inspired
control law44 that enhances stability during horizontal ground
motion. Model 2 is a new adaptation of Model 1, in which the
timing of the foot placement alters as a kinematic consequence of
the lateral bridge motion and foot placement. Finally, Model
320,45 assumes that the step timing is determined solely by the
frontal-plane dynamics and that leg transition occurs each time
the pedestrian CoM passes through a reference position defined
as zero lateral displacement. A nonlinear feedback mechanism
enables stable limit cycle motion in the absence of ground
movement, and quasi-periodic motion on sinusoidally moving
ground.

We choose parameters based on the set of controlled
experiments on the London Millennium Bridge prior to
reopening22. Up to N= 275 pedestrians were added individually
at equally spaced time intervals Tadd. We performed our
simulations for two different choices of pedestrian addition times
Tadd= 20 s and Tadd= 10 s. These choices are consistent with the
incremental pedestrian loading tests on the London Millennium
Bridge22 and simulations conducted by Ingólfsson et al.46 in
which pedestrians were added at average intervals of 7 and 12 s,
respectively.

The pedestrian parameters are drawn from distributions (see
Table 3) and multiple simulations are run for different bridge and
mean pedestrian frequencies. The number of pedestrians at which
the vibration amplitude begins to increase rapidly is noted for
each simulation. Representative results for Tadd= 20 s are
depicted in Fig. 3, with further results in the Supplementary
Information (see Supplementary Fig. 1 for faster pedestrian
addition time Tadd= 10 s and Supplementary Fig. 2 for the worst-
case scenario of complete resonance).

For each simulation, we numerically validate our general
expression (1) for the total effective damping cT by calculating

σðiÞ1 ; σ
ðiÞ
2 ; and σðiÞ3 for each pedestrian i via (9)–(11). We also

compute the Kuramoto order parameter10 r, defined using

reiψ ¼ 1
N

∑
N

i¼1
heiφii; ð3Þ

where φi is the numerically calculated phase of the ith
pedestrian’s CoM or CoP (the distinction is made in Fig. 3), ψ
is the average phase, and 〈 ⋅ 〉 denotes time average. Note that
r= 1 implies complete synchrony, and r= 0 implies uncorrelated
motion.

The simulations in Fig. 3 show how the onset of large
amplitude bridge motion coincides with when the computed cT
becomes negative, at N=Ncrit. For Model 1, in which there is no
adjustment to the gait frequency, the bridge’s vibration amplitude
grows unrealistically without bounds. In contrast, for Model 3,
the onset of moderate amplitude motion starts a process of
increased coherence (or phase pulling15) between the pedestrians’
and bridge motion. The order parameter and inset sample
solution traces indicate that increased synchrony then occurs
between each pedestrian and the bridge. The amplitude of bridge
vibrations then saturates. Model 2, which is a more realistic
version of Model 1 for higher than moderate amplitude of bridge
motion, shows similar amplitude saturation and coherence after
instability occurs. Further simulations of Models 2 and 3 for
different frequency parameters show that instability is at
approximately N=Ncrit defined by (2), leading to a varying
amount of synchrony as the amplitude grows. Thus, the negative-
damping criterion can be understood as the cause of instability in
all cases. Also, the varying degrees of synchrony are a
consequence, not the cause of the instability.

Note that the previous analysis20 of the London Millennium
Bridge instability based on Model 3 predicted the critical crowd
size but, with some caveats, supported the synchronisation
hypothesis. However, this analysis was performed for fixed crowd
sizes such that a fixed number of pedestrians were placed on the
bridge and the system was integrated for a sufficiently long time.
Then, the crowd size was increased, and the simulations were
repeated again. The key difference between these previous
results20 and our paper is that despite the strong propensity of

Table 2 Other reported instances of lateral pedestrian-induced bridge vibrations.

Bridge Country Year Observation

Angers Bridge73 France 1850 Collapsed while a battalion of soldiers was marching across the bridge, killing 226 of them; the
bridge movement “involuntarily gave the soldier a certain cadence”

Brooklyn Bridge74 USA 1880 Swaying of catwalks during construction
Wuhan Yangtze Bridge75 China 1957
Kiev suspension bridge76 Ukraine 1958
Bosporus Bridge, Istanbul35 Turkey 1973 100,000 pedestrians on opening day caused it to sway
Auckland Harbour Bridge22 New Zealand 1975 0.67 Hz oscillation during public demonstration
Groves Bridge, Chester22 UK 1977 100m suspension bridge filled with rowing regatta spectators
Golden Gate Bridge77 USA 1987 Oscillations occurred due to a crowd of pedestrians crossing the bridge to mark the bridge’s

50th opening anniversary
NEC, Birmingham22 UK 1990 0.7 Hz oscillations of 45m bridge linking exhibition centre to railway station after major events
Expo 1998 footbridges,
Lisbon78

Portugal 1998 “Acceleration in horizontal vibrations can go over adequate limits with just a few pedestrians.”

