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ABSTRACT

Partial synchronization emerges in an oscillator network when the network splits into clusters of coherent and incoherent oscillators. Here,
we analyze the stability of partial synchronization in the second-order finite-dimensional Kuramoto model of heterogeneous oscillators with
inertia. Toward this goal, we develop an auxiliary system method that is based on the analysis of a two-dimensional piecewise-smooth system
whose trajectories govern oscillating dynamics of phase differences between oscillators in the coherent cluster. Through a qualitative bifurca-
tion analysis of the auxiliary system, we derive explicit bounds that relate the maximum natural frequency mismatch, inertia, and the network
size that can support stable partial synchronization. In particular, we predict threshold-like stability loss of partial synchronization caused by
increasing inertia. Our auxiliary system method is potentially applicable to cluster synchronization with multiple coherent clusters and more
complex network topology.
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Clusters of synchronized oscillators are observed in a variety of
natural and man-made networks. Yet, it has been difficult to
fully understand the conditions under which such clusters form.
Partial synchronization, in which some heterogeneous oscilla-
tors synchronize in a group while the others remain incoher-
ent, is an important example of such cluster synchronization
that could allow an analytical treatment of its stability. In this
paper, we perform such an analytical study for the Kuramoto
model with inertia. We seek to understand a complex inter-
play between oscillator heterogeneity, inertia, and the sizes of
coherent and incoherent clusters that controls the stability of
partial synchronization. While the existing methods for assess-
ing the stability of partial synchronization in Kuramoto networks
typically rely on the assumption of an infinitely large network
size, there is a lack of rigorous methods that can handle finite-
size Kuramoto networks. Here, we close this gap by developing

an auxiliary system method that effectively characterizes multi-
dimensional intra-phase and inter-cluster dynamics by means
of a two-dimensional pendulum-type auxiliary system. In par-
ticular, our method reveals a threshold-like connection between
permissible natural frequency mismatch, inertia, and partial syn-
chronization. Our results may also give an insight into the role of
inertia in the creation of a stable chimera in networks of identi-
cal oscillators which is a direct, albeit surprising analog of partial
synchronization among heterogeneous oscillators.

I. INTRODUCTION

Synchronization of oscillatory rhythms has been shown to be
critical for the functioning of neuronal, biological, and engineering
networks.1–8 Complete synchronization and cluster synchronization
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are the most notable forms of synchronized oscillatory rhythms.
The stability of complete synchronization of identical or nearly
identical oscillators heavily depends on the underlying network
topology.9–13 Cluster synchronization is observed when the network
splits into clusters of coherent oscillators but there is no synchro-
nization between the clusters.14–24 The existence of clusters of perfect
synchrony in networks of identical oscillators is determined by
intrinsic symmetries of the network.22,25 The stability of such clus-
ter synchronization14,16,17,21,24 and its persistence against oscillators’
parameter detuning18 have received a great deal of attention in the
literature.

The Kuramoto model of first-order phase oscillators with an
all-to-all coupling26,27 is the classical, analytically tractable example
of a network that can exhibit different forms of transition from total
incoherence to cluster and complete synchronization.28–35 In the case
of heterogeneous phase oscillators, the most common spatiotempo-
ral pattern that emerges on the way to complete synchronization
is partial synchronization in which some oscillators synchronize
within a cluster, whereas the remaining asynchronous oscillators
form an incoherent state.28,36,37 The extension of partial synchro-
nization to identical oscillators has led to the discovery of chimera
states in which even structurally and dynamically identical oscilla-
tors can break into two coherent and incoherent states.38–41 Origi-
nally discovered in the Kuramoto model, chimera states have been
found in other networks of excitable systems,41–46 including net-
works of mechanical oscillators,47 coupled pendula,48 pedestrians on
a wobbly bridge,49 optical systems,50 coupled chemical oscillators,51

and spatially extended continuous systems.52 Proving the stability
of chimera states even in the more analytically tractable classical
Kuramoto model is a challenging problem. Therefore, most exist-
ing studies are purely numerical, with a few exceptions of a more
rigorous analysis of chimera states in large networks53–55 and “weak”
chimeras in small networks.56,57

The second-order Kuramoto model of 2D oscillators with
inertia58 is often a better alternative to the classical first-order
Kuramoto model for describing partial synchronization and
chimera states in real-world networks of oscillators that can adjust
their natural frequencies (power grid systems are a case in point59).
Due to the presence of inertia that increases the dimensionality
of the intrinsic oscillator dynamics, cooperative dynamics of the
second-order Kuramoto model is much richer60–64 and includes
intermittent chaotic chimeras,65 inertia-induced hysteretic transi-
tions from incoherence to coherence,66 bistability of synchronous
clusters,67 solitary states,68,69 and chaotic inter-cluster dynamics.70

Partial synchronization in the second-order Kuramoto model of het-
erogeneous oscillators has been previously studied through the lens
of mean-field theory under the assumption of an infinitely large net-
work size.66 Similarly, the stability of the stronger form of partial
synchronization, two-cluster synchronization in which heteroge-
neous oscillators synchronize within two distinct clusters has been
analyzed in the second-order Kuramoto model on random graphs
in the limit of infinitely large networks and a continuous bimodal
distribution.71 This limit allowed for an effective reduction of the
stability problem to a set of a low-dimensional ordinary differen-
tial equation and two Vlasov partial differential equations.71 Back to
the study of partial synchronization in the classical heterogeneous
first-order Kuramoto model, the assumption of the continuum limit

has also enabled the use of the Ott–Antonsen ansatz to obtain exact
results on chimera-like partial synchronization.72

In this paper, we seek to relax these limits toward develop-
ing a method for proving stability of partial synchronization in the
finite-dimensional second-order Kuramoto model. Our method uti-
lizes a 2D pendulum-type piecewise-smooth system to separate the
dynamics of the coherent and incoherent clusters and bound the
oscillating phase differences between oscillators within the coher-
ent cluster. This method is a non-trivial extension of the qualitative
techniques, previously developed for Kuramoto networks,70,73 in the
direction of partial synchronization of heterogeneous Kuramoto
oscillators with inertia. We perform a detailed qualitative bifurca-
tion analysis of the auxiliary system and derive explicit bounds on
the maximum natural frequency mismatch, inertia, and the relative
size of the coherent and incoherent clusters that support stable par-
tial synchronization. In particular, our analytical study indicates the
existence of an effective lower bound for moderately large inertia
beyond which inertia does not essentially affect the stability of partial
synchronization.

The layout of this paper is as follows. In Sec. II, we introduce the
oscillator network model and give our definition of partial synchro-
nization. In Sec. III, we derive the auxiliary system and perform its
qualitative bifurcation analysis, which yields sufficient conditions on
the existence and size of a trapping region that restricts the dynam-
ics of oscillators’ phase differences. In Sec. IV, we return to partial
synchronization in the original system to formulate the main result
of the paper. In Sec. V, we provide concluding remarks and dis-
cuss potential applicability of the proposed method to other types
of cluster synchronization and network topology.

