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ABSTRACT

The understanding of how synchronization in directed networks is influenced by structural changes in network topology is far from complete.
While the addition of an edge always promotes synchronization in a wide class of undirected networks, this addition may impede synchro-
nization in directed networks. In this paper, we develop the augmented graph stability method, which allows for explicitly connecting the
stability of synchronization to changes in network topology. The transformation of a directed network into a symmetrized-and-augmented
undirected network is the central component of this new method. This transformation is executed by symmetrizing and weighting the under-
lying connection graph and adding new undirected edges with consideration made for the mean degree imbalance of each pair of nodes. These
new edges represent “non-existent ties” in the original directed network and often control the location of critical nodes whose directed con-
nections can be altered to manipulate the stability of synchronization in a desired way. In particular, we show that the addition of small-world
shortcuts to directed networks, which makes “non-existent ties” disappear, can worsen the synchronizability, thereby revealing a destructive
role of small-world connections in directed networks. An extension of our method may open the door to studying synchronization in directed
multilayer networks, which cannot be effectively handled by the eigenvalue-based methods.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5134920

The power of weak ties in social networks1 is a surprising prin-
ciple, which indicates that the addition of your acquaintances
(weak ties) to your network of friends (strong ties) can sig-
nificantly enhance the transmission of novel information. This
principle leverages the weak interpersonal ties in job hunting,
match making, and growing a business. Similarly, the addition of
possibly weak internodal ties typically favors synchronization in
undirected dynamical networks via the small-world effect when
additional shortcuts greatly facilitate information flows.2 How-
ever, directed dynamical networks may have drastically different
synchronization properties such that the addition of directed
shortcuts may hamper synchronization. In this paper, we pro-
pose a general connection graph-based method, which helps
explicitly assess how structural changes in directed networks
influence synchronization. The method consists in symmetrizing
the existing directed connections and augmenting the network

with additional undirected links. These links can be viewed as
“non-existent ties” between nodes that are not directly connected
in the original directed network. We reveal the power of the “non-
existent ties” in controlling synchronization in directed networks
via structural changes of network topology. In particular, we
demonstrate that the appearance of the “non-existent ties” as new
edges in the augmented network due to the addition or removal
of an edge in the directed network may offer a key to predict-
ing a significant improvement or deterioration of the network
synchronizability.

I. INTRODUCTION

Network synchronization is one of the most prevalent instances
of cooperative behavior, manifesting itself in a wide spectrum of
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real-world networks.2–5 Examples include the disruption of neu-
ral synchrony causing cognitive dysfunction after traumatic brain
injury,6 synchronized neuronal firing during epileptic seizures and
Parkinson’s tremors,7,8 synchronization of power generators for the
operation of power-grid networks,9 schooling fish moving as one
large unit to confuse or escape from a predator,10 and phase-locked
gaits of pedestrians on a lively bridge.11–13

The interplay between network structure and individual
node dynamics that controls the stability of synchronization
has been extensively studied in oscillator networks,14–36 includ-
ing evolving37–47 and multilayer networks.48–52 This interplay yields
a number of highly nontrivial, often counterintuitive effects. For
example, it was shown that increasing heterogeneity of individual
oscillators can enhance the stability of complete synchronization in
networks of nonidentical oscillators.53 Alternatively, the structural
heterogeneity of a phase oscillator network can be modulated by
heterogeneous natural oscillator frequencies to design synchrony-
optimized networks.36 In networks of bursting neurons with mixed
coupling, (i) the addition of pairwise repulsive inhibitory connec-
tions to excitatory networks can promote synchronization54 and (ii)
combined electrical and inhibitory coupling can induce synchro-
nization even though each coupling by itself promotes out-of-phase
synchronization.55 In multilayer networks, the surprising effects due
to the multilayer structure include the “when good links go bad”
phenomenon in which replacing a link by a pairwise stabilizing cou-
pling via another layer can make the network unsynchronizable,
turning the “good” link into a destabilizing connection.52

Complete synchronization in networks of continuous-time
identical (or nearly identical) oscillators typically becomes locally or
globally stable when the coupling strength exceeds a critical value.17

The popular methods for determining the stability of complete syn-
chronization as a function of network topology include the master
stability function14 and the connection graph method.23 The mas-
ter stability function is a semi-analytic local stability method that
requires the calculation of two quantities: (i) the largest transversal
Lyapunov exponent associated with the individual oscillator dynam-
ics and (ii) the eigenvalues of the Laplacian connectivity matrix.
The role of the network topology is, therefore, revealed via the
dependence of the eigenvalues on the structure of a given oscilla-
tor network. The master stability function is generally applicable
to any diagonalizable Laplacian matrix and, therefore, can han-
dle both undirected and directed networks. In particular, it was
applied to assess synchronization conditions in directed networks
whose Laplacian connectivity matrices are asymmetric and typi-
cally have complex eigenvalues.14 As a result, the stability condi-
tions should take into account both real and imaginary parts of
the eigenvalues.56,57 While the calculation of the eigenvalues is fast
and convenient, the mapping of structural network changes such
as network rewiring or an edge addition, into the changes in the
corresponding eigenvalues of the connectivity matrix is implicit in
general. As a result, the direct impact of an edge addition or removal
on the network synchronizability is difficult and often impossi-
ble to evaluate explicitly. The connection graph method23 offers
an alternate way to estimate the critical coupling required for the
global stability of complete synchronization. This analytical method
utilizes the Lyapunov function approach together with graph the-
oretical quantities expressed via the total lengths of chosen paths,