Alexandra Bridge, Ottawa11 Canada 2000 Crowd due to firework display
Brooklyn Bridge36 USA 2003 “Packed shoulder to shoulder with pedestrians” during blackout; “feeling seasick, having to

weave as they walked”, could not keep balance if stood still.
Bosphorus Bridge, Istambul79 Turkey 2010
Bassac River Bridge80 Cambodia 2010 456 people died in stampede after panic caused by swaying of bridge filled with over 7000

pedestrians trying to reach popular water festival
Westminster Bridge,
London34

UK 2010

Brooklyn Bridge34 USA 2011
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Model 3 for synchronisation, our results demonstrate that bridge
instability occurs prior to the onset of crowd synchrony when
pedestrians are added sequentially and the crowd size gradually
increases in time, as in the controlled experiment on the London
Millennium Bridge22. The previous work17 also studied the
London Millennium Bridge instability for fixed crowd sizes. In
particular, this work used an energy-optimised pedestrian model
with a linear feedback controller to demonstrate that hetero-
geneous pedestrians incapable of synchronising even at large
crowd sizes can shake the bridge without synchronisation17. This
effect was also reported in an earlier paper by Baker28 and
described for Model 1 in Macdonald18. Remarkably, our results
indicate that pedestrians with a weak (Model 2) or strong (Model
3) propensity for synchronisation can first initiate the bridge
vibrations at a critical crowd size and then become synchronised
at larger crowd sizes when added sequentially (also see the
extreme case of identical pedestrians in Supplementary Fig. 2 in
the Supplementary Information).

Frequency dependence. A natural question is to seek to under-
stand how the negative-damping coefficient depends on bridge

and mean pedestrian stride frequencies Ω and ω, and whether it
can be enhanced or suppressed by resonance effects. Figure 4
shows the results of many ensemble runs. For each model we
show in an upper plot the computed value of σ as a function of
the ratio Ω=ω of bridge to average pedestrian frequency.

Note that Models 1 and 2 are effectively identical for small
amplitude bridge motion. For Model 1, McRobie47 derived an
exact analytic expression for σ (shown as the green curve in the
top panel of Fig. 4a). At the resonance condition where ω ¼ Ω
(represented by the yellow dot), the theory47 predicts a large
range of σ-values, depending on the relative phase between the
bridge and pedestrian. The hypotheses behind our general
calculation of σ fail precisely at this resonance (see the Supple-
mentary Information). The simulation results for Model 2
(represented by the blue dots), show features of large negative
values of σ just below Ω=ω ¼ 1 and large positive values slightly
above. These are believed to be due to the adaptation of the step
timing, in response to perturbations from bridge motion, giving
similar effects as previously found numerically for an inverted
pendulum walking on a vertically oscillating structure48 and
experimentally for subjects walking on a laterally oscillating
treadmill15.

Also observe the paucity of data in certain regions of the lower
panel of Fig. 4b and the apparent bi-modality of the data. This is
because, for Model 3, limit cycle pedestrian motion is an
emergent property of the simulations, rather than essentially an
input parameter as it is for Models 1 and 2. Also note this model
is liable to hysteresis between limit cycles of different period45.

For all three models, we find the average value of σ to be mostly
a function of the frequency ratio, being only a weak function of
the pedestrian or bridge frequencies independently. Using this
value in Eq. (2) gives the predicted critical number Ncrit of
pedestrians required to trigger an instability. The lower plots
indicate the success of this prediction, by comparing it with the
value of N at which the vibration amplitude begins to increase
rapidly in the simulations.

Also note the large spread of the model outputs for both σ and
Ncrit, especially for Model 2. Our theoretical calculations only
consider the long term averages of the effective damping
coefficient cT. This is only part of the story, because true walking
behaviour is transient and involves changes to the trajectory of
the walker’s CoM and the foot placement strategy. On stationary
ground, a walker’s CoM will oscillate laterally with a dominant
component at half the footfall frequency. Without changing the
footfall frequency, the platform motion introduces a second
frequency inducing the walker to adopt a two-frequency
quasiperiodic pattern of footfall placement (Fig. 5). Depending
on the phase of this quasiperiodic pattern, we have found that
pedestrians can show large deviations from the long term average
(see next section).

Nevertheless, for all three models, note that Ncrit is minimised not
when there is a frequency match between the pedestrian and bridge
frequencies, Ω=ω ¼ 1, but when the pedestrian frequency is less
than the bridge frequency, Ω=ω � 1:3 for Models 1 and 2 and
Ω=ω � 1:1 for Model 3. Notice the red 5th percentile curves in
Fig. 4 (top row) that indicate that negative damping can be observed
at any frequency in the considered range of frequency ratios. Note
too that there are some frequency ratios for which σ is positive. If
pedestrians walked at those frequencies, then their motion would
enhance that bridge mode’s stability rather than reduce it.

An explanation of this frequency dependence can be
summarised as being a question of timing. The argument in the
caption of Fig. 1 implicitly assumes that the bridge is moving in a
single direction during each step and that the bridge and
pedestrian stride frequencies are similar. Particular tunings of this
frequency ratio can in fact lead to a reversal of the effect in Fig. 1.

Fig. 1 Explaining the fundamental mechanism underlying the negative
damping owing to coefficient σ1. The figure contrasts the force transmitted
to the bridge by two identical pedestrians who, when they simultaneously
place their stance foot on the bridge (at the light blue and light red positions
in an absolute co-ordinate frame), have equal and opposite gaits. As they
place their feet, the lateral component of the foot force from each
pedestrian is equal and opposite, so there is no net lateral force on the
bridge. Suppose that during a time increment Δt the bridge moves to the
left, so that the blue figure’s leg decreases its angle to the vertical within the
frontal plane, whereas the red figure’s leg angle increases. Thus, during this
bridge motion, the magnitude of the lateral component of the red figure’s
lateral foot force increases whereas that of the blue figure decreases. Thus
there is, on average, a change in resultant force in the direction of the
bridge’s motion. Nevertheless, there can be large variations depending on a
pedestrian’s foot placement strategy (see Figs. 5 and 6).
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Nevertheless, over the frequency range considered, both the size
of the regions of pedestrian-induced negative damping and its
average value greatly outweigh that of positive damping.