II. THE SECOND-ORDER KURAMOTO MODEL

We consider the second-order Kuramoto model of N phase
oscillators with inertia,

βϕ̈i + ϕ̇i = ωi +
K

N

N
∑

j=1

sin(ϕj − ϕi), i = 1, 2, . . . , N, (1)

where ϕi ∈ [0, 2π] is the phase of the ith oscillator, parameter β > 0
represents inertia, and parameter K > 0 is a coupling strength cor-
responding to an all-to-all network topology. The oscillators have
heterogeneous intrinsic frequencies ωi, i = 1, .., N that are chosen
from a discrete bimodal distribution. We also allow time-dependent
frequencies ωi(t) that may vary within constraints to be imposed.

We seek to identify the maximum range of frequencies ωi and
its dependence on inertia β that yield stable partial synchronization
in which first Nosc oscillators with ωi, i = 1, . . . , Nosc synchronize to
a common frequency and form coherent cluster Cosc, whereas the
remaining Nrot oscillators maintain heterogeneous frequencies and
form incoherent cluster Crot.

More precisely, stable synchronization between any pair of
oscillators i and j within coherent cluster Cosc is said to occur when

|ϕi(t) − ϕj(t)| < ε for ∀t > 0, (2)

where parameter ε ∈ (0, π] is the maximum allowed phase dif-
ference. Note that this type of synchronization allows the phase
differences to oscillate in time within the bounds constrained by
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ε. In the most general case of ε = π , which yields the maximum
phase difference of π that still prevents phase difference slips and
rotations, the synchronization is defined in its broadest sense. In
the following, we will reveal the role of ε in the stability of coher-
ent cluster Cosc. For this purpose, we shall introduce the notion of
ε-synchronization as determined in (2) for chosen ε < π . It follows
from (2) that the frequencies of oscillators within coherent cluster
Cosc become equal so that 〈ϕ̇i〉 = 〈ϕ̇j〉, where 〈· · · 〉 denotes a time
average. Similarly, a whirling phase difference between any pair of
oscillator k from incoherent cluster Crot and oscillator i from coher-
ent cluster Cosc induces desynchronization between the clusters so
that 〈ϕ̇i − ϕ̇k〉 6= 0. This definition of partial ε-synchronization will
be made more precise in Sec. III. Note that this definition does not
specify phase relations between oscillators within incoherent cluster
Crot whose rotating phases may become synchronized. As a result,
we tend to apply the term “incoherent” cluster to Crot somewhat
loosely, although all numerical simulations performed to validate
our analytical bounds and presented in Sec. IV suggest that cluster
Crot is indeed incoherent for the chosen wide range of parameters
and initial conditions.

III. AUXILIARY SYSTEM METHOD

In this section, we develop the auxiliary system method for
deriving sufficient conditions for frequency mismatches and inertia
that maintain stable partial synchronization.

A. Transformation to coupled pendulum-type

equations

Introducing new variables for phase differences between any
pair of oscillators,

θij =
ϕi − ϕj

2
, i, j = 1, . . . , N (3)

and rescaling the parameters and time, we transform system (1) into
the form

θ̈ ij + λθ̇ij = 1ij +
1

2N

N
∑

k=1

(sin 2θki − sin 2θkj), i, j = 1, . . . , N,

(4)

where the derivatives are calculated with respect to new time

τ =
√

K/βt, 1ij =
ωi − ωj

2K
represents normalized frequency dif-

ferences, and λ =
1

√
βK

is a damping parameter. Using the

sum-to-product trigonometric identity sin 2θki − sin 2θkj = 2 cos
(θki + θkj) sin(θki − θkj) and noting that θki − θkj = −θij, we rewrite
system (4) in a more convenient form

θ̈ ij + λθ̇ij = 1ij − Fij sin θij, i, j = 1, 2, . . . , N, (5)

where

Fij=
1

N

N
∑

k=1

cos(θki + θkj), i, j = 1, . . . , N (6)

is a function of time-varying phase differences.

System (5) may be viewed as a system of coupled pendulum
equations whose dynamics can be qualitatively studied in terms of
limit sets of the damped pendulum equation with constant torque.74

Toward this goal, we rewrite (5) as

θ̇ij = yij,

ẏij = −λyij + 1ij − Fij sin θij, i, j = 1, 2, . . . , N.
(7)

To analyze ε-synchronization between oscillators i and j within
coherent cluster Cosc, we consider a subset of Eq. (7) that corre-
sponds to phase differences θij, i, j = 1, .., Nosc that belong to Cosc. For
this subset of equations, we split functions Fij into two parts, corre-
sponding to the connections within coherent cluster Cosc and with
oscillators from incoherent cluster Crot,

Fij =
1

N

Nosc
∑

k=1

cos(θki + θkj) +
1

N

N
∑

k=Nosc+1

cos(θki + θkj),

i, j = 1, . . . , Nosc, (8)

where we have rearranged the oscillator indexes so that first
k = 1, .., Nosc oscillators belong to coherent cluster Cosc, whereas
the remaining k = Nosc + 1, .., N oscillators determine incoherent
cluster Crot.

Definition 1. Partial ε-synchronization in system (7) is stable
if for any time t > 0,

|θij(t)| < ε/2, for i, j = 1, . . . , Nosc,

θ̇ik(t) > 0, i = 1, . . . , Nosc, k = Nosc + 1, . . . , N.
(9)

This definition of partial ε-synchronization is convenient for
rigorous stability studies. However, it might appear too restrictive
in the broader context of partial synchronization in which whirling
oscillators within the incoherent cluster may exhibit occasional
phase slips, thereby violating the second condition in (9).

According to Definition 1, stable partial ε-synchronization
places bounds on the sums in (8) so that ε-synchronized oscilla-
tors within coherent cluster Cosc yield cos(θki + θkj) > cos ε in the
first sum, while the cosine term in the second sum corresponding
to connections of Cosc to oscillators from Crot is simply bounded via
| cos(θki + θkj)| < cos 2π = 1. Thus, the time evolution of functions
Fij is restricted by

a < Fij ≤ 1 for i, j = 1, . . . , Nosc,

|Fik| ≤ 1 for
i = 1, . . . , Nosc,
k = Nosc + 1, . . . , N,

(10)

where parameter a is defined as

a =
1

N
(Nosc cos ε − Nrot) . (11)

Therefore, by virtue of (10), the right-hand sides of ẏij in (7) for
i, j = 1, . . . , Nosc are bounded so that

A−
ij < ẏij ≤ A+

ij , (12)
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where

A−
ij =

{

1ij − λyij − a sin θij for − π ≤ θij < 0,
1ij − λyij − sin θij for 0 ≤ θij < π ,

A+
ij =

{

1ij − λyij − sin θij for − π ≤ θij < 0,
1ij − λyij − a sin θij for 0 ≤ θij < π .