which pass through a given edge. The method does not depend
on explicit knowledge of the spectrum of the connectivity matrix,
and, therefore, it provides a more explicit connection between struc-
tural network changes and the synchronization threshold. However,
this method comes with the price of more conservative bounds and
increased algebraic complexity of calculating the graph quantities.
The extension of the connection graph method to directed networks,
coined the generalized connection method,24 consists in symmetriz-
ing the directed graph and associating a weight to each edge and each
chosen path. The synchronization condition for this symmetrized-
and-weighted network then also guarantees synchronization in the
original directed network.

Despite the availability of these powerful methods, the under-
standing of how synchronization in directed networks is influenced
by structural changes in network topology is far from complete. For
example, the addition of an edge in undirected Laplacian networks
always increases the spectral gap defined by the second largest (least
negative) eigenvalue of the Laplacian connectivity matrix and, there-
fore, lowers the synchronization coupling threshold in a wide class
of oscillator networks, including coupled Lorenz oscillators.23 At the
same time, this addition may worsen synchronization in directed
networks composed of the same oscillators. In particular, it was
shown that strengthening or adding a directed connection may hin-
der synchronization in weakly connected networks composed of
two strong components where one network component drives the
other.58 Based on a perturbation analysis of the spectral gap of the
Laplacian matrix, this study focused on the impact of small struc-
tural perturbations of such two-component networks where a weak
link is added to a network or the weight of an existing link is slightly
perturbed.58 However, the general problem of explicitly assessing the
role of the addition or removal of potentially strong directed links
to directed networks with arbitrary network topologies remained
widely open.

In this paper, we seek to resolve this challenging problem by
developing a general connection graph stability method that explic-
itly connects structural changes in network topology, such as the
edge addition and removal as well as strengthening the existing con-
nections, to the stability of complete synchronization in directed
networks. Our general approach called the augmented graph method
is an extension of the generalized connection graph method,24

which is based on the transformation of a directed network into a
symmetrized-and-weighted undirected network. The novel compo-
nent of our augmented graph method is in augmenting the directed
network by adding new undirected edges as a function of the pair-
wise mean degree imbalance of nodes, where the degree imbalance
of a node is defined by the difference between its out- and in-
degrees.3 These augmenting edges can be viewed as “non-existent
ties” in the original directed network and often control the loca-
tion of critical nodes whose directed connections can be modified to
improve or worsen the synchronizability of the network in a system-
atic way. In particular, applying our method to small-world directed
networks, we demonstrate that the addition of long-range directed
shortcuts, which changes the degree imbalance of the correspond-
ing nodes and makes “non-existent ties” disappear, can worsen the
synchronizability. Therefore, in contrast to the widely spread con-
ception that small-world shortcuts generally facilitate cooperative
properties of complex networks, our method reveals a potentially
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destructive role of small-world connections when used in directed
networks.

Our method originates from the connection graph method
and, therefore, it yields bounds on the critical coupling strength,
which depend on the choice of a path between any two nodes
in the symmetrized-and-augmented network. The standard way of
applying the connection graph method is to choose a shortest path
between node i and node j and then identify the bottleneck edge with
the maximum total length of the chosen paths. This bottleneck edge
yields the bounds for synchronization in the entire network. How-
ever, often a different choice of paths can lead to lower bounds27

such that optimizing the choice of paths allows one to lower the crit-
ical coupling bound when applying the augmented graph method.
In this paper, we also develop an optimization algorithm, which
assists the augmented graph method to deliver critical coupling
bounds close to the actual ones obtained by the application of the
eigenvalue-based methods.14,21,22

The layout of this paper is as follows. First, in Sec. II, we
present the oscillator network model and state the problem under
consideration. In Sec. III, we present the augmented graph method
and formulate the main theorem that places upper bounds on the
critical coupling strength, which guarantees global stability of syn-
chronization in a directed network. In Sec. IV, we apply the method
to specific directed networks and demonstrate that the addition of
shortcut edges can destabilize synchronization. In Sec. V, we com-
pare the synchronization bounds for directed networks of Lorenz
oscillators obtained by the augmented graph method and the pre-
vious methods. In Sec. VI, a discussion of the obtained results is
given. Finally, Appendix A contains the derivation of the augmented
graph method. Appendix B presents the details of the optimization
algorithm and gives an example of a network for which the opti-
mization algorithm significantly lowers the synchronization bound.
A Python code for the application of the augmented graph method
to specific networks is available in a code repository.59