The role of foot placement strategies. Figure 1 explains how
bridge motion breaks the symmetry of the loading applied by
mirror-imaged walkers such that long-term averages need not
equal zero. That is only part of the explanation, as it does not
consider the motion of the walkers’ centres of mass nor the
various foot placement strategies that may be adopted to maintain
balance. In principle, the foot placement as defined by Hof et al.44

is dependent on the lateral velocity of the pedestrian’s centre of
mass. However, uncertainty remains as to whether the velocity
should be defined in reference to the oscillating bridge (relative
velocity) or a stationary point against which the bridge is moving

(absolute velocity). Therefore, Fig. 5 shows results from Model 1
for both of these conditions.

The corresponding forces applied to the bridge in these three
cases are also shown in Fig. 5. Since bridge motions are small, the
forces are similar in all three cases. By taking the difference in
forces, Fig. 6 highlights the small change in the applied forces that
are the result of the bridge motion, and correlates these with
bridge velocity. The walker adopting the relative velocity control
law creates forces which are negatively correlated with bridge
velocity, leading to a positive damping effect. By contrast, the
additional forces generated by the walker adopting the absolute
velocity balance law are positively correlated with the bridge
velocity, leading to the negative damping effect which feeds
energy into the bridge.

In summary, the bridge motions cause the walkers to adjust
their foot placements which induces small quasiperiodic forces

Fig. 2 Outline of the mathematical model of pedestrian-induced lateral instability. a Simulations are run for a coupled bridge-pedestrians system with
pedestrians added sequentially at fixed time increments Tadd apart. The addition of the nth pedestrian (n= Ncrit) causes the overall damping coefficient to
become negative hence the amplitude of motion to increase rather than diminish. b Inverted pendulum model of bridge mode and pedestrian lateral
motion. Here, y is the lateral position of the pedestrian’s centre of mass (CoM), while p defines the lateral position of the centre of pressure (CoP) of the
foot, both relative to the bridge. L is the equivalent inverted pendulum length and m is the pedestrian mass. The displacement x of the bridge in a lateral
vibration mode is represented by an equivalent platform with mass M, spring constant K and damping coefficient C. ~H is the lateral component of the
pedestrian’s foot force on the bridge deck. In return, the bridge motion causes an inertia force �m€x on the pedestrian’s centre of mass. The pedestrians are
depicted as “crash test” dummies with flexible hips; however, the actual inverted pendulum model is simpler, with pendulum-like legs connecting to
the CoM.

Table 3 Default parameter values used in the simulations. Here, S.D. is the standard deviation of parameter mismatch among
pedestrians, which follows a normal distribution in all cases.

Parameter Meaning Units Default value Mismatch S.D. Source

a Auxiliary m 0.047 0 Ref. 20,45

bmin Margin of stability m 0.0157 0.002 Ref. 18

C Bridge damping Ns/m 29,251
g Acceleration of gravity m/s−2 9.81
L Effective leg length m 1.17 0.092 Ref. 31

m Pedestrian mass kg 76.9 10 Ref. 31

M Bridge mass kg 113,000 Ref. 11

pc Auxiliary m 0.063 0 Ref. 20,45

Tadd Pedestrian addition time s 20
X0 Unperturbed half step length m 0.36 Ref. 42,81

Y0 Unperturbed half step width m 0.047 Ref. 18

λ Damping due to walking s/m2 23.25 0
ω Unperturbed angular rad/s 5.655 0.1 Ref. 20,42

Stride frequency
Ω Angular bridge rad/s 6.503 Ref. 11,12

Natural frequency
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which have a component at the bridge frequency. Depending on
the balance law adopted (and the frequency of bridge motion and
other parameters), the phases of these additional forces can either
add or extract energy to/from the bridge.

Experimental evidence is limited as to which balance law is
more realistic for a walker on a moving platform, but the
laboratory experiments augmented with Virtual Reality by Bocian
et al.15 provide some evidence for the absolute velocity control
law. Walkers following either law could be present on the bridge.
Also, the energy flows vary within different regimes of the
quasiperiodic motions, such that the short-term effective
damping may vary markedly from its theoretical long-term
average value. Bridge designers should thus be aware that there
could be dangerous instances of the negative damping effect at
any bridge frequency.

This is the underlying cause of the instability of footbridges and
does not entail walkers making any change to the frequency of
their footsteps. Instead, gait widths are amplitude modulated,
introducing complicated phase relationships between foot place-
ments and bridge motions, many of which have the effect of
negative damping and feed energy into the bridge.

As bridge amplitudes grow, adjustment of footfall timing is an
additional possibility and this is included in Models 2 and 3.
Potential outcomes include the now-classical Kuramoto transi-
tion to synchronisation, as well as phase pulling phenomena

where footfalls do not fully synchronise to the bridge motions, but
spend proportionally longer at some relative phase offsets15,34.
Walkers who synchronise or exhibit phase pulling can add
differing amounts of energy to the bridge, depending how their
footfall phases relate to that of the bridge velocity. Phase
synchronisation can be triggered by bridge motions excited by
the more fundamental mechanism of amplitude-modulated gait
width, and this can lead to dangerous amplification of the bridge
motions. It may also be noted that there exist parameter regimes
where walkers synchronise at phases that lead to energy
absorption or where they synchronise with a certain phase but
the amplitude of the forcing does not grow indefinitely with the
bridge amplitude, thereby limiting the bridge response. However,
there is insufficient evidence for this to be relied upon in bridge
design.