(13)

To place uniform bounds on the dynamics of each system (θ̇ij, ẏij)

from (7) with i, j = 1, . . . , Nosc, we introduce the auxiliary system

θ̇ = y
ẏ = A+ for y ≥ 0,

θ̇ = y
ẏ = A− for y ≤ 0,

(14)

where

A+ =
{

1 − λy − sin θ for − π ≤ θ < 0,
1 − λy − a sin θ for 0 ≤ θ < π ,

A− =
{

−1 − λy − a sin θ for − π ≤ θ < 0,
−1 − λy − sin θ for 0 ≤ θ < π ,

(15)

and

1 = max
ij

|1ij| for i, j = 1, . . . , Nosc (16)

is the maximum normalized frequency mismatch between two oscil-
lators within coherent cluster Cosc. Note that auxiliary system (14)
is obtained from (13) by removing the subscripts and replacing
1ij ∈ [−1, 1] with bounds −1 and 1.

In the following, we will derive conditions under which tra-
jectories of auxiliary system (14) form trapping region Gtrap for

the trajectories of systems (θ̇ij, ẏij) from (7) with i, j = 1, . . . , Nosc.
The size of trapping region Gtrap will determine maximum fre-
quency mismatch 1 that allows ε-synchronization within coherent
cluster Cosc.

Note that using bounds (13)–(15), we decouple systems (θ̇ij, ẏij)

with i, j = 1, . . . , Nosc, thereby reducing the analysis of full cou-
pled system (7) to a set of independent 2D pendulum-type equa-
tions. By doing so, we will also separate the conditions for stable
ε-synchronization within Cosc from the conditions for the oscillators
from incoherent cluster Crot to maintain whirling phase differences
with cluster Cosc. The latter condition can be easily fulfilled by
choosing the minimum normalized frequency mismatch between
oscillators i from coherent cluster Cosc and k from incoherent
cluster Crot

δ = min
ik

1ik > 1 for
i = 1, . . . , Nosc,
k = Nosc + 1, . . . , N.

(17)

Indeed, as |Fik| ≤ 1, for i = 1, . . . , Nosc, k = Nosc + 1, . . . , N, the
right-hand sides of ik subsystems in (5) are always positive for δ > 1,
thereby yielding only whirling phase differences.

Therefore, to derive sufficient conditions for partial
ε-synchronization, it remains to characterize possible dynamics of
auxiliary system (14) and determine bounds on 1, λ, and ε that
guarantee ε-synchronization within Cosc.

B. Dynamics of the piecewise-smooth auxiliary

system

Auxiliary system (14) is a 2D piecewise-smooth system, which
is composed from four pendulum equations determining distinct
dynamics in each quadrant of the (θ , y)-plane. System (14) is invari-
ant under the involution (θ , y, 1) → (−θ , −y, −1). In terms of the
(θ , y) phase portrait, this odd symmetry implies that the system’s tra-
jectories for y < 0 are simply the images of the trajectories for y > 0,
obtained by reflecting the trajectories about the θ and y coordinate
axes.

When they exist, fixed points of (14) lie on discontinuity line
y = 0. Each of the four pendulum systems may have up to two fixed
points, yielding a total of four fixed points due to the symmetry.
More specifically, pendulum system A+ has two fixed points

e1

(

θe1 = arcsin
1

a
, 0

)

, s1

(

θs1 = π − arcsin
1

a
, 0

)

(18)

that lie in the region 0 ≤ θ < π . Due to the odd symmetry, system
A− also has two fixed points

e2

(

θe2 = − arcsin
1

a
, 0

)

, s2

(

θs2 = −π + arcsin
1

a
, 0

)

(19)

that belong to the region −π ≤ θ < 0. In systems A+ and A−, e1,2

are stable fixed points and s1,2 are saddles. It is important to empha-
size that when combined together in piecewise-smooth auxiliary
system (14), these four fixed points change their types and stability
according to the following properties.

Property 1. For y = +0, the vector field of auxiliary system
(14) is determined by system A+ with y = 0 and, therefore, ẏ|y=+0

< 0 along line segment Se1 ,s1 connecting points e1 and s1 and
ẏ|y=+0 > 0 along the line segment connecting points e1 and s1 − 2π .

Property 2. For y = −0, the vector field of auxiliary system
(14) is determined by system A− with y = 0 and, therefore, ẏ|y=−0

< 0 along line segment Se2 ,s2 connecting points e2 and s2 and
ẏ|y=−0 < 0 along the line segment connecting points e2 and s2 + 2π .

Property 3. Combining the mutual arrangements of the vec-
tor fields from Properties 1 and 2, one concludes that points e1

and e2 become half-stable, attracting (repelling) trajectories from
the y > 0 (y < 0) region. Line segment Se1 ,e2 between fixed points
e1 and e2 represent unstable sliding motions. Similarly, points s1 and
s2 become pseudo-saddles with the part of discontinuity line y = 0
between points s1 and s2 + 2π corresponding to unstable sliding
motions and playing the role of a separatrix [Fig. 2(b)].

The reader should not be surprised by these unusual transfor-
mations that originate from the piecewise-smooth nature of auxil-
iary system (14) as piecewise-smooth systems often exhibit dynam-
ics and bifurcations impossible in their smooth counterparts.75–77 It
should be noted that there is no strict one-to-one relation between
the dynamics of the non-smooth auxiliary system (14) and original
smooth system (1). However, piecewise-smooth heteroclinic con-
tours and limit cycles of auxiliary system (14) serve as constructive
bounds for smooth trajectories of the original system (1).

