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When three is a crowd: Chaos from clusters of Kuramoto oscillators with inertia
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Modeling cooperative dynamics using networks of phase oscillators is common practice for a wide spectrum of
biological and technological networks, ranging from neuronal populations to power grids. In this paper we study
the emergence of stable clusters of synchrony with complex intercluster dynamics in a three-population network
of identical Kuramoto oscillators with inertia. The populations have different sizes and can split into clusters
where the oscillators synchronize within a cluster, but notably, there is a phase shift between the dynamics
of the clusters. We extend our previous results on the bistability of synchronized clusters in a two-population
network [I. V. Belykh et al., Chaos 26, 094822 (2016)] and demonstrate that the addition of a third population
can induce chaotic intercluster dynamics. This effect can be captured by the old adage “two is company, three
is a crowd,” which suggests that the delicate dynamics of a romantic relationship may be destabilized by the
addition of a third party, leading to chaos. Through rigorous analysis and numerics, we demonstrate that the
intercluster phase shifts can stably coexist and exhibit different forms of chaotic behavior, including oscillatory,
rotatory, and mixed-mode oscillations. We also discuss the implications of our stability results for predicting the
emergence of chimeras and solitary states.
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I. INTRODUCTION

Patterns of synchronized activities are observed in many
natural and technological networks [1–3]. In biological sys-
tems, examples include synchronized cortical rhythms in the
central nervous systems of mammals which are crucial for
sensory perception, memory, and locomotion [4–6]; patholog-
ical neuronal synchronization, which causes epileptic seizures
and Parkinson’s tremors [7,8]; birds flying in formation and
maneuvering as one cohesive unit [9]; and synchronized gaits
of walkers on a wobbly footbridge [10–13]. In technological
systems, synchronization is required for an array of lasers to
reach high intensity levels [14–16] and for power generators
for the operation of electrical power grids [17].

The strongest form of synchronized activities is complete
synchronization of identical or nearly identical oscillators
whose emergence and stability are controlled by the un-
derlying network structure [18–21]. Cluster synchronization
emerges when the network splits into clusters of coherent
oscillators but the dynamics between the clusters remains
asynchronous [22–33]. The existence of clusters in networks
of identical oscillators is governed by network symmetries,
and possible cluster partitions can be identified by combinato-
rial methods [31–33]. The stability of cluster synchronization
[22–25,30,33] and its persistence against individual oscilla-
tors’ parameter mismatch [26] have been studied for several
general classes of oscillator networks. However, the emer-
gence and hysteretic transitions between clusters in multi-
stable oscillator networks have yet to be fully understood. The
celebrated Kuramoto model of first-order phase oscillators
[34,35] is such an example of a network capable of exhibiting

various transitions from complete incoherence to cluster and
complete synchronization [36–43]. These transitions are often
accompanied by the emergence of spatiotemporal structures
such as chimeras in which some oscillators synchronize
within a cluster whereas the others remain in incoherent states
[44–47]. While completely rigorous analysis of the stability
of chimera states in Kuramoto networks is often elusive and
most studies rely on numerical simulations, there are a select
few that put this analysis for large [48–50] and small [51,52]
networks on a more rigorous footing.

The original Kuramoto model of one-dimensional (1D)
oscillators was extended to a model of two-dimensional (2D)
phase oscillators with inertia [53]. This modification made the
2D oscillators capable of adjusting their natural frequencies
and allowed the Kuramoto second-order oscillator network
to become a more adequate model of real-world networks,
including neural, mechanical, and power grid systems [54].
As a result, networks of Kuramoto oscillators with inertia can
exhibit a rich array of dynamics, including complex synchro-
nization transitions [55–58], hysteresis [59] and bistability
of synchronous clusters [60], intermittent chaotic chimeras
[61], reentrant synchronous regimes [62], and solitary states
[63,64]. In particular, it was numerically demonstrated that
weak chimera states can appear in small networks composed
of only three Kuramoto oscillators with inertia [64]. These so-
called weak chimera states are characterized by the formation
of a synchronized two-oscillator cluster and one incoherent
oscillator which rotates at a different frequency and can ex-
hibit periodic or chaotic dynamics [64]. The smallest chimera
states in the three-node network can also be viewed as a
proxy of a two-cluster pattern in a three-group network of
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identical Kuramoto oscillators with inertia. In this setting,
the oscillators can synchronize within each group, and two
groups in turn can synchronize between each other while
leaving the dynamics of the third group incoherent. The
emergence of these and more complex clusters of synchrony
in multipopulation Kuramoto networks with inertia calls for
an analytical study to isolate the principal bifurcations and
stability mechanisms underpinning the coexistence of stable
clusters with complex, possibly chaotic dynamics. This paper
seeks to establish such an analytical insight.

In a recent paper [60], we derived analytical conditions for
the emergence and coexistence of stable synchronized clusters
in a two-population network of identical Kuramoto oscillators
with inertia. These populations have different sizes such that
complete synchronization of all oscillators is impossible. In-
stead, the oscillators can synchronize within each population
cluster while there is a phase shift between the dynamics of the
two clusters. Due to the presence of the inertia which makes
the oscillator dynamics two-dimensional, this phase shift can
oscillate, inducing a breathing cluster pattern which can stably
coexist with a cluster pattern with a constant phase shift. In
this paper, we aim at cluster dynamics of a three-population
Kuramoto network with inertia obtained by adding a third
population to the above two-population network setting from
[60]. The resultant network is a three-population network of
oscillators capable of synchronizing within each population,
thereby potentially forming three synchronized clusters.

We primarily focus on the intercluster phase dynamics,
which can exhibit various types of complex behavior and
multistability. Through rigorous analysis and numerics, we
demonstrate that the addition of the third population can
induce multistable chaotic dynamics, including those in which
the phase shift between the first and second populations os-
cillates chaotically with small amplitudes, whereas the phase
shift between the second and third populations makes large-
amplitude chaotic excursions. This effect may remind the
reader of the familiar expression about romantic relationships
“two is company, three is a crowd.” This conventional wisdom
suggests how events may unfold when such a relationship
becomes destabilized by the addition of a third party.

Our three-population network can be considered a phe-
nomenological model for describing cluster formation in
real-world oscillatory networks. Suitable real-world network
dynamics that can be captured by our model include (i) a mul-
ticommunity neural structure of the nematode Caenorhabditis
elegans in which neurons within each community form clus-
ters of synchronized electrical activity that control locomo-
tory rhythmogenesis [65,66] and (ii) animal grouping when
schooling fish align their swimming directions to split into
cooperative clusters of synchronized movements to improve
foraging success [67].

The layout of this paper is as follows. First, in Sec. II, we
present the oscillator network model and state the problem
under consideration. In Sec. III, we study limit sets and
bifurcations in a four-dimensional (4D) system of two coupled
pendulum equations which determines the existence of pos-
sible intercluster dynamics in the three-population network.
We develop an auxiliary system method to derive bounds
on partitions of parameters with permissible dynamics which
include combinations of coexisting constant, periodic, and

FIG. 1. Three-population network of M + 2N oscillators (1).
Oscillators within each group are all-to-all connected to each other
through uniform coupling μ. All oscillators in the second group of
size M are connected to all oscillators in the first and third groups of
sizes N through uniform coupling ν. There are no direct connections
between the first and third groups.

chaotically oscillating and rotating pairwise phase shifts. In
particular, we prove the existence of a homoclinic orbit of a
saddle-focus fixed point in the 4D system which satisfies the
Shilnikov criterion [68] and yields spiral chaos. In Sec. IV, we
analyze the variational equations for the stability of the three-
cluster pattern as well as of its embedded two-cluster regime
where the first and third populations become synchronized
between each other, making their phase shift zero. As in the
two-population case [60], we derive necessary and sufficient
conditions for the constant phase shifts and give bounds on the
stability of the cluster patterns with chaotically oscillating and
rotating phase shifts. We also discuss the implications of our
stability results for the stability of chimeras. Our analytical
study is supported by numerical examples which indicate that
the three-cluster pattern with chaotic phase shifts may have
a fairly large attraction basin and coexist with chimeras and
hybrid solitary-chimera states. Section V contains concluding
remarks and a discussion. Appendix A provides a nontrivial
analysis of the existence of the saddle-focus fixed point.
Appendix B gives the proof of the existence of the homoclinic
orbit and justifies the parameter space partition into regions
with distinct periodic and chaotic intercluster dynamics.

II. NETWORK MODEL

We consider the three-population network of 2D rotators
depicted in Fig. 1 and modeled by the following system:

mθ̈i + θ̇i = ω0 + 1

M + 2N

⎡
⎣μ

N∑
j=1

sin(θ j − θi − α)

+ν

M∑
j=1

sin(φ j − θi − α)

⎤
⎦,

mφ̈k + φ̇k = ω0 + 1

M + 2N

⎡
⎣ν

N∑
j=1

sin(θ j − φk − α)

+μ

M∑
j=1

sin(φ j − φk − α)

+ν

N∑
j=1

sin(ψ j − φk − α)

⎤
⎦,
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mψ̈l + ψ̇l = ω0 + 1

M + 2N

⎡
⎣ν

M∑
j=1

sin(φ j − ψl − α)

+μ

N∑
j=1

sin(ψ j − ψl − α)

⎤
⎦, (1)

where i = 1, . . . , N , k = 1, . . . , M, and l = 1, . . . , N . The
network is composed of three oscillator populations of sizes
N, M, and N. Variables θi, φk, and ψl correspond to the
phases of 2D oscillators from the first, second, and third
populations, respectively. The undirected connections within
each population are all-to-all with a uniform intragroup cou-
pling μ. The oscillators from the second (middle) group of
size M are all-to-all connected to the oscillators from the
first and third groups via a uniform intergroup coupling ν.