Discussion
In conclusion, the question of what caused the instability of the
London Millennium Bridge on its opening day can be referred to
as a debate in the literature between the negative damping and
synchronisation hypotheses. The main contribution of this paper
has been to show that the view that the instability of the London
Millennium Bridge on its opening day was caused by a textbook
example of synchronisation of coupled pedestrians is wildly
inaccurate, at best misguided and if used to try to design

Fig. 3 Example simulations showing the nature of the bridge instability for each of our three models. See Methods for model details and parameter
values. (Top row): Bridge vibration amplitude as a function of number of pedestrians N. The left-hand boundary of the pink shaded portion indicates the
value Ncrit where cT crosses zero, and the blue shaded portion is where a degree of synchrony is observed. Insets show illustrative bridge x(t) (black) and a
few representative pedestrian y(t)−p(t) (coloured) oscillations over three cycles. (Middle row): Computation of the total bridge damping cT given by Eq. (1)
and the Kuramoto order parameter r given by Eq. (3) calculated for the phases of pedestrians' CoP (Models 1 and 2) and CoM (Model 3). (Bottom row):
instantaneous computed bridge and pedestrian foot placement frequencies. a Simulations of Model 1 which cannot synchronize. b Simulations of Model 2
which permits weak synchronization. c Simulations of Model 3 with strong propensity for synchronization.
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mitigation strategies in terms of frequency avoidance, potentially
dangerous.

Indeed, even when much is known about the physical prop-
erties of a bridge, knowledge of the crowd behaviour is necessarily
subject to large uncertainties, both aleatoric and epistemic. For

example, not only will there be a distribution of foot-placement
control laws amongst the individuals in any crowd, but that
distribution is not known. Despite this inevitable uncertainty, it is
still possible to make quantitative statements. A specific point is
that bridges with low natural frequencies (close to say 0.4 Hz,

Fig. 4 Average damping coefficient per pedestrian σ calculated via (35), given in the Supplement Information (top row) and the critical crowd size
Ncrit (bottom row) as a function of numerically calculated bridge and pedestrian frequencies ratio ½Ω=ω�. Simulations of Models 1 and 2 (a) and 3 (b)
indicate the range of frequency ratio ½Ω=ω� in which σ is negative so that a single pedestrian, on average, contributes to bridge instability. Each ratio of
½Ω=ω� corresponds to different combinations of Ω and ω (blue dots). Black dotted lines indicate the average of σ and Ncrit for a given ratio. The red curve
indicates the 5th percentile of the σ distribution. The green curve is the analytical expression (36) for σ (top plot) and analytical estimate (37) for Ncrit

(bottom plot), given in the Supplementary Information and calculated for Model 1 with identical pedestrians with fixed ω= 5.655 rad/s and S.D.= 0. The
magenta dot corresponds to the initial ratio ½Ω=ω� used in Fig. 3, the yellow dot corresponds to Ω=ω ¼ 1. See the Supplementary Information for the details
of the calculations.

Fig. 5 Upper panels show foot placement patterns (short black lines left foot, short blue lines right foot) for Model 1. Panel a is for a stationary
platform, while panels b and c are for a bridge oscillating at 6 mm amplitude at 0.4 Hz, with walkers adopting Hof et al.’s44 balance laws based on relative
and absolute velocity, respectively. The bridge motions induce quasiperiodic placement patterns. The walker’s centre of mass and the bridge displacements
are shown in red and green, respectively. The lower panels show the corresponding forces applied to the bridge. Walker parameters: m= 74.4 kg,
fwalk= 0.86 Hz, L= 1.2 m, b= 15.7 mm.
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which is much lower than the dominant lateral excitation fre-
quency, circa 1 Hz) would not be expected to be excited by a
crowd according to the main synchronisation hypothesis, since it
is arguably unlikely that an individual would slow the cadence of
their footfalls by a factor of 2.5 to synchronise. If that were
accepted, bridge designers could thus argue that no precautions
need be taken for low frequency bridges against the possibility of
lateral excitation phenomena, whereas the models analysed here
show that this is far from the case. Preventative measures such as
tuned mass dampers are expensive, and there are incentives for
arguing that they are not necessary; our work shows that this
would be a dangerous path to take. This paper’s demonstration of
the alternative paradigm shows that the frequency range of
concern is much wider than implied by some earlier theories, and
the inherent uncertainties make this frequency range wider yet.
Note how our scatter plots of Fig. 4 provide quantitative illus-
trations of this. Calibration of the models and inclusion of further
features such as mode shapes and possible pedestrian-to-
pedestrian interactions in dense crowds may lead to improved
guidelines for bridge design. In particular, crowd congestion can
cause footfall frequencies to enter into bands that are more likely
to trigger instability43, or human-to-human interactions may
affect footstep timing. Our asymptotic formulae are well suited
for addressing these research questions as the contribution of
social force pedestrian dynamics43 in promoting or damping
instability can be explicitly evaluated via integral quantity σ3.
These calculations are a subject of future work.

A key scientific conclusion of this paper has been to argue that
negative damping due to pedestrians’ attempts to maintain balance
is in most cases likely to be the essential cause of lateral bridge
instability. Moreover, any synchronisation is typically a con-
sequence, rather than a cause, of the instability. Indeed, in our
simulations we observed that increased synchrony, or more accu-
rately increased coherence, among pedestrians’ foot placements is
part of a secondary nonlinear adjustment to the amplitude of
vibration after the instability has been initiated. This secondary
effect in most cases causes saturation of the vibration amplitude but
can, in extreme cases, further exacerbate the instability.