Our approach to deriving bounds on the dynamics of the orig-
inal system (7) is based on the property that the vector flow of
auxiliary system (14) is transversal to any non-trivial trajectory of
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FIG. 1. Numerically validated bifurcation diagram of auxiliary system (14) (an
illustration of Propositions 1–4). The yellow region bounded by curve Hsd and
line 1 = a corresponds to the existence of trapping region Gtrap. Curve Hsd cor-
responds to a heteroclinic bifurcation that forms heteroclinic contour L∞

sd . Line
1 = a indicates a saddle-node bifurcation at which fixed points e1 and s1 (e2
and s2) merge together and disappear. Curve Hm corresponds to a homoclinic
bifurcation of saddle s1 (and of s2). Curve Hnd displays a heteroclinic bifurca-
tion that yields heteroclinic contour L∞

nd . The red dashed line with points (b)–(f)
exemplifies the evolution of phase dynamics as a function of λ for a fixed 1.
Points (a)–(f) correspond to subplots (a)–(f) of Fig. 2. The blue solid curve is a
combined graph of functions (21) and (22) with fixed dG = ε = π/4, bounding
the parameter region (double dashed) where the numerically validated conditions
of Proposition 3 for auxiliary system (14) support partial ε-synchronization. The
blue dashed curve, calculated for original system (1), bounds the actual parame-
ter region (dashed) for partial ε-synchronization in system (1). Other parameters
are Nosc = 90, Nrot = 10 yielding a = 0.536 for ε = π/4.

each (θ̇ij, ẏij) system from (7). More precisely, the vertical compo-

nent of vector fields (θ̇ , ẏ) of systems A+ and A− is larger than that
of vector fields (θ̇ij, ẏij) in (7), except for the fixed points. Therefore,

the trajectories of the (θ̇ij, ẏij) systems cross the trajectories of system
A+ and A− in the downward and upward directions, respectively. As
a result, oscillatory limit cycles and heteroclinic contours in auxiliary
system (7) can form a trapping region for trajectories of each (θ̇ij, ẏij)

system, thereby restricting their dynamics. In the following, we will
qualitatively and quantitatively characterize the (λ, 1)-bifurcation
diagram of Fig. 1 that indicates the parameter regions in which the
trapping region exists.

Toward this goal, we apply the results from Belyustina and
Belykh78 on a qualitative bifurcation analysis of a pendulum-type
system on a cylinder that can be written in terms of auxiliary system
(14) as follows:

θ̇ = y,

ẏ = γ − λy − aF(θ),
(20)

where γ > 0 is a new parameter representing constant torque
and periodic function F(θ) = F(θ + 2π) with zero mean may
be piecewise-smooth and must satisfy the following properties:
F(θ) ∈ C1 for θ ∈ [0, 2π), where θ 6= θ (h) (h = 1, . . . , n), F(θ (h))

∈ Lip, Fθ (θ) > 0 for θ ∈ (−θ0, θ0), Fθ (θ) < 0 for θ ∈ (θ0, 2π − θ0),
F(θ0) = 1, and max |Fθ (θ)| = m. The derivative Fθ (θ) of piecewise-
smooth function of F(θ) at n singularity points θh may be defined
by any value lying between the left and right limits of Fθ (θ).
The simplest example of F(θ) that satisfies these conditions is
F(θ) = sin(θ) that turns (20) into the standard damped pendu-
lum equation with constant torque for a = 1. An important prop-
erty of piecewise-function F(θ) is that its average value 〈F(θ)〉
= 1

2π

∫ π

−π
F(θ)dθ = 0.

Theorem 5 from Belyustina and Belykh78 guarantees that the
(λ, γ )-parameter bifurcation diagram for piecewise-smooth sys-
tem (20) is qualitatively similar to that of the classical pendulum
equation with damping λ and constant torque γ . In particular, these
results prove (i) the existence of a curve γ = γHM(λ) that corre-
sponds to a homoclinic bifurcation of the saddle fixed point of (20),

and (ii) a saddle-node bifurcation at γ = a +
1 − a

2π
. In terms of

the (λ, γ )-parameter plane, the concave down graph of γ = γHM(λ)

emanates from the origin and joins horizontal line γ = a +
1 − a

2π
at some point, similar to homoclinic bifurcation curve γ = T(λ),

well approximated by67 T(λ) =
4

π
λ − 0.305λ3, which approaches

saddle-node bifurcation line γ = 1 in the classical damped pendu-
lum equation with constant torque.74

Going back to auxiliary system (14), we note that it belongs

to the general system (20), provided that γ = 1 +
1 − r

2π
. This

property is due to the fact that the average value of A+ (and of A−),

〈A+(θ)〉 =
1

2π

∫ π

−π

A+(θ) dθ

=
1

2π

[∫ 0

−π

sin θ dθ +
∫ π

0

a sin θ dθ

]

= −
1 − a

2π

is shifted from 〈F(θ)〉 by a constant (a − 1)/(2π). Thus, auxiliary
system (14) inherits the main bifurcation properties of system (20)
such that its homoclinic bifurcation curve 1 = 1Hm(λ) and saddle-
node bifurcation 1 = a are identical to the corresponding curves of

system (20), except for a vertical shift of −
1 − a

2π
(see curve Hm in

Fig. 1). While we cannot determine the exact form of homoclinic
bifurcation curve 1 = 1H(λ) and identify the corresponding bifur-
cation value λHm for a given 1, we will use the existence of this curve
as a qualitative reference for characterizing the locations of other
bifurcation curves of system (14).

C. The existence and size of a trapping region

The following assertion gives the existence condition for trap-
ping region Gtrap and supports the bifurcation parameter partition
for the dynamics of auxiliary system (14) given in Fig. 1. We define
a trapping region as a compact subset of the auxiliary’s system phase
space such that every trajectory that starts within the trapping region
remains there as the system evolves.

Proposition 1 (the existence of the trapping region). A. For
a fixed 1 < a, trapping region Gtrap (the yellow region in Fig. 2)
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FIG. 2. The existence of trapping region Gtrap (yellow region) and the evolution of its size in auxiliary system (14) (an illustration of Propositions 1 and 2). All trajectories are
calculated numerically. Phase portrait (a) corresponds to parameter region (a) in Fig. 1 and displays two globally stable rotatory limit cycles (red and blue thick lines) with their
attraction basins (light red and blue areas, respectively), yielding no trapping regions (λ = 1,1 = 1.53). Phase portraits (b)–(f) correspond to points (b)–(f) in Fig. 1 and are
calculated as a function of λ for fixed1 = 0.4. Phase portrait (b) contains no trapping region and is similar to (a), expect for the presence of half-stable fixed points e1, e2, s1,
and s2 (λ = 0.25). Phase portrait (c) corresponds to the formation of trapping region Gtrap (yellow) via a heteroclinic bifurcation at which the stable manifolds of fixed points
s1 and s2 form heteroclinic contour L∞

sd (not marked) (λ = λHsd = 0.25). This half-stable heteroclinic contour co-exists with the rotatory limit cycles preserved from (b). The
black arrow lines indicate the direction of the vector field of corresponding pendulum system (7). Phase portrait (d) displays a homoclinic bifurcation that forms homoclinic
orbit Hm (not marked) to each of fixed points s1 and s2 (λ = λHm = 0.580 077). This homoclinic orbit co-exists with a stable limit cycle bounding the trapping region (yellow)
and born as a result of the heteroclinic bifurcation in (c). Phase portrait (e) corresponds to a non-bifurcation value of λ = 0.7 that preserves the stable limit cycle Losc from
(d) but makes it shrink in the size. Notice that the homoclinic bifurcation in (d) has led to the disappearance of the rotatory limit cycles. Phase portrait (f) corresponds to the
formation of stable heteroclinic contour L∞

nd (not marked) formed by stable non-leading manifoldWn (red dashed line) of fixed point e1 starting from e2 and its odd symmetric
counterpart (blue dashed line) (λ = λHnd = 1.2271). The inset shows a zoomed-in region around e1 and displays the mutual arrangement of the stable non-leading (Wn)
and leading (Wl ) manifolds of e1 and the unstable manifold of s1 (red solid line). Black arrow lines El and En are the eigenvectors associated with eigenvalues κ± (24) of
fixed point e1. The heteroclinic contour of (f) with constant size dG defined in (21) preserves for any λ > λHnd (not shown).

exists for any λ ≥ λHsd, where λHsd < λHm is a bifurcation value cor-
responding to the formation of heteroclinic contour L∞

sd from the stable
manifolds of saddle points s1 and s2.