To isolate the effect of adding an extra population to a two-
population network, we do not directly couple the first and
third groups, thereby introducing a nonglobal structure to the
network (1). The oscillators are chosen to be identical, with
frequency ω0, phase lag α ∈ [0, π/2), and inertia m. The
model (1) is obtained from the Abrams et al. chimera model
[45,46], consisting of two groups of 1D phase oscillators
with Kuramoto-Sakaguchi coupling [36], by increasing the
dimension of the phase oscillators, adding the third group, and
making the group sizes uneven. The latter property does not
allow the network to exhibit complete synchronization, which
otherwise could have been the most dominant stable pattern.
As a result, the uneven group sizes can promote the emergence
of stable clusters.

Introducing new variables τ = μt/(M + 2N ) and β =
μm/(M + 2N ) along with a rotating frame of reference �i =
θi − ω0t + c, �k = φk − ω0t + c, and l = ψl − ω0t + c,
where c is a constant, we can rewrite the system (1) in a more
convenient form,

β�̈i + �̇i =
N∑

j=1

sin(� j −�i−α) + γ

M∑
j=1

sin(� j −�i−α),

β�̈k + �̇k = γ

N∑
j=1

sin(� j − �k − α)

+
M∑

j=1

sin(� j − �k − α)

+ γ

N∑
j=1

sin( j − �k − α),

β̈l + ̇l = γ

M∑
j=1

sin(� j − l − α)

+
N∑

j=1

sin( j − l − α), (2)

where γ = ν/μ represents the ratio between the intra- and
intergroup couplings. Without loss of generality, we assume
that the intragroup coupling μ is stronger than the intergroup
coupling ν so that γ ∈ (0, 1).

While the network (2) may exhibit various clusters of
perfect synchrony induced by additional symmetries of the
network connectivity, we will mainly focus on the dynamics
and stability of three-group cluster C�� where the oscillators
are synchronized within the three groups. The existence of this
cluster is defined by the invariant manifold (hyperplane)

C�� = {�1 = · · · = �N = �, �̇1 = · · · = �̇N = �̇,

�1 = · · · = �M = �, �̇1 = · · · = �̇M = �̇,

1 = · · · = N = , ̇1 = · · · = ̇N = ̇}.
(3)

Hereafter, we will refer to C�� as a “manifold” or a “so-
lution” interchangeably, depending on what term is more
suitable in a particular context.

Notice that the equal node degree is a necessary condition
for oscillators to form a synchronous cluster. Therefore, the
oscillators from the second group of size M may not be syn-
chronized with the oscillators from the first and third groups
of size N, whereas the latter can form a cluster. As a result, the
three-group cluster manifold C�� has an embedded invariant
two-cluster manifold,

C��� = {�1 = · · · = �N = �, �̇1 = · · · = �̇N = �̇,

�1 = · · · = �M = �, �̇1 = · · · = �̇M = �̇,

1 = · · · = N = �, ̇1 = · · · = ̇N = �̇},
(4)

which represents the largest possible cluster partition of the
network (2) with one synchronous cluster composed of all
oscillators from the first and third groups and the other formed
by all oscillators from the second group.

In the following, we will analyze the dynamics and stability
of synchronous clusters C�� and C��� and reveal the role
of the intrinsic oscillator parameters, coupling strength, and
network sizes in controlling the onset of each of the two
cluster regimes.

III. POSSIBLE INTERCLUSTER DYNAMICS

We first study the existence of possible temporal dynamics
in the three-cluster manifold C��. These dynamics are de-
scribed by the following system obtained from system (2) by
removing the indexes i, j, k:

β�̈ + �̇ = γ M sin(� − � − α) − N sin α,

β�̈ + �̇ = γ N[sin(� − � − α) + sin( − � − α)]

− M sin α,

β̈ + ̇ = γ M sin(� −  − α) − N sin α. (5)

Introducing the differences between the phases x = � −
� and z =  − �, we obtain the equations that gov-
ern the dynamics of the phase differences between the
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clusters

β ẍ + ẋ = (M − N ) sin α − γ [N sin(x − α)

+ M sin(x + α) + N sin(z − α)],

β z̈ + ż = (M − N ) sin α − γ [N sin(x − α)

+ M sin(z + α) + N sin(z − α)]. (6)

A. Transformation to coupled pendulum equations

Like in [60], we set � = (M − N ) sin α, R =
γ
√

N2 + M2 + 2MN cos 2α, and δ0 = arctan ( M−N
M+N tan α)

and use trigonometric formulas to turn the system (6) into

β ẍ + ẋ = � − R sin(x + δ0) − γ N sin(z − α),

β z̈ + ż = � − R sin(z + δ0) − γ N sin(x − α). (7)

Shifting the variables (x, z) → (x + δ0, z + δ0), setting

δ = α + δ0, and rescaling time τ = t
√

β

R , we obtain

ẍ + hẋ + sin x = ω − a sin(z − δ),

z̈ + hż + sin z = ω − a sin(x − δ), (8)

where h = 1√
βR

, ω = �
R , a = γ N

R , ẋ = dx
dτ

, and ż = dz
dτ

. Ob-
serve that (8) is a 4D system of two coupled pendulums and
therefore can exhibit complex dynamics. In some sense, each
pendulum equation of (8) may also be viewed as a periodically
driven nonlinear pendulum which is notoriously known for its
chaotic behavior [69].

B. Fixed points

Depending on the parameters, the 4D system (8) may have
up to four fixed points such that each point (x∗, z∗) corre-
sponds to a constant phase shift x∗ (z∗) between the first (third)
and second clusters. In the following, we will show that two
out of the four fixed points may be saddle foci with a positive
saddle value which can undergo a homoclinic bifurcation and
induce Shilnikov-type chaotic intercluster dynamics.

System (8) is symmetric in x and z and has an invariant
manifold x = z which corresponds to the cluster manifold
C���. The dynamics on the manifold C��� : {x = z} is de-
scribed by the system

ẍ + hẋ + sin x + a sin(x − δ) = ω,

which can be further reduced to a pendulum equation by
combining the sine terms and using a trigonometric identity
so that

ẍ + hẋ + a1 sin(x − δ1) = ω, (9)

where a1 = √
1 + a2 + 2a cos δ and δ1 = arctan a sin δ

1+a cos δ
.

Therefore, for ω < a1, the 4D system (8) has two fixed
points,

O1

(
xs = zs = arcsin

ω

a1
+ δ1

)
,

O2

(
xu = zu = π − arcsin

ω

a1
+ δ1

)
, (10)

which belong to C���. The type and stability of these fixed
points along the cluster manifold C��� are defined through

(9), whose dynamics are similar to the classical pendulum
equation with a constant torque ω [70]. Therefore, O1 (O2)
is a stable (saddle) fixed point with respect to the dynamics
restricted to C���. While the directions transversal to C���

may be unstable, depending on the parameters of system (8),
the fixed point O1 (O2) may become a saddle node (a sad-
dle). As in the classical pendulum equation [70], these fixed
points disappear via a saddle-node bifurcation in system (9)
at ω = a1.

System (8) also has two other fixed points that belong
to the three-cluster manifold C�� but lie outside the man-
ifold C��� so that x �= z. These fixed points O3(x3, z3) and
O4(x4, z4) have the coordinates

x3,4 = arctan

(
1 − a cos δ

a sin δ

)

± arccos

(
ω

√
1 + a2 − 2a cos δ

1 − a2

)
,

z3,4 = arctan

(
1 − a cos δ

a sin δ

)

∓ arccos

(
ω

√
1 + a2 − 2a cos δ

1 − a2

)
. (11)

The derivation of the fixed points’ coordinates is given in
Appendix A.

The stability of fixed points O1, O2, O3, O4 of system (8)
can be evaluated through the characteristic equation

(s2 + hs + cos x∗)(s2 + hs + cos z∗)

− a2 cos(x∗ − δ) cos(z∗ − δ) = 0, (12)

where x∗ and z∗ are the coordinates of the fixed point in ques-
tion [see (10) and (11)]. The derivation of general close-form
solutions for the fourth-order polynomial equation (12) might
require the use of symbolic computations or even be out of
reach. Here, we take a different route towards placing explicit
bounds on the parameters of system (8) which guarantee that
points O3 and O4 are saddle foci with a positive saddle value.
To do so, we set

λ = s2 + hs (13)

to turn (12) into the biquadratic equation

λ2 + (cos x∗ + cos z∗)λ + cos x∗ cos z∗

− a2 cos(x∗ − δ) cos(z∗ − δ) = 0. (14)

Its roots are

λ1,2 = 1
2 [− cos x∗ − cos z∗

±
√

(cos x∗ + cos z∗)2 + 4a2 cos(x∗ − δ) cos(z∗ − δ)].
(15)

Towards our goal of obtaining sufficient conditions that guar-
antee that points O3 and O4 are saddle foci, we assume that the
discriminant of (15) is positive. Note that this assumption can
be realized by choosing appropriate values of γ and ω which
can change x∗ and z∗ accordingly while keeping δ intact. It
follows from this assumption that λ1 > 0 and λ2 < 0. Thus,
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substituting constants (15) into (13), we obtain a quadratic
equation whose solutions are

s11,12 = −h

2
±

√
h2

4
+ λ1, s21,22 = −h

2
± i

√∣∣∣∣h2

4
+ λ2

∣∣∣∣,
(16)

where s21,22 are complex when |λ2| > h2/4. Therefore, un-
der these conditions, the fixed point O3 (O4) is a saddle
focus with the 1D unstable manifold corresponding to the

positive eigenvalue s11 = − h
2 +

√
h2

4 + λ1 and the 3D stable
manifold composed of the 2D stable focus manifold which
is determined by the complex eigenvalues s21,22 and the 1D
stable manifold defined by the negative eigenvalue s12. These
saddle foci O3 and O4 have a positive saddle value [68] σ =
Re(s21,22) + s11 > 0 if λ1 > 3

4 h2. Therefore, the saddle foci
O3 and O4 satisfy the Shilnikov criterion for spiral chaos [68]
which emerges as a result of a Shilnikov homoclinic bifurca-
tion. In the following, we will derive sufficient conditions for
the parameters of system (8) under which fixed points O3 and
O4 can undergo homoclinic bifurcations leading to chaotic
intercluster dynamics.