These findings have been achieved through asymptotic analysis
applicable to a wide class of foot force models, and are demon-
strated using three specific models, one which cannot synchro-
nise, one that includes adaptation that permits synchronisation,
and one which is highly prone to synchronisation. Moreover, we
have conducted a comprehensive review of the literature on real
bridges that have experienced large amplitude lateral pedestrian-
induced vibrations. It is clear from this review that any direct
evidence of synchronisation is at best scant. In contrast, our
theory is fully consistent with all known observations.

Nevertheless, that the problem is subtle is something that we
have tried to emphasize. Increased coherence among pedestrian
footsteps can occur, especially if pedestrians happen to be walking
close to a natural frequency of the bridge. Indeed, previous papers
that have purported to show synchronisation as being causal for
the bridge instability have focused exclusively on that case17,49.
But even in those cases where there is significant coherence in
pedestrian behaviour as bridge amplitude grows, our simulations
suggest that negative damping can still be regarded as the trigger
of the instability. See, for example, the results of Model 3 in Fig. 3,
and the even more extreme case in Supplementary Fig. 2 in
the Supplementary Information, where negative damping pre-
cedes the onset of bridge amplitude growth and subsequent
synchronisation, upon adding pedestrians sequentially.

Our findings should enable bridge designers and other struc-
tural engineers to develop more accurate design criteria to avoid
human-induced instability of a wide range of structures. Unfor-
tunately, our results show there is no magic formula for certain
lateral frequencies to avoid when designing a bridge. The negative
damping-induced instabilities are not restricted to cases where
lateral bridge modes are close to resonance with pedestrian
walking frequencies. In truth, there is no substitute to ensuring
that there is sufficient lateral damping in the bridge design.
Nevertheless, our asymptotic formulae can at the very least pro-
vide estimates for the level of damping required, given the
expected number of pedestrians using the bridge.

Note that a negative-damping instability can be viewed
mathematically as an example of a Hopf bifurcation,

Fig. 6 Upper panels: the change in forces that are the result of the bridge motions for the walkers of Fig. 5. The bridge velocity is shown in red. Lower
panels: the correlation between the bridge velocity and the induced forces. The red lines indicate the average effective damping coefficient σ. Panel a
corresponds to panel b in Fig. 5; panel b corresponds to panel c in Fig. 5.
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characterised by a complex conjugate pair of eigenvalues of the
bridge dynamics crossing the imaginary axis50. An analogous
instability is well known in fluid-structure interaction, where it is
called flutter.

At a more general level, our results point to an alternative kind
of emergent behaviour among autonomous agents. The usual
theory of synchronisation distinguishes between cases where
there is a master conductor that all other agents follow, and where
synchrony emerges spontaneously without a leader. We have
uncovered a third possibility, that there is an underlying, albeit
nascent, collective frequency that does not become excited until
the individual agents are sufficiently active. Each agent need not
synchronise to the collective frequency, nor to another agent.
Each agent simply needs to display some positive feedback effect.
An intuitive, yet erroneous, argument might suggest that in the
absence of coherence, the feedback from all the agents would, on
average, cancel each other out. But this is not how positive
feedback works, it creates a bias that can lead to negative
damping.

This kind of emergent instability may actually be more pre-
valent in nature and society than previously thought. For exam-
ple, both in the mammalian51 and insect52 hearing systems,
single-frequency instability of an active system can occur due to
beating of tiny incoherent neuro-mechanical oscillators. In the
mammalian system, for example, the active neuro-mechanical
oscillators in question are the so-called outer hair cells. Small
heterogeneities in the properties of the tuning can cause a Hopf
bifurcation to occur leading to so-called otoacoustic emissions to
be radiated out from the ear canal in the absence of any stimulus.

Another example of this kind of instability may be in how
macroeconomic and financial systems tend to develop char-
acteristic cycles53 without there being obvious causal synchrony
at the microeconomic level. Such propensity of economic systems
made up of many uncorrelated microeconomic components with
different intrinsic properties to give rise to macro-scale boom and
bust cycles, has been modelled mathematically using a so-called
Goodwin oscillator which can be represented mechanically as a
so-called Phillips machine54. Here, the global economy is likened
to a continuum of micro-scale fluid particles. At the macro-scale,
the system goes unstable due to an analogue of fluid-structure
interaction flutter, which in this case is actually a kind of non-
smooth Hopf bifurcation.

Methods
Mathematical models. When considering possible mechanisms by which pedes-
trians could be prompted to generate synchronised loading onto the bridge, it
seems that the pedestrian–structure rather than pedestrian-pedestrian interaction is
dominant24. Visual and auditory stimuli on their own do not lead to significant
levels of spontaneous synchronisation within a group of pedestrians walking on
stationary ground55. From the perspective of functional human gait, synchroni-
sation cannot be considered as one of the fundamental qualities of locomotion,
unlike stability, which is critical56. Therefore, the primary objective of pedestrians
walking on vibrating ground is to remain balanced. In the case when medio-lateral
gait stability is challenged, this is mainly achieved by adapting the step width, and a
large body of evidence already exists supporting this notion (e.g.,57,58). In line with
this evidence, our mathematical model simply supposes that any possible move-
ment coordination between pedestrians is due solely to sensory stimuli from the
moving ground and the associated mechanical feedback.