B. Trapping region Gtrap does not exist for 1 > a.
Proof. To prove Claim A, we depart from the phase portrait

and mutual arrangement of trajectories at the homoclinic bifurca-
tion at λHm, which are guaranteed by Theorem 5 from Belyustina
and Belykh.78 This phase portrait is determined by the existence of
a homoclinic orbit of saddle s1 and its symmetric counterpart, a
homoclinic orbit of saddle s2. Half-stable fixed points e1 and e2 are
encircled by stable oscillatory limit cycle Losc [Fig. 2(d)]. This limit
cycle is formed by two glued trajectories leaving the unstable seg-
ment of discontinuity line y = 0 between e2 and s2 for y > 0 and
between e1 and s1 for y < 0, respectively (see Properties 1 and 2).
Note that this limit cycle forms the desired trapping region Gtrap.
Due to the existence of the homoclinic orbit of saddle s1 (s2), the

trajectory of system A+ (A−) that emanates from point s2 for y > 0
(s1 for y < 0) cannot reach saddle s1 (s2) and returns to discontinuity
line y = 0 at a point θ < s1 (θ > s2).

Central to the proof of Claim A is the property that the vec-
tor field of auxiliary system (14) turns clockwise with increasing λ

since ∂(A±/y)/∂λ = −1 < 0. Therefore, the vector field originally
tangent to limit cycle Losc turns clockwise and points inside Losc

with increasing λ, thereby shrinking the limit cycle. The monotonic
clockwise turn of the vector field also provides a strict order in which
the mutual arrangements of the stable and unstable manifolds of
fixed points s1 and s2 and the stable manifolds of fixed points e1 and
e2 can evolve. Using the phase portrait at λ = λHm as a reference,
we first decrease λ to identify a bifurcation value of λ at which the
limit cycle disappears. Note that decreasing λ turns the vector field
counterclockwise, thereby (i) destroying the homoclinic orbit, (ii)
giving birth to a stable rotatory limit cycle Lrot with θ(t) ∈ [−π , π],
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and making the oscillatory limit cycle gradually grow in size until it
merges into heteroclinic contour L∞

sd , representing an infinite-period
limit cycle which is “glued” from two stable manifolds of saddles s1

and s2 at λ = λHsd [Fig. 2(c)]. This time, the trajectory of system A+

that emanates from point (s2, 0) reaches saddle s1 and becomes its
stable manifold that in turn forms the upper part of heteroclinic con-
tour L∞

sd for y > 0. Similarly, the trajectory of system A− that departs
from point (s1, 0) becomes the stable manifold of saddle s2 and com-
pletes the heteroclinic contour for y < 0. Note that further decrease
of λ < λHsd induces an additional turn of the vector field that leads
to the disappearance of heteroclinic contour L∞

sd , and, therefore, of
trapping region Gtrap [Fig. 2(b)].

To complete the proof of Claim A, we need to show that
increasing λ > λHm preserves trapping region Gtrap, although the
size of Gtrap may vary. Again, we start from λ = λHm and begin
increasing λ. This increase destroys the homoclinic orbit so that the
unstable manifold of s1 (s2) lies below (above) the stable manifold of
s1 (s2) in the region [−π , π] and, therefore, hits discontinuity line
y = 0 at a point p+ (p−) between fixed points e1 and s1 (e2 and s2)
[see Fig. 2(e)]. Points p+ and p− [not labeled in Fig. 2(e)] bound the
size of limit cycle Losc. Indeed, the existence of a stable limit cycle
is guaranteed since all trajectories of system A+ initiating from the
line segment of y = 0 between points p+ and e2 must return to the
line segment of y = 0 between points p− and e1 for y > 0 due to
Property 3. Therefore, there must exist a trajectory of system A+

that matches its symmetrical counterpart in system A− to close the
loop and form stable limit cycle Losc that yields trapping region Gtrap.
Note that half-stable fixed points e1 and e2 of auxiliary system (14)
encircled by stable limit cycle Losc may be both stable foci or sta-
ble nodes of the corresponding systems A+ and A−. Indeed, these
fixed points are stable foci at λ = λHm and turn into stable nodes
at λ = λdn > λHm corresponding to the formation of a degenerate
node (hence, the notation). The explicit value of λdn will be given
in (23). Critical to our further bifurcation transition is the mutual
arrangement between the trajectory Te2 emanating from point e2 for
y > 0 and the stronger (non-leading) stable manifold Wn of stable
node e1 of system A+. It is important to emphasize that as long as
stable limit cycle Losc exists, the trajectory Te2 terminates at it and
lies above the stable manifold Wn of e1. The weaker (leading) stable
manifold Wl always lies below the non-leading manifold Wn in the
(θ , y) plane. This arrangement will be detailed through the calcula-
tion of the corresponding eigenvectors in the proof of Proposition 3
and is shown in Fig. 2(f).

Increasing λ decreases the gap between the critical trajectory
Te2 and the non-leading stable manifold Wn, while preserving sta-
ble limit cycle Losc up to bifurcation value λ = λHnd. At this value,
the gap disappears so that trajectory Te2 and manifold Wn merge
together [Fig. 2(f)]. Similarly, their odd symmetrical counterparts of
system A−, the trajectory Te1 emanating from point (e1, 0) for y < 0
and the non-leading stable manifold of fixed point e2 join each other.
This leads to the formation of a stable heteroclinic contour between
half-stable fixed points e1 and e2 of auxiliary system (14) and the
disappearance of stable limit cycle Losc. Note that fixed points e1 and
e2 are stable nodes of systems A+ and A−, respectively, so that we
have termed this heteroclinic contour as heteroclinic “node” con-
tour L∞

nd to distinguish it from heteroclinic contour L∞
sd , formed from

two saddles s1 and s2 and depicted in Fig. 2(c).