C. Oscillatory, rotatory, and mixed-mode phase shifts

In addition to the fixed points which, when stable, in-
duce constant intercluster phase shifts x and z, system (8)
may have three main types of nontrivial, possibly chaotic,
dynamics such as (i) oscillatory trajectories which do not
rotate around the cylinder projection (x, ẋ) or (z, ż) and are
centered around the fixed point O1, (ii) rotatory trajectories
that encircle the cylinder projection (x, ẋ) or (z, ż), similar to
the limit cycle of a rotatory type in the classical pendulum
equation (17), and (iii) mixed-mode trajectories that make
several oscillatory turns while traveling around the cylinder.
Note that this classification distinguishes between the mo-
tions along the (x, ẋ) and (z, ż) projections so each phase
shift x or z may individually exhibit oscillatory, rotatory, or
mixed-mode dynamics. As a result, the relative evolution
of x and z may be a combination of the three dynamics,
yielding oscillating-oscillating, oscillating-rotating, rotating-
rotating, mixed-mode–oscillating, or mixed-mode–rotating
phase shifts. In this classification, the term oscillating-rotating
refers to the case where the phase shift x oscillates around the
fixed point with a small amplitude, whereas the phase shift
z rotates from 0 to 2π around the cylinder. This classifica-
tion can also be extended to incorporate the coexistence of
constant and time-varying shifts. While a complete analytical
study of possible dynamics of 4D system (8) is complicated
and may be out of reach, we adapt the auxiliary system
method [71] to derive bounds that single out regions of
parameters with possible homoclinic bifurcations of the fixed
points and oscillatory, rotatory, and mixed-mode phase shifts.

Statement 1. Sufficient conditions. Consider the partition
of the (h, ω) parameter space of system (8) shown in Fig. 2.
Let T (h) denote the Tricomi homoclinic curve [72] of the
pendulum equation

ẍ + hẋ + sin x = ω, (17)

FIG. 2. Existence diagram for possible phase shift dynamics in
system (8) (an illustration of Statement 1). Region I [ω < T (h) −
a)]: Only constant or oscillating phase shifts x(t ) and z(t ). Re-
gion II (light gray): Possible coexistence of constant, oscillating,
rotating, and mixed-mode phase shifts. Homoclinic bifurcations of
fixed points O3 and O4 take place only in this region. Region III
(blue): The coexistence of the phase shifts of all three types is
guaranteed. Region IV (1 − a < ω < 1 + a): Possible coexistence of
oscillating, rotating, and phase shifts. Region V (ω > 1 + a): Only
rotating phase shifts are possible. T (h) is the Tricomi homoclinic
curve (18) of pendulum equation (17) (pink dashed line). Damping
h = 1√

βR
, where R = γ

√
N2 + M2 + 2MN cos 2α. Fixed parameters

are M = 12, N = 5, γ = 0.4, and α = π/6.

which can be approximated as in [60] by

ω = T (h) ≈
{

4
π

h − 0.305h3 for 0 < h < h∗ ≈ 1.22,

1 for h > h∗.
(18)

Then five regions of the parameter partition correspond to the
following dynamics of system (8).

(1) Region I: ω < T (h) − a. Only oscillatory trajectories
that do not encircle the cylinder projections (x, ẋ) and (z, ż)
are permissible.

(2) Region II: {ω < 1 − a}⋂{ω < T (h) + a}⋂ {ω >

T (h) − a}. Fixed points O3 and O4 of system (8) undergo ho-
moclinic bifurcations only in this region. Oscillatory, rotatory,
and mixed-mode trajectories are possible.

(3) Region III: T (h) + a < ω < 1 − a. The coexistence
of oscillatory and rotatory trajectories is guaranteed. Mixed-
mode oscillations are impossible.

(4) Region IV: 1 − a < ω < 1 + a. Trajectories of all three
types are possible, with the prevalence of rotatory and mixed-
mode phase shift trajectories.

(5) Region V: ω > 1 + a. Only rotatory trajectories that
encircle the cylinder projections (x, ẋ) and (z, ż) are possible.

Proof. The proof is given in Appendix B. �
Figure 3 relates these regions of parameters h and ω to the

original parameters of network (2). Hereafter, we choose the
phase lag α and inertia β as control parameters and fix the
group sizes N = 24 and M = 25 and the ratio between the
intra- and intergroup coupling γ = 0.4. We aim to show that
even a minimal difference between the sizes of the first (third)
group of N oscillators and the second group of M oscillators
can yield phase shift chaos. In this case, the (h, ω) diagram
of Fig. 2 typically does not contain region III as the curve
ω = T (h) + a is located above the line ω = 1 − a. Recast in

062206-5



BRISTER, BELYKH, AND BELYKH PHYSICAL REVIEW E 101, 062206 (2020)

FIG. 3. Existence diagram of Fig. 2 recast into the original
parameters α and β of system (2) for M = 25, N = 24, and γ = 0.4.
Only regions I, II, and IV are present. The red line corresponds to the
curve ω = 1 − a in Fig. 2. The inset shows the region of small values
of β where region I exists.

parameters α and β, this diagram typically maximizes the size
of regions II and IV and minimizes region I over a large range
of inertia β (see Fig. 3).

The parameter partition in Fig. 2 characterizes the regions
of parameters where different types of phase shifts are possi-
ble and where homoclinic bifurcations of O3 and O4 leading
to the emergence of chaotic dynamics take place. More specif-
ically, in region I, the phase shifts x(t ) and z(t ) may only
be constant or may periodically or chaotically oscillate with
a small amplitude. Region II corresponds to the richest dy-
namics where all three types of time-varying phase shifts are
possible, thereby allowing for oscillatory, rotatory, and mixed-
mode chaos. In this region, O3 and O4 undergo homoclinic
bifurcations, yielding Shilnikov spiral chaos. While chaotic
shift dynamics may be observed in the other regions of the
parameter partition, this spiral chaos originates from region II
due to the homoclinic bifurcations and persists beyond this
region. The dynamics in region III are similar to those in
region II, except that the coexistence of oscillating, rotating,
and mixed-mode phase shifts is guaranteed by Statement
1. Region IV represents a transition zone, where, similar
to regions II and III, all three types of time-varying phase
shifts may appear. However, the rotatory phase shifts become
more frequent as ω increases toward ω = 1 + a, finally en-
tering into region V, where only rotatory phase shifts are
possible.

To support our analytical analysis and prediction, we have
numerically studied the dynamics of phase shifts in system
(8) (see Fig. 4) and found regions of parameters which yield
chaotic mixed-mode–mixed-mode (sample point A, Fig. 5),
rotating-rotating (sample point B, Fig. 6), and rotating-
oscillating (sample point C, Fig. 7) phase shift regimes. As ex-
pected, a majority of the chaotic regions lie in region II (com-
pare Figs. 4 and 3), where homoclinic bifurcations of fixed
points O3 and O4 give birth to spiral chaos. A detailed analysis
of these homoclinic bifurcations and transitions to chaos is
beyond the scope of this paper and will be reported elsewhere.
However, we have verified the eigenvalues of fixed points O3

and O4 at sample points A, B, and C. These eigenvalues are
identical for both O3 and O4 due to the symmetries of (11)
and (12). For the parameters corresponding to sample points

FIG. 4. Regular and chaotic phase shift dynamics of system (8)
evaluated numerically as a function of parameters α and β. The
color coding corresponds to the period of a limit cycle. White
regions correspond to fixed points with a zero winding number;
light blue regions correspond to a winding number of 1 (period-1
limit cycles); dark blue regions correspond to chaotic orbits with
infinitely large winding numbers. Sample points A, with (β, α) =
(10, 397π/800); B, with (β, α) = (78.125, 437π/1600); and C,
with (β, α) = (61.5625, 27π/800), correspond to chaotic mixed-
mode–mixed-mode, rotating-rotating, and oscillating-rotating phase
shift regimes, respectively (see Figs. 5–7). The red horizontal line
corresponds to the line ω = 1 − a in Fig. 3. The region under the red
line is region II, where homoclinic bifurcations give birth to chaos.
Other parameters are as in Fig. 3.