The displacement of the lateral bridge mode x(t) is assumed to be governed by a
simple second-order equation of motion

M€x þ C _x þ Kx ¼ ∑
N

i¼1
~H
ðiÞðx; yðiÞÞ; ð4Þ

where M, C, and K are the mass, damping and stiffness coefficients, respectively, of
the bridge mode and y(i)(t) is the lateral displacement of the centre of mass of the

ith pedestrian, relative to the bridge. The forcing term ~H
ðiÞ
is the lateral component

of the ith pedestrian’s foot force on the bridge deck.
A number of models of varying complexity may be used to capture the motion

of a pedestrian in response to ground movement56–58. Here, we seek only to model
the lateral component of each pedestrian’s foot force on the bridge. To do this, we

make the simple assumption that the lateral component of the centre of mass of a
pedestrian of mass m obeys an equation of the form

m€yðiÞ þm€x ¼ � ~H
ðiÞðx; yðiÞÞ; i ¼ 1; ¼N: ð5Þ

In general, ~H
ðiÞ

is a function of exogenous variables associated with the
pedestrian’s gait, particularly the lateral motion, and will typically be a piecewise-
smooth function with abrupt changes at foot transitions. Specifically, we assume
that foot transitions occur at a sequence of times ftðiÞs g, s= 1, 2, 3,…, where

tðiÞsþ1 > tðiÞs for all s. By definition the angular pedestrian stride frequency is ½ωi� ¼
2π=½ðtðiÞsþ2 � tðiÞs Þ�; where [ ⋅ ] denotes possible adjustment due to bridge motion. For
definiteness, we assume even s corresponds to touchdown of the right foot and odd
s to touchdown of the left.

Our analysis of negative damping is applicable to any model that can be written
in the form (4) and (5). It is helpful to scale parameters and introduce
dimensionless parameters ε and ζ measuring mass and damping ratios respectively

HðiÞ ¼ ~H
ðiÞ
=m; Ω ¼

ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
; ε2 ¼ m=M; ζ ¼ C

2MΩε
: ð6Þ

Then the equations of motion can be written in the form

€x þ 2εΩζ _x þ Ω2x ¼ ε2 ∑
N

i¼1
HðiÞ; €yðiÞ þ HðiÞ ¼ �€x; i ¼ 1; ¼ ;N: ð7Þ

Note the modelling choice that the bridge’s natural damping in (7) is assumed to be
OðεÞ. This is consistent with values of bridge damping and numbers of pedestrians
N ¼ Oðε�1Þ required to trigger instability observed in practice (see
the Supplementary Information).

Treating ε as a small parameter, a lengthy, but straightforward multiple-scale
asymptotic expansion (see subsection Asymptotic derivation of negative damping
criterion) can be used to evaluate the total bridge damping as the natural damping
plus three additional terms:

cT ¼ 2εζΩþ ενðσ1 þ σ2 þ σ3Þ ¼ 2εζΩþ Nε2 ∑
N

i¼1
ðσðiÞ1 þ σðiÞ2 þ σðiÞ3 Þ; ð8Þ

with

σðiÞ1 ¼ 1
Ti

Z Ti

0

∂HðiÞ

∂ _x
dt; ð9Þ

σðiÞ2 ¼ 1
TiΩ

yðiÞs

Z Ti

0

∂HðiÞ

∂y
dt þ ΩyðiÞc

Z Ti

0

∂HðiÞ

∂ _y
dt

� �
; ð10Þ

σð3Þ3 ¼ 1
TiΩ

zðiÞs

Z Ti

0

∂HðiÞ

∂z
dt þΩzðiÞc

Z Ti

0

∂HðiÞ

∂ _z
dt

� �
: ð11Þ

Here, a subscript c means component in phase with the bridge instantaneous
displacement (c stands for cosine) and s means component in anti-phase with the
bridge velocity (s stands for sine). Also an overline means time average over many
steps. Furthermore, z(t) is the perturbation, due to the lateral motion, of the
pedestrian’s forward position relative to a constant forward speed. Because each
function H(i) is in general nonsmooth, partial derivatives should be interpreted in
the distributional sense (see the Supplementary Information).

The particular pedestrian models we use in our simulations are distinguished
only by their choice of the foot force function H(i), which we assume to take an
identical form for each pedestrian, but to have parameters that can vary between
pedestrians.

Model 1: Linearised inverted pendulum with step width control. This model was
developed by Macdonald, Bocian, and Burn18,31 and was shown to exhibit similar
features to those observed in four independent experimental studies15,16,32,33,59.
Here

HðiÞðtÞ ¼ g
L
ðpðiÞðtsÞ � yðiÞÞ; ð12Þ

with g being gravitational acceleration and L effective leg length, and p(i)(ts) is the
lateral centre of pressure of the foot placed at time ts. At the beginning of each step,
p(i)(ts) is adjusted according to the self-balancing control law determined theore-
tically and experimentally by Hof et al.44,60:

pðiÞðtsÞ ¼ yðiÞðt�s Þ þ
ffiffiffi
L
g

s
_yðiÞðt�s Þ þ κ1 _x0ðt�s Þ

� �þ ð�1Þsbmin; ð13Þ

where t�s is the time immediately before foot transition, and bmin > 0 is the margin
of stability, proportional to the natural gait width in the absence of any bridge
motion. Whether the foot placement control law depends on the velocity _yðiÞ of the
walker’s centre of mass relative to the bridge motion _x0 or the absolute velocity
_yðiÞ þ _x0 is set by the parameter κ1, with κ1= 0 or κ1= 1 corresponding to relative
or absolute velocity control laws, respectively. In this model, the walking frequency
that defines the switching times ts is given by an external clock and is not adjusted
due to bridge motion. Thus, each ωi remains constant throughout the simulation.
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Model 2: Model 1 with step-timing adaptation. We introduce adaptation to the step
time ts due to the geometric nonlinearity associated with the adjustment to the
lateral gait width. Consider a rigid, three-dimensional inverted pendulum of length