Note that heteroclinic contour L∞
nd representing trapping zone

Gtrap is preserved for any value λ > λHnd. Indeed, increasing λ

beyond λHnd splits the trajectory Te1 and the non-leading manifold
Wn so that trajectory Te1 is located under Wn. Confined between Wn

and unstable sliding motion segment Se1 ,e2 , the trajectory Te1 always
approaches fixed point e1, thereby forming the upper part of hetero-
clinic contour L∞

nd for y > 0. Similarly, its odd symmetric image Te2

forms the lower part of L∞
nd for y < 0. This completes the proof of

Claim A.
The proof of Claim B is straightforward. Fixed points

e1, s1, e2, s2 do not exist for 1 > a and, therefore, oscillatory limit
cycles or heteroclinic contours that yield trapping regions cannot
exist. The dynamics of auxiliary system (14) is governed by two
globally stable rotatory limit cycles [Fig. 2(a)]. �

Proposition 2 (the size of trapping region Gtrap). A. For
1 < a and λ ≥ λHnd, where λHnd is a bifurcation value correspond-
ing to the formation of heteroclinic contour L∞

nd, detailed in the proof
of Proposition 1, the size of trapping region Gtrap in the θ direction is
determined by the coordinates of fixed points e1 and e2 and equals

dG = 2 arcsin
1

a
. (21)

B. For 1 < a and λHsd ≤ λ < λHnd, the size of trapping region
Gtrap is defined by

dG = f(λ, 1), (22)

where function f(λ, 1) monotonically decreases with increasing
λ ∈ [λHsd, λHnd) and monotonically increases with increasing 1

∈ [0, a), and f(λ, 0) = 0.
Proof. It follows from the proof of Proposition 1 that for

1 < a and λ ≥ λHnd trapping domain Gtrap is represented by het-
eroclinic contour L∞

nd whose size dG in the θ is the distance between
fixed points e1 and e2. Therefore, by virtue of (18) and (19),

dG = 2 arcsin
1

a
. This completes the proof of Claim A.

The proof of Claim B is based on the properties revealed in the
proof of Proposition 1 that the destruction of heteroclinic contour
L∞

nd by decreasing λ < λHnd at a fixed 1∗ < a gives birth to oscilla-
tory limit cycle Losc whose θ amplitude is larger than θe1 . Moreover,
due to the monotonically increasing counterclockwise turn of the
vector field with further decreasing λ, the amplitude of limit cycle
Losc monotonically increases until decreasing λ reaches its bifurca-
tion value λHsd at which the limit cycle ceases to exist. This indicates
that the size of trapping region dG, determined by the double θ

amplitude of limit cycle Losc, is a monotonically decreasing function
in the interval λ ∈ [λHsd, λHnd).

In contrast to increasing λ, increasing 1 monotonically turns
the vector field of auxiliary system (14) counterclockwise since
for system A+ (A−) with y > 0 (y < 0) ∂(A+/y)/∂1 = 1/y < 0
(∂(A−/y)/∂1 = −1/y > 0). Therefore, for a fixed λ∗ ∈ [λHsd, λHnd)

it makes limit cycle Losc monotonically grow in the size. Formally
introducing some function f(λ, 1) that captures the monotonic
decrease and increase of dG(λ, 1) in λ and 1, respectively, we arrive
at the statement of Claim B. �

Remark 1. While Proposition 2 provides a qualitative
description of the dependence of dG on λ and 1, an analytical
derivation of the exact form of function f(λ, 1) and the explicit
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value of λHnd is out of reach for the non-integrable auxiliary sys-
tem (14). However, analytical lower and upper bounds on λHnd

can be given (see Proposition 3). Central to our study of par-
tial ε-synchronization, the existence of function f(λ, 1) with the
properties detailed in Proposition 2 demonstrates the existence
of a threshold value of λ = λHnd and, therefore, of inertia β

beyond which increased inertia starts affecting the size of trapping
region Gtrap.

Proposition 3 (quantitative bounds). Bifurcation value λHnd

used in Proposition 2 can be bounded as follows:

λdn < λHnd < λup, where (23)

λdn = 2(a2 − 12)
1/4

and λup = 2

√

(1 + 1)/ arcsin
1

a
.

Proof. The lower bound λdn corresponds to a critical value
of λ at which fixed point e1, being a stable node of system
A+, becomes a degenerate node, prior to turning into a stable
focus. The type and stability of fixed point e1 of A+ can be
evaluated through the equation θ̈ + λθ + a sin θ = 1 that yields

the characteristic equation κ2 + λκ +
√

a2 − 12 = 0, evaluated at

θe1 = arcsin
1

a
and obtained by applying a trivial algebraic expres-

sion. The roots of the characteristic equation are

κ± = −λ/2 ±
√

λ2/4 −
√

a2 − 12, (24)

therefore, fixed point e1 of system A+ becomes a stable degen-
erate node with repeated eigenvalue κ± = −λ/2 at λ = λdn

= 2(a2 − 12)
1/4

. Equation (24) also indicates that the transition
from a stable node fixed point of A+, corresponding to λHnd to
the degenerate node and further to a stable focus is induced by
decreasing λ, thereby demonstrating that λdn < λHnd.

The upper bound λup, at which the trajectory Te2 emanating
from point e2 at y > 0 is guaranteed to approach fixed point e1

and, therefore, to form the upper part of heteroclinic contour L∞
nd

(see the proof of Proposition 1 for the details), can be derived via
a directing Lyapunov function. Let V(θ , y) = 0 represent the line l :

y = −
λ

2
(θ − θe1) which passes through fixed point e1. Its negative

slope −λ/2 was chosen to place the line between two eigenvec-
tors El = κ+(θ − θe1) and En = κ−(θ − θe1) of stable node e1, where
eigenvector En with a steeper negative slope represents the stronger
(non-leading) direction and is tangent to the non-leading stable
manifold Wn [see the inset of Fig. 2(f)]. In this way, line l is designed
to play the role of Wn in directing the trajectory Te2 to fixed point
e2. Toward this goal, we shall show that the vector field of system A+

transversely intersects line l in the downward direction so that the
trajectory Te2 is confined to reach fixed point e2. To do so, we calcu-

late the derivative of function V = y +
λ

2
(θ − θe1) along trajectories

of system A+ (15) such that V̇|V=0 = ẏ +
λ

2
θ̇ |V=0, which yields

V̇|V=0 =
{

1 − λy − sin θ + λy/2 for θ ∈ (−θe1 , 0],
1 − λy − a sin θ + λy/2 for θ ∈ [0, θe1),

(25)

where y is to be replaced with y = −λ(θ − θe1)/2. To prove that
line l : V(θ , y) = 0 is a directing Lyapunov function for trajectory
Te2 , we need to find the conditions under which V̇ < 0. Thus,
transforming (25), we set