B and C, the eigenvalues satisfy the assumption that λ1 > 0
and λ2 < 0 [see (15)] and therefore can be calculated analyt-
ically through (16). This yields the eigenvalues s11 = 0.7499,
s12 = −0.7815, and s21,22 = −0.0158 ± 0.8609i (for sam-
ple point B) and s11 = 0.9184, s21 = −0.9472, and s21,22 =
−0.0144 ± 0.9330i (for sample point C). Thus, fixed points
O3 and O4 are saddle foci with a positive saddle value σ

and have 1D unstable and 3D stable manifolds. As a result,
O3 and O4 satisfy the Shilnikov criterion [73] and offer a
possible mechanism for the emergence of different forms
of spiral chaos in system (8) and, ultimately, in the three-
group network (2). In particular, Fig. 7, corresponding to
sample point C, demonstrates the existence of a representative
spiral chaotic regime where the phase shift x(t ) between the
first and second groups of synchronized oscillators in net-
work (2) rotates chaotically between −π and π , whereas the
phase shift z(t ) oscillates chaotically within a smaller range
of z(t ) ∈ (−1.0, 1.0).

FIG. 5. Mixed-mode–mixed-mode phase shift regime corre-
sponding to point A in Fig. 4. Both x and z phase shifts are of
mixed-mode type with the prevalence of chaotic rotatory motions.
The values of x and z are projected onto a flattened cylinder where
x → (x − π ) mod (2π ) − π and z → (z − π ) mod (2π ) − π .
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FIG. 6. Rotating-rotating phase shift regime corresponding to
point B in Fig. 4. Both x and z phase shifts chaotically rotate around
the cylinder.

IV. STABILITY ANALYSIS

Having studied the existence of possible phase shift
regimes between the synchronized groups defined by the
cluster manifold C�� , we proceed with a stability analysis
which indicates what phase shifts can stably emerge in the
network.

A. Stability of the three-cluster manifold C���

To determine the conditions under which the synchronous
three-group cluster with constant, periodic, or chaotic shifts
x(t ) and z(t ) can stably emerge in the network, we lin-
earize system (2) about the synchronous cluster solution

FIG. 7. (a). Rotating-oscillating phase shift regime correspond-
ing to point C in Fig. 4. The x and z phase shifts exhibit rotatory
and oscillatory chaos, respectively. (b) Snapshot of the corresponding
three-cluster pattern in network (2) of M + 2N oscillators with
M = 25 and N = 24. The initial states are chosen on the manifold
C�� to form the corresponding three clusters where the colored
dot indicates the instantaneous phase of oscillator with index i. The
initial conditions for x(t ) and z(t ) are chosen randomly from (0,1).
The rotating phase shift between the first (red dots) and second
(green dots) clusters is governed by x(t ) and makes large chaotic
excursions between −π and π . The oscillating phase shift between
the second (green dots) and third (blue dots) clusters is driven by z(t )
and therefore oscillates between −1 and 1.

C�� : {�, �̇, �, �̇,, ̇}. This yields

βξ̈i + ξ̇i = − q1 + cos α

N∑
j=1

ξ j + γ cos(x + α)
M∑

j=1

η j,

βη̈k + η̇k = − q2ηk + cos α

M∑
j=1

η j + γ cos(x − α)
N∑

j=1

ξ j

+ γ cos(z − α)
N∑

j=1

ξ j,

βζ̈l + ζ̇l = − q3ζ� + cos α

N∑
j=1

ζ j + γ cos(z + α)
M∑

j=1

η j,

(19)

where ξi, i = 1, . . . , N ; ηk, k = 1, . . . , M; and ζl , l =
1, . . . , N are infinitesimal perturbations of the ith oscillator’s
synchronous solution �, �, , respectively, and

q1 = N cos α + γ M cos(x + α), (20a)

q2 = M cos α + γ N[cos(x − α) + cos(z − α)], (20b)

q3 = N cos α + γ M cos(z + α). (20c)

Hereafter, we go back to the original notations x = � − �

and z =  − �, which differ from the shifted variables x and
z, used in system (8) and in the remainder of Sec. III, by the
constant δ0. This abuse of notation simplifies the exposition
as x and z always denote the phase shifts between the cluster
groups. At the same time, the use of the original notations
makes the stability analysis more manageable and leads to
stability conditions which are easier to express in terms of the
original parameters of network model (2).

In a manner similar to [60], we study the transversal
stability of C�� by introducing the difference variables

si = ξi − ξi+1, i = 1, . . . , N − 1,

uk = ηk − ηk+1, k = 1, . . . , M − 1,

w� = ζ� − ζ�+1, � = 1, . . . , N − 1 (21)

and subtracting the corresponding equations in (19) to obtain

β s̈i + ṡi + q1si = 0, i = 1, . . . , N, (22a)

βük + u̇k + q2uk = 0, k = 1, . . . , M, (22b)

βẅl + ẇl + q3wl = 0, l = 1, . . . , N. (22c)

Here, the sum terms from (19) have collapsed into q1, q2,
and q3 due to the symmetry of the global intra- and intercluster
coupling, thereby decoupling Eqs. (22a)–(22c) and signifi-
cantly simplifying their stability analysis.

The linearized equations (22a)–(22c) are governed by the
phase shifts x and z through (7). Therefore, in the simple
case where xe = xs − δ0 and ze = zs − δ0 are constant and
determined by fixed point O1(xs, zs) when it exists and is
stable, the analysis of (22a)–(22c) amounts to evaluating the
signs of q1, q2, and q3 at xe, ze. Hence, the stability of (22a)–
(22c) is guaranteed iff

q1,2,3|xe,ze > 0. (23)
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This claim can be easily checked by looking at the character-
istic equations βp2 + p + q1,2,3 = 0 for the linear differential
equations (22a)–(22c) with constant coefficients. Here, q1,2,3

must be positive for the real parts of the characteristic equa-
tions to be negative.

The criterion (23) represents the necessary and sufficient
condition for the stability of the synchronous cluster solution
C�� with constant phase shifts xe and ze and can be easily
applied as long as the fixed point O1 exists for ω < a1.

In the more complex case where the phase shifts xs and
zs are time-varying, the linear equations (22a)–(22c) contain
time-dependent coefficients q1, q2, q3. Therefore, the exact
stability conditions of (22a)–(22c) can be obtained numeri-
cally only by calculating the Lyapunov exponents. However,
we manage to analytically derive sufficient conditions which
guarantee that the cluster solution C�� with even chaotic
phase shifts x(t ) and z(t ) is locally stable. This leads to the
following assertion.

Statement 2. Sufficient conditions. The cluster solution
C�� with oscillating or rotating phase shifts x(t ) and z(t )
is locally stable in the transversal direction if

√
2γ < cos α < min

{
1 − 4βγ M

4βN
,

1 − 8βγ N

4βM

}
. (24)

Proof. Since the coefficients q1(t ), q2(t ), and q3(t ) become
time-dependent when the phase shifts x(t ) and z(t ) vary in
time, the stability condition (23) for the variational equations
(22a)–(22c) is no longer sufficient. To derive such a sufficient
condition, we use the stability criterion [74] which guarantees
that a linear second-order equation with a time-varying coef-
ficient q(t )

βv̈ + v̇ + q(t )v = 0 (25)

is stable if

q(t ) > 0, (26a)

D(t ) = 1 − 4βq(t ) > 0 ∀ t, (26b)

where D(t ) is the discriminant of the characteristic equation
βp2 + p + q(t ) = 0 with the frozen time t . In other words,
this conservative criterion guarantees that the linear equation
(25) with time-varying coefficient q(t ) is stable as long as the
fixed point v = 0 is a stable node for any t > 0 and never
becomes a stable focus or a degenerate node.

Applying the criterion (26a) and (26b) to the variational
equations (20a)–(20c), we first verify the condition (26a) for
q1(t ), q2(t ), and q3(t ). To impose that conservative conditions
on q1,2,3 are positive, we consider the worst-case bounds
which minimize q1,2,3 in (20a)–(20c):

cos[x(t ) + α] = −1, cos[x(t ) − α] = −1,

cos[z(t ) − α] = −1, cos[z(t ) + α] = −1. (27)

This implies that

q1,3(t ) > 0 ∀ t if cos α > γ M/N, (28a)

q2(t ) > 0 ∀ t if cos α > 2γ N/M. (28b)

Solving the inequality in (28a) for N/M and then substitut-
ing N/M = γ / cos α into (28b), we obtain the condition that

guarantees that q1,2,3 > 0 for any t if

cos α >
√

2γ . (29)

This bound yields the left-hand side part of inequality (24).
Finally, to verify the condition (26b) for discriminants

D1,2,3(t ) to be positive for (20a)–(20c), we consider the worst-
case scenario bounds which maximize q1,2,3. These are the
conditions (27) with −1 replaced with +1. Thus, the condition
(26b) is satisfied for (20a)–(20c) for any time t > 0 if

4β(N cos α + γ M ) < 1, 4β(M cos α + 2γ N ) < 1. (30)

Solving (30) for cos α and choosing the lowest of the two
bounds yields the right-hand side part of the inequality (24).�

Remark 1. If the sizes of the cluster groups are such that
2N > M (as in the numerical examples of Figs. 3–7), then the
condition (24) becomes

√
2γ < cos α <

1 − 8βγ N

4βM
, (31)

as this right-hand side bound is always the minimum of the
two in (24).