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
, where X, Y, and Z represent, respectively, displacements of

the centre of mass, relative to the centre of pressure (CoP) of the stance foot, in
longitudinal, transverse, and vertical pedestrian-centred coordinates. Suppose
Xðt�s Þ ¼ X0 þ ΔX, where (X0, Y0, Z0) is the position of the centre of mass at
touchdown of the next foot for unperturbed steady state walking. Assume that,
with perturbations from bridge motion, foot transition still occurs when Z= Z0,
then

Xðt�s Þ2 þ Yðt�s Þ2 ¼ X2
0 þ Y2

0;

where Yðt�s Þ ¼ yðiÞðt�s Þ � pðiÞðts�1Þ is the transverse position of the centre of mass,
relative to the CoP, just before touchdown, with p(i)(ts−1) from the previous foot
transition from (13). Hence, in the limit of small ΔX, we can write

ΔX ¼ 1
2X0

ðY2
0 � Yðt�s Þ2Þ: ð14Þ

Introducing the mean forward velocity

χ ¼ 2X0

π=ωi
¼ 2

π
X0ωi; ð15Þ

the perturbation to the timing of the next step is approximately Δt= ΔX/χ, hence
the time of the next step is given by

ts ¼ ts�1 þ
π

ωi
þ ΔX

χ
¼ ts�1 þ

π

ωi
1þ Y2

0 � fyðiÞðt�s Þ � pðiÞðts�1Þg
2

4X2
0

" #
:

Supplementary Movie 1 displays a pedestrian walking according to Model 2 subject
to an imposed sinusoidal bridge motion with an amplitude of 1 cm and a frequency
of 1.039 Hz close to that of the London Millennium Bridge. In Supplementary
Movie 1, the motions of the CoM and CoP of the two-legged inverted pendulum
and its 3D humanoid avatar are governed by numerically calculated y(t) and p(ts)
from Model 2. Note that the legs of the 3D humanoid avatar do not connect at the
body centre of mass, but have a finite hip width. This hip width is not in the
mathematical model. Only the CoM and CoP are modelled, with a rigid—though
not necessarily direct straight—connection between them. The legs in the
animation, though not drawn on a direct straight line between the CoM and CoP,
connecting them rigidly, and the CoM and CoP lateral positions are exactly as
found from the model.

Model 3: Rocking inverted pendulum. We have also implemented the autonomous
walking model proposed and studied by Belykh et al.20,45 that displays stable limit
cycle motion without the need for any control. Here

H ¼ λ _y2 þ g
L

a2 � ðy � pcsgnðyÞÞ2
	 
h i

_y � g
L
ðy � pcsgnðyÞÞ; ð16Þ

where, in contrast to Models 1 and 2, the lateral position of the CoP of the foot p is
a fixed margin, denoted by constant pc. Here, λ is a damping parameter, a is a
parameter that controls the amplitude and the period of the limit cycle. In the
absence of bridge motion, the amplitude and period of the limit cycle can be
calculated explicitly.45

Unlike Models 1 and 2, the times at which the system with footforce (16)
switches legs depends on the lateral motion of the centre of mass, rather than the
forward walking speed. That is, leg transition occurs whenever y crosses zero. Thus,
the walking frequency adapts in the presence of bridge motion.

Asymptotic derivation of damping criterion. Our aim is to derive a general
expression for the total bridge damping for a general model of the form (7), as a
function of the number of pedestrians. Hence, we seek to find the number of
pedestrians Ncrit required for instability.

The method we use is that of multiple scale asymptotic expansions. This is a
standard technique within applied mathematics and can be used to estimate the
amplitude of weakly nonlinear vibrations61. The basic idea is to find a balance
between the bridge’s natural damping and the ratio of a typical pedestrian mass
and the modal mass of the bridge mode of vibration in question. Parameters are
then rescaled according to a small parameter ε that measures the size of these
effects. Then, one is able to calculate the total adaptation σ to the bridge’s effective
damping from each pedestrian, averaged over many steps. Finally, one averages
over an ensemble of pedestrians to find the critical number Ncrit that are necessary
on average to reduce the effective damping to zero. We shall present an outline of
the calculation here, with the details relegated to the Supplementary Information.

In this section all frequencies are assumed to be angular frequencies in units of
radians per second. We shall discover that Ncrit ¼ Oðε�1Þ, hence it will be
convenient in what follows to write

N ¼ νε�1; where ν ¼ Oð1Þ: ð17Þ
We shall assume that the forward motion of the pedestrian’s centre of mass can

also be described by a single degree of freedom z(i). Thus the general dimensionless

model can be written in the form

i th-pedestrian lateral motion: €yðiÞ þHðiÞðx; _x; yðiÞ; _yðiÞ; zðiÞ; _zðiÞÞ ¼ �€x; ð18Þ

i th-pedestrian forward motion: €zðiÞ þ GðiÞðyðiÞ; _yðiÞ; zðiÞ; _zðiÞÞ ¼ 0; ð19Þ

single lateral bridge mode: €x þ ε2ζΩ _x þ Ω2x ¼ ε2 ∑
N

i¼1
HðiÞðx; _x; yðiÞ; _yðiÞ; zðiÞ; _zðiÞÞ:

ð20Þ
Here, G(i) is a general nonlinear function of its arguments and, like H(i), is typically
nonsmooth.