λ2(θe1 − θ)/4 > 1 − sin θ for θ ∈ [−θe1 , 0],

λ2(θe1 − θ)/4 > 1 − a sin θ for θ ∈ [0, θe1 ].
(26)

Without attempting to solve this set of transcendental inequalities,
we derive an upper bound on λ that guarantees that inequalities
(26) are satisfied. To do so, we require the left-hand side (LHS) of
(26), λ2θe1/4, evaluated at θ = 0 to be larger than the worst case sce-
nario maximum of the right-hand sides (RHS), 1 + 1, achieved at
θ = −π . In graphical terms, this sufficient condition implies that
the line represented by the LHS with a θ-intercept at θ = θe1 crosses
the y-coordinate axis at a point that is higher than the maximum
1 + 1 of graph 1 − sin θ and, therefore, the line is located above
the graphs of the RHS function for any θ ∈ (−θe1 , θe1). This condi-

tion yields λ2 > 4(1 + 1)/θe1. Thus, replacing θe1 = arcsin
1

a
, we

conclude that for λ > λup = 2

√

(1 + 1)/ arcsin
1

a
, the vector field

of auxiliary system (14) crosses line l transversely in the downward
direction, thereby guaranteeing the presence of heteroclinic contour
L∞

nd. �

Remark 2. To explicitly express the conditions of Proposi-
tion 2 in terms of the auxiliary system’s parameters, λHnd in Claim
A (Claim B) should be replaced with the upper (lower) bound λup

(λdn) from (23).
Having characterized the properties of trapping region Gtrap of

auxiliary system (14), we shall now connect the conditions on its size
to ε-synchronization within coherent cluster Cosc of system (1).

IV. PARTIAL SYNCHRONIZATION: THE MAIN RESULT

Recall that the existence of trapping region Gtrap of auxiliary

system (14) implies that the trajectories of each system (θ̇ij, ẏij) from

(7) with i, j = 1, . . . , Nosc and initial conditions θ̇ij(0) = θ0, ẏij(0)
= y0, where (θ0, y0) ∈ Gtrap are trapped inside Gtrap for any t. While
the dynamics of auxiliary system (14) inside trapping region Gtrap

are proved to be periodic, the behavior of each system (θ̇ij, ẏij) (7)
inside Gtrap may be richer and may be chaotic. What matters in this
context is that the size of trapping domain Gtrap, dG, determined
by (21) and (22), bounds the maximum phase difference between
oscillators i and j from coherent cluster Cosc, so that θ̇ij(t) < dG, i,
j = 1, . . . , Nosc for any t. Therefore, ε-synchronization within cluster
Cosc is guaranteed to be stable when dG ≤ ε. Applying this argu-
ment to Propositions 2 and 3, we arrive at the main statement of
this paper.

Proposition 4 (sufficient conditions for partial synchro-
nization). Partial ε-synchronization in the second-order Kuramoto
system (1) is stable if the minimum normalized natural frequency
mismatch between clusters Cosc and Crot, δ > 1, where δ is defined
in (17) and
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(a) for λ > λup = 2

√

(1 + 1)/ arcsin
1

a
, where λ = 1/

√
βK

and a is defined in (11), the maximum normalized frequency mis-
match within cluster Cosc

1 < 1cr =
(

Nosc

N
cos ε −

Nrot

N

)

sin
ε

2
, (27)

where 1 is defined in (16).
(b) For

λ < λdn = 2(a2 − 12)
1/4

(28)

the maximum normalized frequency mismatch 1 < g(λ), where
g(λ) is a monotonically increasing function over λ ∈ (0, λdn) with
g(0) = 0.

Proof. In accordance with Definition 1, to prove the stability
of partial ε-synchronization, we need to show that the phase differ-
ences between oscillators from coherent cluster Cosc remain bounded
by ε, whereas the phase difference between any oscillator from Cosc

and any oscillator from incoherent cluster Crot whirls from [−π , π].
Demonstrating the later property for δ > 1 is straightforward [see
the paragraph after (17)]. The proof of the former property under
conditions of Claim A and B directly follows from Propositions
2 and 3 and Remark 2. Condition (27) for 1cr follows from (21)
solved for 1 for dG = ε and a from (11). Function 1 = g(λ) with
the monotonic dependence on λ in Claim B is a level of function
(22) with dG = ε. �

Remark 3. As 1 > 0 and ε ∈ [0, π), sufficient condition (27)

is only valid for ε <
1

2
arccos

Nrot

Nosc

, and, therefore Proposition 4 is

only applicable to Nosc > Nrot.
Remark 4. Proposition 4 is applicable to time-varying nat-

ural frequencies ωi(t), provided that inequalities (27) and (28) are

satisfied for each frequency distribution ωi(t), i = 1, . . . , N with a
given 1(t) at any time t.

Remark 5. Bound (28) suggests the existence of a threshold
value of λ and, therefore of inertia β beyond which increased iner-
tia starts playing a desynchronizing role and reduces the maximum
allowed frequency mismatch 1 for a fixed synchronization precision
parameter ε (the blue solid line in Fig. 1). Remarkably, the actual,
numerically validated dependence of 1 on λ (the blue dashed line
in Fig. 1) also indicates critical values of λ close to λdn below which
decreased λ effectively decreases 1, although this dependence is not
as sharp as the one guaranteed by sufficient condition (28).

While Proposition 4 guarantees that oscillators from cluster
Crot have whirling phases with respect to those from oscillatory clus-
ter Cosc, it does not guarantee that the oscillators within Crot remain
incoherent. However, in all of our extensive simulations reported
in Figs. 3 and 4, the rotatory phases of oscillators from Crot always
remained desynchronized. Figure 3 indicates this common case of
incoherent whirling oscillators from Crot and ε-synchronized oscil-
lators within oscillatory cluster Cosc. The parameter values used in
the simulations of Fig. 3 satisfy the conditions of Proposition 4
(Claim A) with ε = π/4 chosen to maximize the allowed frequency
mismatch 1 at 18% for a given λ. Note that the actual trapping
region for the trajectories from coherent cluster Cosc has the shape
that closely resembles the shape of the corresponding heteroclinic
contour L∞

nd in auxiliary system (14).
Finally, Fig. 4 gives broader, numerical validation of our

analytical results and shows how the required precision of
ε-synchronization within Cosc and inertia (via λ = 1/

√
βK) control

the maximum allowed natural frequency mismatch. In particular,
Fig. 4 provides quantitative support for the bounds of Proposition
4 and demonstrates that the auxilary system captures the dynam-
ics of system (1) quite well. The discrepancy between the analytical
bound for stable partial synchronization depicted by curve Hsd and

FIG. 3. Stable partial synchronization in network (1) of 100 oscillators with Nosc = 90 and Nrot = 10. (a). Representative trajectories of oscillators from coherent cluster Cosc