Remark 2. The bound (24) is very conservative due to the
use of the worst-case stability conditions. Therefore, it should
be considered a proof of concept that analytically demon-
strates that the cluster solution C�� with time-varying, possi-
bly chaotic, phase shifts x(t ) and z(t ) can be stable. Moreover,
this stability condition clearly reveals a destabilizing role of
the inertia β in the stability of C�� . Indeed, increasing β

reduces the right-hand side of inequality (24) and therefore
diminishes the range of α in which the cluster solution is
stable, thereby eventually making the cluster solution unstable
for higher β [see Fig. 8 for the actual stability regions revealed
via numerical simulations and Fig. 9 for the comparison with
the conservative bound (24)].

Figure 8 demonstrates stability diagrams for synchroniza-
tion of the oscillators within each of the three groups, eval-
uated via the Kuramoto order parameter r = 1

n

∑n
j=1〈eiϕ j 〉,

calculated separately for the phases within the first (ϕ j =
� j, j = 1, . . . , N), second (ϕ j = � j, j = 1, . . . , M), and
third (ϕ j =  j, j = 1, . . . , N) groups, where 〈· · · 〉 denotes a
time average. Notice that the three-cluster solution C�� with
the mixed-mode–mixed-mode chaotic shifts depicted in Fig. 5
and corresponding to point A in the existence (Fig. 4) and
stability (Fig. 8) diagrams is unstable. This is in qualitative
agreement with the sufficient condition of Statement 2, which
predicts a general tendency of an increased phase lag param-
eter α ∈ [0, π/2) to hinder the stability of the cluster solution
via decreasing cos α in (24). In fact, point A is located in a
region of α close to π/2, where cos α is close to zero, thereby
making the stability conditions (26a) and (26b) impossible
to satisfy. At the same time, lower values of α yield the
stability of the three-cluster solution with the rotating-rotating
and rotating-oscillating chaotic phase shifts, corresponding to
points B and C, respectively.

Recall that the analytical stability conditions (26a) and
(26b) are applied to each of q1(t ), q2(t ), and q3(t ) to guaran-
tee the stability of the uncoupled variational equations (22a),
(22b), and (22c), respectively. Therefore, when the conditions
(26a) and (26b) are violated for q2 while remaining valid for
q1 and q3, the trivial fixed point of the variational equations
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FIG. 8. Numerical stability diagrams for synchronization within the (a) first, (b) second, and (c) third groups of oscillators. The color
bar indicates the Kuramoto order parameter r calculated for the oscillators’ phases within each group. The blue regions with r = 1 indicate
synchronization within the corresponding group. Points A, B,C correspond to sample points A, B,C from the existence diagram of Fig. 4.
Point A lies in the instability (red) zones of all three diagrams, rendering the cluster manifold C�� unstable. Points B and C correspond to a
stable C�� . Notice point D with α = 49π/100 and β = 475/4, which lies in the stability (blue) regions of diagrams (a) and (c) and in the
instability (red) region of diagram (b), thereby corresponding to a one-headed chimera (see Fig. 10). Initial conditions are chosen close to the
cluster manifold C�� (see the text for the details). Parameters are as in Fig. 4.

(22a)–(22c) can become a saddle. In this case, this saddle
fixed point can yield a chimera state, in which the oscilla-
tors within the first and third groups of size N may remain
synchronized [as the conditions (26a) and (26b) for q1 and
q3 are satisfied], while the oscillators from the second group
of size M form an incoherent state. The numerical stability
diagrams of Fig. 8 indicate that the instability region is the
largest for the second cluster [see Fig. 8(b)] and therefore
confirm our analytical prediction that the stability conditions
(24) are typically violated first through q2(t ) when β increases
and 2N > M, rendering the second cluster unstable. A repre-
sentative example is the point D, which lies in the stability
regions of Figs. 8(a) and 8(c) and in the instability region
of Fig. 8(b). This point corresponds to a one-headed chimera
with the “head” being an incoherent state represented by the
unstable second cluster and the “shoulders” determined by the
first and third stable clusters (see Fig. 10).

FIG. 9. Complete diagram for the stability of the three-cluster
manifold C�� from the combination of the three stability diagrams
in Fig. 8. Blue indicates regions where all three clusters are stable,
and red indicates regions where at least one cluster is unstable. The
inset demonstrates the conservative analytical condition (24), with
its left-hand side bound α = arccos

√
2γ and right-hand side bound

α = arccos 1−8βγ N
4βM plotted by the black dashed and red solid lines,

respectively.

B. Coexisting clusters and solitary-chimera states

The initial conditions for calculating the stability diagrams
in Fig. 8 were chosen close to the three-cluster solution C��

by perturbing the initial cluster state

�(0) = 0, �(0) = 0, (0) = 2,

�̇(0) = −1, �̇(0) = 0, ̇(0) = −2, (32)

with an offset εl , l = 1, 2N + M of phases �i (i = 1, . . . , N),
� j (i = 1, . . . , M), and k (k = 1, . . . , N). This offset is
spread across the network, linearly increasing from the first
oscillator in the first group with ε1 = 0.000014 to the last
oscillator in the third group with ε2N+M = � = 0.001.

To study the nonlocal stability of synchronization within
each of the three cluster groups, we numerically investigate
the corresponding basins of attraction. This is performed by
calculating the order parameter r for each cluster group, �,�,
and , as a function of the initial phase difference � (see
Fig. 11). The basins of attraction can be highly irregular
and depend on the choice of the initial cluster state. More
specifically, our simulations indicate that the rotating-rotating
chaotic phase shift regime from point B in Fig. 8 is fragile

FIG. 10. Snapshot of a one-headed chimera corresponding to
point D in Fig. 8. The oscillators from the second cluster form an
incoherent state representing the “head” of the chimera. The phases
of oscillators from the first and third clusters are synchronized and
rotate around the cylinder in unity, with y = � −  = 0.
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FIG. 11. Stability of synchronization within each of three cluster
groups, �,�, , as a function of maximum initial phase difference
�. Order parameter r is calculated separately for phases �1 · · · �N

(red dotted line), �1 · · · �M (green solid line), and 1 · · · N (blue
dashed line). (a) The attraction basin of the three-cluster solution
C�� from point B in Fig. 8 is highly irregular. The left subplot
presents a snapshot of a chimera with only oscillators within the third
group (blue) remaining fully synchronized with r = 1. The right
subplot represents a chimera with the first group (red) being the co-
herent state with r = 1. (b) Wide attraction basin of the three-cluster
solution C�� from point B. A significant increase of � up to 3π/8
yields three different chimera states (three subplots). (c) Coexistence
of two chimeras corresponding to point D from Fig. 8, at which the
cluster solution C�� is unstable. The one-headed chimera of Fig. 10
(left subplot) remains stable up to π/190. Note the emergence of
solitary states in a region of � between π/80 and 3π/160, where the
red dotted curve approaches r = 1. The initial cluster state is chosen
and perturbed as in (32). The plots are displayed after a transient time
T = 104.

and disintegrates as the initial phase difference � is ini-
tially increased, giving rise to solitary states and chimeras
[Fig. 11(a)], when the initial cluster state (32) is chosen.
Remarkably, this cluster pattern regains its stability with a
further increase in � and stays stable in a fairly large interval
starting from about � = π/8. The rotating-oscillating chaotic
phase shift regime from point C in Fig. 8 is robust and remains
stable up to the initial phase difference � = 3π/8. A further
increase of � yields three different solitary states where
only very few oscillators within one or two oscillator groups
become incoherent [Fig. 11(b)]. Figure 11(c) demonstrates
the coexistence of the one-headed chimera corresponding to
point D in Fig. 8 with a hybrid solitary-chimera state (right
subplot) where (i) the first group (red) with 3 out of 24
oscillators being out of synchrony represents a solitary state,
(ii) the second group (green) corresponds to an incoherent
state, and (iii) the third group represents a fully coherent state.
It is important to emphasize that a different choice of the
initial cluster state �(0) = 0, �(0) = 0, (0) = π, �̇(0) =
0, ̇(0) = 0, �̇(0) = 0 significantly enlarges the attraction
basin of C�� at points B and C. That is, the cluster pattern
C�� remains stable across the full range of initial phase
difference �, varying from 0 to π/2. In terms of Fig. 11,
this would imply that the order parameter r for each of the
three cluster groups would remain equal to 1 for � ∈ [0, π/2],
yielding a trivial diagram with three (red, green, and blue)
horizontal lines r = 1 that is therefore not shown.

C. Stability of the embedded two-cluster manifold

The diagrams in Figs. 8 and 9 provide plenty of insight
into the stability of synchronization within the three cluster
groups and therefore indicate when the three-cluster manifold
C�� is locally stable. However, the stability of C�� does
not necessarily imply the emergence of the corresponding
three-cluster pattern with distinct phase shifts x and z. This
is due to the fact that the cluster manifold C�� contains
the submanifold C��� [see (4)] which represents the largest
possible cluster partition of network (2) into two clusters
where the first and third groups of synchronized oscillators
form one cluster, making the phase shifts x and z equal.

In the following, we will analyze the conditions under
which the two-cluster solution C��� is stable and therefore
determine which of the two cluster patterns defined by C��

and C��� can stably appear in the network.
Like for phase shifts x and z, we introduce the phase

difference y = � −  between the phases of the synchro-
nized oscillators in the first and third cluster groups. Note
that y = z − x. As � =  on the cluster manifold C���, the
stability of solution y = 0 : {x = z} implies the stability of
C��� within the larger cluster manifold C�� .