In the absence of bridge motion, we assume that the pedestrian dynamics

€yðiÞ þHðiÞð0; 0; yðiÞ; _yðiÞ; zðiÞ; _zðiÞÞ ¼ 0; €zðiÞ þ GðiÞðyðiÞ; _yðiÞ; zðiÞ; _zðiÞÞ ¼ 0

admits an asymptotically stable limit cycle with period Ti= 2π/ωi

yðiÞ ¼ yðiÞ0 ðtÞ; yðiÞ0 ðtÞ ¼ yðiÞ0 ðt þ TiÞ; zðiÞ0 ðtÞ ¼ χt þ zðiÞ0 ðt þ TiÞ;
where y0 and z0 are periodic functions of time, and χ is the average forward velocity
of the pedestrian’s centre of mass. Moreover, we suppose that

HðiÞð0; 0; yðiÞ0 ; _yðiÞ0 ; zðiÞ0 ; _zðiÞ0 Þ ¼ hðiÞ0 ðtÞ; and GðiÞðyðiÞ0 ; _yðiÞ0 ; zðiÞ0 ; _zðiÞ0 Þ ¼ gðiÞ0 ðtÞ
are Ti-periodic functions.

We begin with a technical, detuning assumption that simplifies the analysis,
namely that each pedestrian has an independent frequency ωi, and that there exists
a constant R > 0 such that

min
i≠j

jωi � ωjj>Rε; min
i

jωi �Ωj>Rε: ð21Þ
We look for a coupled solution to the system (18)–(20) as an asymptotic

expansion in ε≪ 1 of the form

x ¼ εx1ðtÞ þ ε2x2ðtÞ þ ¼ ; yðiÞ ¼ yðiÞ0 ðtÞ þ εyðiÞ1 ðtÞ þ ¼ ; zðiÞ ¼ χt þ zðiÞ0 ðtÞ þ εzðiÞ1 ðtÞ þ ¼ :

ð22Þ
Details of the computation of each term in this expansion are presented in
the Supplementary Information. We then use the well-known method of multiple
scales61 under the assumption that the free vibration of the bridge can be written in
the form

x1ðtÞ ¼ XðτÞ cosðΩt þ ϕðτÞÞ;
where τ is a slow timescale which is affected by the motion of each pedestrian. We
then consider the next-order perturbation y1(t) and z1(t) to the pedestrian motion
and feed this back into the second-order equation for the bridge motion. The
requirement that there should be no secular terms (proportional to sinðΩtÞ and
cosðΩtÞ) then gives a solvability condition for X and ϕ. The details of this process
are given in the Supplementary Information.

We finally arrive at

ϕ0 ¼ � ν

Ω
ðĥx þ κ̂y þ κ̂zÞ; ð23Þ

X0ðτÞ
X

¼ �2ζΩ� ν

Ω
ð�Ωĥ _x þ σ̂y þ σ̂zÞ; ð24Þ

where

κ̂p ¼
1
N

∑
N

i¼1

Z Ti

0
ðhðiÞp yðiÞc �ΩhðiÞ_p yðiÞs Þdt;Z Ti

0
σ̂p ¼

1
N

∑
N

i¼1
ðhðiÞp zðiÞc �Ωh

ðiÞ
_p zðiÞs Þdt

for p= y or z, and where hðiÞq is the partial derivative of h1(t) with respect to variable

q and XðτÞyðiÞs;c and XðτÞzðiÞs;c are the sinðΩt þ ϕðτÞÞ and cosðΩt þ ϕðτÞÞ components
of y1(t) and z1(t), respectively.

The right-hand sides of the Eqs. (23) and (24) describe the slow adaptation to
the frequency and damping of the bridge due to the presence of the pedestrians.
Each of these right-hand sides has three components. These represent respectively:
(I) adaptation due to direct dependence of the foot force H on the bridge motion,
neglecting any change in timing of footsteps (the terms ĥx and ĥu); (II) the
component at the bridge frequency that is present in the adjustment to the
pedestrian lateral foot placement (the terms κ̂y and σ̂y); and (III) the component at
the bridge frequency that is present in the adaptation to the pedestrian’s forward
motion (the terms κ̂z and σ̂z).

Let us examine the damping Eq. (24). Note that the term of the right-hand side
is the OðεÞ-component of the total negative damping of the bridge. That is, in the
notation of (8)

σ1 ¼ �ĥu; σ2 ¼
σ̂y
Ω

; σ3 ¼
σ̂z
Ω

:

Note that σ1 is identical to the condition derived in refs. 18,31 and expressed
analytically in ref. 47 for the negative damping contribution for Model 1. The terms
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σ2 and σ3 are other terms that should be considered at the same order for a general
foot-force model.

Numerical implementation. Parameters that characterise pedestrians walking
frequencies were chosen in a biomechanically realistic range. Bridge parameters
were chosen close to those of the London Millennium Bridge. Table 3 contains the
specific values and their sources.

Numerical simulations were performed using bespoke software written by us,
mostly in Python, with some use of MATLAB and Java. Discretisation was
performed using a Runge–Kutta method. Further details of the integrals underlying
the computation of σ1;2;3 are contained in the Supplementary Information.

Data availability
The data that support the findings of this study (essential code for reproducing all
numerical simulations) are available online at https://doi.org/10.5281/zenodo.504270662.

Code availability
Code for generating the figures and animation is also available online at https://doi.org/
10.5281/zenodo.504270662.
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