(blue) and from incoherent cluster Crot (red). The green strip displays the maximum phase difference ε between oscillators from cluster Cosc. The light red strip indicates
the established range of phase velocities within incoherent cluster Crot . The inset details the shape of the trapping region, determined by heteroclinic contour L

∞
nd of auxiliary

system (14) for chosen λ = 1.6 > λHnd and1 = 0.18. (b) Snapshot of the corresponding spatiotemporal pattern at time t = 100 (105 iterations with step h = 0.001). The
blue and red dots indicate the instantaneous phases of oscillators within clusters Cosc and Crot , respectively. The green strip corresponds to that in (a). Natural frequencies
ωi , i = 1, ..,Nosc and ωk , k = 1, ..,Nrot are randomly chosen from [10 − 1, 10 + 1] and [14.2 + 1, 15 + 1], respectively. Initial phases ϕi , i = 1, ..,Nosc are equally
distributed within [−π ,π ]. Initial phases ϕk , k = 1, ..,Nrot are chosen randomly within [−π ,π ]. Initial velocities within coherent cluster Cosc are set to 0.1, and within
incoherent cluster Crot are chosen randomly from [−1, 1].
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FIG. 4. Stability diagram for ε-synchronization within cluster Cosc as a function

of maximum normalized frequency mismatch 1 and damping λ = 1/
√

βK. The
color bar depicts the maximum phase difference ε of the established oscillations.
The red region represents unstable synchronization corresponding to whirling
phase differences within Cosc. Synchronization within incoherent cluster Crot is
always unstable for any pairs (λ,1) from the given range and distribution of
natural frequencies and initial conditions and, therefore, its corresponding (λ,1)

diagram would be all red and is not shown. Note a threshold-like dependence
of 1 on λ such that increasing λ beyond λ ≈ 0.75 does not effectively influ-
ence the stability of ε-synchronization within Cosc. Black curve Hsd corresponds
to the emergence of trapping regionGtrap in auxiliary system (14) and predicts the
threshold-like effect remarkably well. Network size is N = 100 with Nosc = 90
and Nrot = 10. Natural frequencies ωi , i = 1, ..,Nosc and ωk , k = 1, ..,Nrot are
randomly chosen from [10 − 1, 10 + 1] and [12.01, 14.01], respectively. All
initial phases are chosen randomly from [−π ,π ]. Initial velocities are chosen as
in Fig. 3.

the actual stability boundary originates from the construction of the
auxiliary system that required the replacement of the coupling terms
in system (1) with their upper bounds. As a result, partial synchro-
nization in system (1) becomes stable prior to the formation of the
trapping region in the auxiliary system (curve Hsd). Figure 4 also
confirms that our analytical prediction that decreasing inertia β (via
increasing λ) has a saturating effect on the maximum frequency mis-
match that still supports synchronization within coherent cluster
Cosc. The corresponding effective threshold on λ essentially indicates
when partial synchronization in second-order Kuramoto model (1)
becomes insensitive to decreased inertia and its stability conditions
are the same as in the classical, first-order Kuramoto model. Some-
what surprising, this threshold-like transition takes place around
the value of λ = 0.7, which is much lower than large values of λ

(small values of inertia) at which a perturbation theory argument
could suggest that stability conditions for partial synchronization in
the first-order and second-order Kuramoto models become nearly
identical.

V. CONCLUSIONS

Partial synchronization in the first and second-order Kuramoto
models of heterogeneous oscillators is often viewed as a proxy for

understanding the emergence of chimera states in networks of iden-
tical oscillators. In this paper, we have contributed to an improved
analytical understanding of the conditions under which partial
synchronization in the second-order finite-dimensional Kuramoto
model emerges as a function of intrinsic oscillator frequency mis-
matches, inertia, and the relative size of coherent and incoher-
ent clusters. To this end, we have developed the auxiliary system
method, which transforms the multi-dimensional Kuramoto model
to a set of coupled pendulum-type equations and then replaces their
coupling terms with a bound that decouples the equations. This
procedure yields a piecewise-smooth auxiliary system whose trajec-
tories govern oscillating dynamics of the phase differences within
the coherent cluster and rotating dynamics of the phase differences
between oscillators from the coherent cluster and oscillators from
the incoherent state. Of particular importance for the auxiliary sys-
tem is the existence of a trapping region, which is formed by either a
limit cycle or heteroclinic contours. The size of the trapping domain
controls the maximum phase difference ε between coherent oscil-
lators and yields explicit bounds that relate the maximum allowed
natural frequency mismatch and phase differences with inertia and
the size of the coherent cluster. Remarkably, these bounds have pre-
dicted threshold-like stability loss of partial synchronization with
increasing inertia. A similar saturating effect of moderate inertia
on the minimum critical coupling required for the formation of
the coherent cluster has been previously studied numerically.66 Our
results provide analytical support to this numerical study and artic-
ulate the threshold-like role of inertia on the maximum allowed
frequency mismatch via explicit analytical bounds.

Our sufficient conditions do not describe the dynamics of the
phase differences between the oscillators from the “incoherent” clus-
ter whose phases may become synchronized while rotating with
respect to the phases of the coherent cluster. We have not observed
any phase-locking within the incoherent clusters for the bimodal
frequency distribution used in our numerical stimulation. However,
choosing close natural frequencies within the incoherent cluster may
induce this intra-cluster phase-locking between the rotating phase
differences. The related limiting case of identical natural frequencies
within the incoherent state can be well captured by a partial synchro-
nization pattern with the incoherent cluster composed of only one
oscillator. This pattern represents a solitary state68,69 with one oscil-
lator’s phase rotating with respect to the rest of the network. The
bounds of Proposition 4 guarantee the stability of this solitary state
with Nrot = 1.

Similarly, by setting Nrot = 0, we obtain bounds for com-
plete ε-synchronization in the second-order Kuramoto model. In
contrast to partial synchronization in finite-size networks, ana-
lytical conditions for the stability of complete synchronization in
the finite-dimensional heterogeneous Kuramoto model with iner-
tia have been previously derived.35,79 A comparative analysis of these
conditions and our bounds applicable to complete synchronization
when Nrot = 0 is beyond the scope of this paper.

Our auxiliary system method can be applied to analytically
characterize (i) the formation of finer cluster partitions within the
coherent cluster in the presence of an incoherent state and (ii) clus-
ter synchronization with multiple coherent clusters with distinct
inter- and intra-cluster oscillatory phase dynamics. Going beyond
the all-to-all coupling studied in this paper, it can be potentially
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extended to handle more complex network topologies much in the
vein of the analysis of frequency synchronization in the second-
order Kuramoto model on a star graph.73 These problems are a
subject of future study.
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