The dynamics on the cluster manifold C��� is governed
by the equation

β ẍ + ẋ = � − γ [2N sin(x − α) + M sin(x + α)], (33)

obtained from (6) by replacing z with x. Combining the sine
terms, we obtain

β ẍ + ẋ + R1 sin(x + δ2) = �, (34)
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where R1 = γ
√

4N2 + M2 + 4MN cos 2α and δ2 =
arctan ( M−2N

M+2N tan α); the derivation of this equation is similar
to that in [60]. Equation (34) is a 2D pendulum equation
which cannot exhibit complex dynamics, so that the phase
shift x = z can only be constant or can periodically rotate
from −π to π as in the classical pendulum equation with a
constant torque [70].

The stable constant phase shift

xe = arcsin
�

R1
− δ2 (35)

is defined by a stable fixed point E1(xe) of 2D pendulum
equation (34), which corresponds to the fixed point O1(xs =
xe + δ0) of 4D system (8). Equation (34) also has a saddle
point E2(xsd ) corresponding to the phase shift

xsd = π − arcsin
�

R1
+ δ2. (36)

The rotating phase shift xc(t ) is determined by a stable limit
cycle which is born as a result of a homoclinic bifurcation
of saddle E2 (see [60] for more details on the analysis of the
phase shift dynamics in this 2D case).

To analyze the stability of cluster manifold C��� within
C�� , we derive the following equation for the difference y =
z − x:

ÿ + ẏ = γ M[sin(x + α) − sin(z + α)], (37)

obtained by subtracting the x equation from the z equation in
(6). Using a simple trigonometric identity, we obtain

ÿ + ẏ = −2γ M sin(y/2) cos(y/2 + x + α). (38)

In the limit of infinitesimal y when sin(y/2) ≈ y/2 and
cos(y/2 + x + α) ≈ cos(x + α), we turn (38) into the equa-
tion

ÿ + ẏ + γ M cos(x + α)y = 0, (39)

which determines the local stability of the origin correspond-
ing to phase shift y = 0. Note that (39) is a linear equation
with a coefficient which is governed by phase shift x that may
be constant or vary in time.

Case I: Constant phase shift xe. In this simple case, Eq. (39)
becomes a linear equation with a constant coefficient. As a
result, it is stable at fixed point E1(xe) iff

cos(xe + α) > 0, (40)

yielding the condition α < π/2 − xe. Thus, we obtain the
following necessary and sufficient condition for the local
stability of cluster solution C��� with a constant phase
shift xe:

α < αcr = π/2 − arcsin
�

R1
+ δ2, (41)

provided that � = (M − N ) sin α � R1, ensuring the exis-
tence of fixed point E1(xe).

Checking the stability condition (40) for the saddle point
E2(xsd ) with xsd defined in (36), we obtain the inequality
α < π/2 − xsd which guarantees that saddle E2(xsd ) is locally
stable in the transversal direction to C���. Substituting (36)

FIG. 12. (a) Stability diagram of the two-cluster solution C���

with y = z − x = 0. Green indicates stability regions where C���

with a constant phase shift xc = zc is stable (y = 0 is stable). Yellow
depicts regions where C��� is unstable for the chosen initial con-
ditions but the three-cluster solution C�� with time-varying shifts
x(t ) and z(t ) is stable. Brown indicates regions where both C���

and C�� are unstable. White depicts the regions where one-headed
chimeras with stable y = � −  = 0 emerge (the chimera of Fig. 10
is an example). Sample points A, B, C, and D are as in Figs. 8
and 9. Points B and C lie in the instability (yellow) regions of
y = 0. The region under the horizontal dashed line α = αcr = 1.0335
corresponds to the stability condition (41). Sample point E lies in the
stability region. The blue solid line indicates the Tricomi homoclinic
curve �/R1 = T (h1) in system (34). Initial conditions and other
parameters are as in Figs. 8 and 9. (b). Snapshot of the two-cluster
pattern with constant phase shift xe, corresponding to point E .

into this inequality yields α < xe − π/2, which becomes the
following transversal stability condition for saddle E2(xsd ):

α < α∗ = −π/2 + arcsin
�

R1
− δ2 = −αcr . (42)

Comparing (41) and (42), we conclude that two fixed points
E1(xe) and E2(xsd ) cannot be stable simultaneously, so that the
transversal stability of point E1(xe) guarantees the transversal
instability of saddle E2(xsd ) on cluster manifold C���. This
property provides an escape mechanism by which trajectories
close to saddle E2(xsd ) can leave C���, while staying on the
larger-dimensional manifold C�� when the latter is stable.
This leads to the bistability of two cluster patterns which
is indeed observed in the network [see Fig. 12(a)]. Notice
that the initial conditions used for generating the stability
diagrams in Figs. 8 and 9 yield the instability of the two-
cluster solution C��� with a time-varying phase shift at points
B and C [Fig. 12(a)]. However, the analytical condition (41)
(red horizontal dashed line) guarantees that the two-cluster
solution C��� with a constant phase shift xe = ze is locally
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stable at points B and C. This is in perfect agreement with the
above stability argument and indicates the bistability of the
coexisting three-cluster solution C�� with the chaotic shifts
(see Figs. 6 and 7) and the two-cluster pattern C��� with the
constant phase shift xe = ze. We have numerically verified that
the attraction basin of this two-cluster solution is significantly
smaller than that of the three-cluster solution with the chaotic
phase shifts (not shown). This bistability is present in a large
region of parameters (the yellow region under the red dashed
line) and ceases to exist for smaller values of parameter α (the
green region). Sample point E corresponds to the two-cluster
solution C��� with a constant phase shift [Fig. 12(b)] which
remains stable as guaranteed by the stability condition (41),
whereas the three-cluster solution becomes unstable.

A comparison of the stability diagram in Fig. 12(a) with
the existence diagram in Fig. 3 suggests that the three-cluster
pattern defined by C�� with constant phase shifts x(t ) �= z(t )
does not stably appear in the network, at least for the chosen
initial conditions. To verify this claim, one should notice that
the existence region of C�� with constant phase shifts x(t ) �=
z(t ) (the highly irregular white region in Fig. 3) coincides with
the stability region for the two-cluster pattern C��� with a
constant shift xe = ze [the green region in Fig. 12(a)]. As a
result, this three-cluster pattern becomes transient and even-
tually transforms into the two-cluster pattern with a constant
shift.

Case II: Rotating phase shift xc(t ). A stable limit cycle
xc(t ) exists in the pendulum system (34) when �/R1 > T (h1),
where T (h1) is the Tricomi homoclinic curve (18) with h1 =
1/

√
βR1. Since xc(t ) periodically varies from −π to π , the

factor cos(x + α) in (39) oscillates between positive and neg-
ative numbers. Therefore, the stability condition cos[xc(t ) +
α] > 0 may be satisfied only on average, thereby preventing
a general analytical analysis and requiring the use of nu-
merical simulations. However, we manage to approximately
estimate the stability of cos[xc(t ) + α] > 0 in a particular
case where parameters β and α are chosen to be slightly
above the Tricomi homoclinic curve �/R1 = T (h1) [the blue
solid line in Fig. 12(a)]. Here, the stable limit cycle xc(t )
inherits the shape of the homoclinic orbit of E2(xsd ) from
which it was born. Therefore, the limit cycle spends most of
the time in the vicinity of saddle E2(xsd ) with the exception
of a comparably short time of switching from xsd to xsd + 2π ,
so that xc(t ) ≈ xsd . Therefore, the condition for its transversal
stability can be approximated as follows:

cos[xc(t ) + α] ≈ cos(xsd + α) > 0, (43)

which coincides with condition (42) for the transversal stabil-
ity of saddle E2(xsd ). This implies that the stability condition
(43) cannot be satisfied as long as the two-cluster solution
C��� with a constant phase shift xe is stable [see (41) and
(42)]. Hence, we can conclude that the two-cluster pattern
C��� with a rotating phase shift xc(t ) = zc(t ) is unstable
in a parameter region slightly above the Tricomi homoclinic
curve �/R1 = T (h1) and below the stability line α = αcr (red
dashed line). Sample point B is located in this parameter
region; our numerical simulations confirm that the two-cluster
pattern C��� with a time-varying shift xc(t ) is unstable at
point B, thereby preserving the bistability of the three-cluster

pattern C�� with a chaotic rotating-rotating phase shift and
the two-cluster pattern C�� with a constant phase shift.

V. CONCLUSIONS AND DISCUSSION

The classical Kuramoto model of coupled first-order phase
oscillators is known to exhibit various forms of spatiotempo-
ral chaotic behavior, including phase chaos [43], mean-field
chaotic dynamics in infinite [38] and finite-size networks
[75,76], chaotic weak chimeras [64,77], and chaotic transients
[78]. The emergence of chaos in the macroscopic dynamics of
the Kuramoto model is traditionally attributed to oscillators’
heterogeneity (see [38,79] and references therein). However,
it was also shown that even symmetric systems of identical os-
cillators can induce chaotic dynamics in small-size Kuramoto
networks of two populations [75,76].

In this paper, we have revealed and carefully analyzed a
different form of chaotic behavior such as chaotic intercluster
phase dynamics in a three-group network of identical second-
order Kuramoto oscillators with inertia. The groups have
different sizes and can split into clusters where the oscilla-
tors synchronize within a cluster while there is a pairwise
phase shift between the dynamics of the clusters. Due to the
presence of inertia, which increases the dimensionality of the
oscillator dynamics, these phase shifts can exhibit different
forms of chaotic behavior, including oscillatory, rotatory, and
mixed-mode oscillations. We demonstrated that the phase
shift dynamics is governed by a 4D system of two nonlinearly
coupled driven pendulums. We have applied an auxiliary
system approach to analyzing possible solutions of the 4D
system and derived bounds on parameter partitions that sup-
port the coexistence of different chaotic intercluster dynamics.
A representative example of these dynamics is a regime in
which the phase shift between the first and second groups of
oscillators chaotically oscillates within a small phase range,
while the phase shift between the second and third groups
chaotically rotates from −π to π . The bounds that separate
the parameter regions of oscillatory and rotatory dynamics are
explicit in the parameters of the network model. Therefore,
they clearly highlight possible routes of transitions between
the chaotic dynamics which can be induced by varying only
one control parameter such as phase lag α or inertia β. To
identify a primary cause of chaotic dynamics in the 4D sys-
tem, we have proved the existence of a Shilnikov homoclinic
orbit to a saddle focus which leads to the emergence of spiral
chaos [68].

Remarkably, the addition of only one oscillator to the three-
group network with equal group sizes M = N , which yields
asymmetry and the existence of the three-cluster pattern, is
sufficient to induce large-amplitude chaotic oscillations of the
phase shifts. Our extensive numerical analysis not reported in
this paper also suggests that, in contrast to one’s expectations,
smaller differences in the group sizes are more effective in
promoting phase shift chaos. Ultimately, the smallest network
which can exhibit chaotic phase shifts consists of four second-
order oscillators, with two oscillators forming the second
group (M = 2) and one oscillator in each of the first and
third groups (N = 1). The chosen network setup with no
direct connections between the first and third groups could
be viewed as an optimal configuration which minimizes the
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complexity of the governing 4D system. Connecting the two
groups could make the phase shift dynamics even richer,
but it would introduce additional terms and make the 4D
system less tractable analytically. Extending our analysis of
intercluster phase dynamics to finer cluster partitions within
each group, including solitary cluster states, is possible. How-
ever, the governing system will have a high dimension and
might not necessarily be represented by a system of well
separated coupled pendulums. Again, rigorous analysis of its
possible chaotic states and transitions between them becomes
more challenging. These problems are a subject of future
study.

We have also analyzed the stability of the three-cluster
pattern and its embedding, a two-cluster pattern, in which the
first and third groups of oscillators become synchronized. Our
analysis has explicitly demonstrated that the phase shift dy-
namics can be multistable, including the case where the three-
cluster pattern with a chaotically oscillating phase shift stably
coexists with the two-cluster pattern with a constant shift. Our
stability conditions also have implications for the emergence
of chimera states. Due to the simple network structure, these
conditions are uncoupled and are applied to each group of
oscillators separately. Thus, the simultaneous fulfillment of
the stability condition for synchronization within one group
and its failure for synchronization within the others can offer
a key to predicting the emergence of a chimera state. These
observations are in good agreement with our numerical results
that confirmed the emergence of a plethora of coexisting
chimera states in the network.

Our analysis can also be extended to networks with evolv-
ing [80], stochastically switching [81], or adaptive connec-
tions [82]. These networks exhibit highly nontrivial dynamics,
including the emergence of macroscopic chaos [83,84], ghost
attractors [85], and windows of opportunity [86,87] due to
time-varying coupling. The role of time-varying connections
in the emergence of stable or metastable clusters and ghost
patterns in Kuramoto networks with inertia should be ex-
plored.

Although our analysis provides an unprecedented under-
standing of the emergence and coexistence of stable clus-
ters with chaotic intercluster phase dynamics, we have only
scratched the surface of the complex interplay between the ex-
istence of possible clusters, intrinsic oscillator dynamics, and
nonlinear interactions of phases. The richness of the dynamics
in our fairly simple and analytically tractable network model
opens the door to further discovering new types of dynamical
effects and cooperative structures in multipopulation networks
of phase oscillators with inertia.
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APPENDIX A: FIXED POINTS O3 AND O4

In this Appendix, we provide detailed calculations of co-
ordinates x3,4 and z3,4 in (11) that correspond to fixed points
O3 and O4 in 4D system (8), which governs the dynamics of
intercluster phase shifts x and z.

To find the coordinates of O3 and O4 in 4D system (8), we
need to analyze the following system:

sin x + a sin(z − δ) = ω,

a sin(x − δ) + sin z = ω.
(A1)

However, this analysis is not straightforward as one has to
deal with a system of two nonlinear equations. A way to solve
the system (A1) is to use its symmetry under the involution
(x, z) → (z, x). This symmetry implies that O3 and O4 are
symmetric relative to z = x and lie on the line

z = κ − x, (A2)

where κ is a constant to be determined. Thus, the coordinates
of O3 and O4 can be written in the form

x3 = z4 = κ/2 + x0, x4 = z3 = κ/2 − x0 (A3)

for some x0. Substitution of (A2) into (A1) gives

sin x + a sin(−x + κ − δ) = ω. (A4)

Our goal is to find κ and x0 in order to identify coordinates
x3 = z4 and x4 = z3, the coordinates in (11). Using a trigono-
metric identity, we turn Eq. (A4) into

C1 cos x + [1 − a cos(κ − δ)] sin x = ω, (A5)

where C1 = a sin(κ − δ). Using another trigonometric iden-
tity, we solve Eq. (A5) for x to obtain

x3,4 = g ± arccos
ω

C2
, (A6)

C2 =
√

1 + a2 − 2a cos(κ − δ), (A7)

g = arctan

(
1 − a cos(κ − δ)

C1

)
. (A8)

From (A3) and (A6), we obtain g = κ/2, from which we
calculate

κ/2 = arctan

(
1 − a cos δ

a sin δ

)
(A9)

and then

cos(κ − δ) = 2a − (a2 + 1) cos δ

a2 + 1 − 2a cos δ
. (A10)

Thus, (A7) yields

C2 = 1 − a2

√
1 + a2 − 2a cos δ

, (A11)

so x0 in (A3) becomes

x0 = arccos

(
ω

√
1 + a2 − 2a cos δ

1 − a2

)
. (A12)

Substituting (A9) and (A12) into (A3), we finally obtain
the explicit expressions (11) for x3, z3, x4, z4.
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APPENDIX B: PROOF OF STATEMENT 1

In this Appendix, we derive the proof of Statement 1 and
justify the parameter partition shown in Fig. 2. Adapting the
auxiliary system method [71], we introduce two 2D auxiliary
systems A±

x obtained from the x equation of system (8) by
replacing sin(z − δ) with ∓1:

A+
x : ẍ + hẋ + sin x = ω + a,

A−
x : ẍ + hẋ + sin x = ω − a. (B1)

Similarly, we introduce the systems A±
z :

A+
z : z̈ + hż + sin z = ω + a,

A−
z : z̈ + hż + sin z = ω − a. (B2)

Our goal is to demonstrate that the trajectories of auxiliary
systems (B1) and (B2) bound trajectories of system (8) and
govern their flow, thereby determining possible types of phase
shift dynamics of x(t ) and z(t ) and predicting qualitative
changes in the vector flow that are accompanied by homo-
clinic bifurcations. Our approach is based on the property
that the vector flows of auxiliary systems (B1) and (B2) are
transversal to any nontrivial trajectory of system (8) at each
point on the cylinders (x, ẋ), x �= 0, and (z, ż), z �= 0. More
specifically, the vertical component of vector fields (x, ẋ) and
(z, ż) of systems A+

x and A+
z is larger than that of system (8),

except for the points where sin(z − δ) = −1 and sin(x − δ) =
−1 and systems (B1) and (B2) coincide with (8). As a result,
the trajectories of system (8) cross the trajectories of systems
A+

x and A+
z in the downward direction, and vice versa, the

trajectories of system (8) cross the trajectories of systems A−
x

and A−
z in the upward direction (see Fig. 13). Therefore, these

properties allow for controlling the flow of system (8) with
the help of separatrices and limit cycles of systems A±

x and
A±

z . Recall that the 4D system (8) turns into two uncoupled
2D pendulum equations for x and z with a = 0. The dynamics
of pendulum equation (17) in the parameter space (h, ω) is
controlled by the so-called Tricomi curve T (h), Eq. (18) (see
Fig. 2), which corresponds to a homoclinic bifurcation of a
saddle fixed point for h < h∗ and a saddle-node bifurcation
for h > h∗ [70] (see Fig. 2).

In terms of the bifurcation diagram (h, ω) of Fig. 2,
the Tricomi homoclinic curve T (h) (pink dashed line)
and the saddle-node curve ω = 1 (green dash-dotted line) sep-
arate the bifurcation diagram into three regions with distinct
dynamics of 2D pendulum equation (8) with a = 0 for x or z.
These dynamics are (i) a stable fixed point which coexists with
a saddle fixed point [region under the Tricomi curve T (h)],
(ii) the coexistence of the stable fixed point and a limit cycle
(region bounded by the Tricomi and saddle-node curves), and
(iii) a globally stable limit cycle.

We adapt these baseline boundaries for auxiliary systems
(B1) and (B2) with a �= 0 to derive sufficient conditions
on permissible dynamics of 4D system (8), which in turn
determines the existence of phase shift dynamics in the three-
group network (2). The dynamics of auxiliary systems A+

x and
A+

z (A−
x and A−

z ) are symmetric. Therefore, it is sufficient to
characterize possible trajectories of systems A+

x and A−
x in the

(x, ẋ) projection which also yields the symmetrical trajecto-
ries in the (z, ż) projection. A combination of two (identical

FIG. 13. Schematic diagrams for (x, ẋ) and (z, ż) projections of
vector flow (8), bounded by the trajectories of 2D auxiliary systems
A+

x and A+
z (A−

x and A−
z ) depicted in red (blue). (a). Typical arrange-

ment of vector flow (8) corresponding to region I (see Fig. 2). The
unstable manifolds of the auxiliary systems’ saddles form trapping
regions (“rivers”) that attract the trajectories of system (8) and guide
them into trapping disks gs

x and gs
z (green). (b) Arrangement of

vector flow (8) from region II which allows the formation of the
homoclinic orbit hx (hz) of saddle focus O3 (O4). Note that the saddle
focus O3 lies inside saddle cell gsd

x (pink diamond-shaped region) in
the (x, ẋ) projection and inside stable region gs

z (green disk) in the
(z, ż) projection, representing its focus part. Saddle-focus point O4 is
symmetric to O3, with its x (z) coordinate inside gs

x (gsd
z ). (c) Region

III. The auxiliary systems are bistable, each having a stable fixed
point and a stable limit cycle. These limit cycles x+

c and x−
c (z+

c and
z−

c ) form a trapping river (the upper horizontal strip) which contains
rotatory trajectories of (8). Trapping disks gs

x and gs
z (green) contain

oscillatory trajectories of (8).

or different) dynamics in the (x, ẋ) and (z, ż) projections will
represent the behavior of 4D system (8).

Notice that the presence of the +a (−a) term in auxiliary
system A+

x (A−
x ) shifts the bifurcation diagrams and yields the

new Tricomi homoclinic curve ω = T (h) − a (ω = T (h) + a)
and the saddle-node curve ω = 1 − a (ω = 1 + a) in system
(B1). These curves formally partition the bifurcation diagram
of Fig. 2 into five regions which correspond to the following
dynamics.

Region I: ω < T (h) − a. In this region both auxiliary sys-
tems A+

x and A−
x may have only trivial dynamics in the form

of the stable fixed point coexisting with the saddle fixed point.
Figure 13 shows the arrangement of typical trajectories of
auxiliary systems A+

x (A+
z ) (red lines) and A−

x (A−
z ) (blue lines).

The auxiliary system A+
x has the stable fixed point E+

x [x =
arcsin(ω + a)] and the saddle S+

x [x = π − arcsin(ω + a)]
(not shown in Fig. 13). Similarly, the auxiliary system A−

x has
the stable fixed point E−

x [x = arcsin(ω − a)] and the saddle
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S−
x [x = π − arcsin(ω − a)]. As a result, the trajectories of

the two auxiliary systems which approach the corresponding
stable fixed points E−

x and E+
x form a “river” which traps

trajectories of system (8) in the (x, ẋ) projection of the 4D
phase space. Therefore, these trajectories of system (8) even-
tually reach the stable trapping region gs

x bounded in x by E−
x

and E+
x [the green disk in Fig. 13(a), left] and stay inside

it. The dynamics of system (8) in the (z, ż) projection is
identical, so that there also exists a stable trapping region gs

x
[the green disk in Fig. 13(a), right]. These two disks form a
topological ball gs

x × gs
z in the 4D phase space of system (8)

which contains the fixed point O1 (not shown). The dynamics
inside the ball may be periodic or even chaotic; however, the
trajectories confined inside the ball may not rotate around the
cylinders (x, ẋ) and (z, ż), so that only oscillatory motions
with small amplitudes in x and z are allowed. Similarly, the
stable manifolds of saddles S+

x and S−
x form a river which

contains the saddle O2 of (8) (not shown) and the (x, ẋ)
projection of its stable manifold. However, due to the flow
arrangement, other trajectories of (8) leave this river and the
saddle “cell” gsd

x formed by the stable and unstable manifolds
of saddles S+

x and S−
x [the pink diamond-shaped region in

Fig. 13(a), left] and approach the stable trapping zone. In the
full 4D phase space of (8), the fixed point O2 lies in a region
represented by a topological product of saddle cells gsd

x and
gsd

z . At the same time, the fixed point O3 (O4) of (8) lies in the
region gsd

x × gs
z (gs

x × gsd
z ).

Region II: H1 : {ω < 1 − a} ⋂
H2 : {ω < T (h) + a}⋂

H3 : {ω > T (h) − a}. The lower border of region II (the
gray region in Fig. 2) is determined by the part of the Tricomi
curve ω = T (h) − a which corresponds to a homoclinic
bifurcation of saddle E−

x (E−
z ) in auxiliary system A−

x (A−
z ). In

terms of Fig. 13(a) (left panel), this bifurcation occurs when
the red curve emanating from the left saddle cell gsd

x (the
pink diamond-shaped region) would no longer go towards the
green disk but rather merge with the red curve going into the
right saddle cell to form a homoclinic orbit which connects
the left and right saddle cells gsd

x (not shown). This homoclinic
connection reroutes the vector flows so that the trajectories
of system (8) can travel from the left to the right saddle cell.
Entering the region II, via, for example, increasing ω leads to
the rearrangement of the rivers, as shown in Fig. 13(b) where
the unstable manifold of saddle focus (or saddle) O3 returns
to O3 and forms the homoclinic orbit hx. Notice that due to
the cyclic structure of the equations, the left and right saddle
cells represent the same cell and contain the same fixed point
O3, so that the black curve connecting the fixed points in
the two saddle cells is a homoclinic (not heteroclinic) orbit.
The mutual arrangement of the rivers in the region ẋ > 0
allows the trajectories to either rotate around the cylinder as
in the case of the homoclinic loop or reach the green disk
to exhibit oscillatory dynamics. As the dynamics of systems
A+

z and A−
z are symmetric to those of systems A+

x and A−
x ,

the overall dynamics of 4D system (8) is a combination
of the trajectories depicted in the left and right diagrams of
Fig. 13(b). Therefore, all combinations of rotating, oscillating,
and mixed-mode phases shifts are possible.

While this qualitative analysis does not allow for determin-
ing the exact values of parameters at which the homoclinic
loop hx is formed, it proves that system (8) has to undergo
this homoclinic bifurcation in region II where the rivers form

a passage from one saddle cell to the other. This passage does
not exist for the parameters from region I [see Fig. 13(a)]
and ceases to exist when the system reaches the border of
region III at which auxiliary systems A+

x and A+
z undergo

a homoclinic bifurcation at ω = T (h) + a (see Fig. 2). In
terms of Fig. 13(b), this happens when the unstable and stable
manifolds of saddle S+

x in system A+
x (the blue curves) merge

together at the x = 0 coordinate axis for ẋ > 0 (not shown).
Therefore, the rivers formed by the stable and unstable man-
ifolds of the saddle in auxiliary systems A+

x and A−
x (A+

z
and A−

z ) exchange their mutual arrangement when changing
the parameters brings the system from region I to region III
[see Figs. 13(a) and Fig. 13(c)]. Hence, there always exist
bifurcation points in Region II at which the stable and unstable
manifolds of O3 (O4), confined inside the rivers, form the
homoclinic loop hx (hz). Each of these bifurcation points lies
on any path from region I to region III in parameter space
(h, ω), which lies entirely inside region II. Since the passage
from one saddle cell to the other exists only in region II, other
multiloop homoclinic bifurcations of O3 and O4 may also be
possible only in region II.

Region III: T (h) + a < ω < 1 − a. Entering this region
(the blue region in Fig. 2) from region II disconnects the
rivers centered around the stable and unstable manifolds, as
shown in Fig. 13(c). In region III, each system A−

x and A+
x is

bistable and has a stable fixed point (inside the green disk)
and a limit cycle of rotatory type, born as a result of the
homoclinic bifurcations at ω = T (h) − a and ω = T (h) + a,
respectively. Therefore, the trajectories of 4D system (8)
eventually reach and remain trapped either inside the green
disk or inside the river formed by two stable limit cycles x−

c
and x+

c [the horizontal river in the upper part of Fig. 13(c),
left]. As a result, this arrangement guarantees (i) the bistability
of oscillatory and rotatory trajectories which may be periodic
or chaotic and (ii) the absence of mixed-mode oscillations
since the trajectories cannot switch between the two trapping
regions. Again, combining the dynamics of the left and right
diagrams of Fig. 13(c) guarantees the existence of rotating-
rotating, rotating-oscillating, and oscillating-oscillating phase
shift regimes in the network.

Region IV: 1 − a < ω < 1 + a. System A+
x has only a

stable limit as the stable and saddle fixed points E+
x and S+

x
have disappeared via a saddle-node bifurcation at ω = 1 − a.
At the same time, system A−

x has the same structure as in
region III. In terms of Fig. 13(c), this amounts to
the disappearance of all red curves (not shown), ex-
cept for the upper border of the horizontal river repre-
senting the stable limit cycle x+

c . As the trapping disk
has partly disintegrated, the trajectories of the 4D sys-
tem (8) may escape it and reach the trapping river
with rotatory trajectories. Hence, all possible dynamics of
phase shifts are possible, with the prevalence of rotatory
trajectories.

Region V: ω > 1 + a. Similar to system A+
x at the border

between region III and region IV, system A−
x undergoes a

saddle-node bifurcation at ω = 1 + a. Thus, in region V both
systems A−

x and A+
x have only globally stable limit cycles x−

c
and x+

c , which form a unique trapping region (river) for all the
system’s trajectories, yielding the existence of only rotatory
trajectories in the system (8). �
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