II. PROBLEM STATEMENT

We consider a directed network of n interacting oscillators
described by the system

dxi

dt
= F(xi) + d

n
∑

j=1

wijPxj, i = 1, . . . , n, (1)

where xi = (x1
i , . . . , xh

i ) is the h state vector containing the coor-
dinates of the ith oscillator, the function F : R

h → R
h determines

the oscillators’ individual dynamics. The oscillators are identical;
however, the generalization of our results to non-identical oscil-
lators with small parameter mismatch is straightforward.23 P is an
h × h projection matrix that selects the components of xi which are
involved in the interaction between the individual oscillators. With-
out loss of generality, we consider a vector version of the coupling
with the diagonal matrix P = diag(p1, p2, . . . , ph), where pν = 1,
ν = 1, 2, . . . , s and pν = 0 for ν = s + 1, . . . , h. The connection
matrix D is an n × n asymmetrical Laplacian matrix with zero row-
sums and nonnegative off-diagonal elements dij = wijd, yielding a
directed connection graph D. To facilitate the development and
application of our method, the coupling strength dwij is introduced

as a multiple of a uniform coupling constant d, where the weight wij

can vary from one edge to another. The spectrum of the asymmetri-
cal Laplacian connection matrix D contains possibly complex eigen-
values λn ≤ · · · ≤ λ2 ≤ λ1 = 0 where the second largest eigenvalue
λ2 < 0 defines the spectral gap. In undirected networks, its absolute
value is known as the algebraic connectivity.60 This eigenvalue or its
real part in the case of complex eigenvalues play an important role
in determining the synchronizability of directed networks and will
be used in the comparison analysis of Secs. IV and V.

In this paper, we develop the augmented graph method for
assessing global stability of complete synchronization in which all
oscillators of the network (1) acquire identical dynamical behav-
ior such that limt→∞ ||xi(t) − xj(t)|| = 0 for ∀i, j and any choice
of initial conditions. Global stability of complete synchroniza-
tion amounts to global stability of the synchronization manifold
S = {x1(t) = x2(t) = · · · = xn(t) = s(t)}, where the synchronous
solution s(t) is governed by the uncoupled individual oscillator.

Depending on the synchronization properties, oscillators com-
posing network (1) can be formally divided into three main classes.5

While there is no general convention upon labeling the correspond-
ing classes and the labels are used interchangeably, we follow the
classification23,52 where Type I oscillators can synchronize and main-
tain stable synchronization for any coupling strengths exceeding
a threshold value. This wide class of Type I oscillators includes
Lorenz61 and Chua62 oscillators. A narrower Type II class of oscil-
lators includes x-coupled Rössler systems63 in which synchroniza-
tion is stable within a bounded region of coupling parameter and
looses its stability when the coupling becomes excessively strong.14,15

Finally, Type III oscillators are unsynchronizable for any coupling
strengths. Depending on what variables are used to couple the
systems, some oscillators can change their synchronization prop-
erties and belong to each of the three types. For example, the
one variable x, y, and z couplings between the tritrophic Rozen-
zweig–MacArthur prey–predator models64 yield drastically different
synchronization properties and places the oscillators in Type III, I,
and II, respectively.65 As only Type I oscillators are capable of syn-
chronizing globally (from any initial conditions), in this paper, we
limit our consideration to the large class of Type I oscillators.

We aim to predict when the synchronization manifold S is
globally stable and explicitly connect its stability to the removal or
addition of a directed link. Toward this goal, we develop the aug-
mented graph method for deriving upper bounds on the coupling
strength required to stabilize synchronization in oscillator networks
with an arbitrary directed connection graph, under the constraint
that the graph allows synchronization of all the nodes. It is important
to emphasize that synchronization in directed networks is only pos-
sible if there is at least one node that directly or indirectly influences
all the others.20 In terms of the directed connection graph, this prop-
erty requires the existence of a uniformly directed tree involving all
the vertices. The simplest example of a directed network without
such a tree is a three-node star network where two secondary nodes
independently drive the hub, making synchronization impossible.

III. AUGMENTED GRAPH STABILITY METHOD

To derive our method and apply it to specific network topolo-
gies, we need to introduce and calculate important quantities.
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Toward assessing the role of the individual oscillator and the choice
of variables that couple the oscillators, we first need to prove that
complete synchronization is globally stable in the simplest two-
node directed network (1) with coupling strengths d12 = w12d and
d21 = 0, provided that d12 > a, where a is a coupling threshold to
be determined. In this setting, oscillator 1 is driven by oscillator
2 to globally stable synchronization, yielding a Type I oscillator
network. Deriving a rigorous upper bound on the coupling thresh-
old a is a fairly straightforward task that was previously performed
for coupled Lorenz oscillators,23 double-scroll Chua oscillators,66

driven nonlinear pendulums,67 tritrophic Rozenzweig–MacArthur
prey-predator models,65,68 Hindmarsh–Rose neuron oscillators,27

and Hodgkin–Huxley-type neuron models.55

To formulate the main theorem that links the coupling thresh-
old a for synchronization in the two-node network to the con-
nection graph, we will transform the directed network (1) into
a symmetrized-and-augmented undirected network. This is done
by symmetrizing and weighting the underlying connection graph
and adding new undirected edges, depending on the mean degree
imbalance of each pair of nodes. The resulting undirected net-
work typically has more edges than the original directed network
and each undirected edge k connecting nodes i and j has coupling
strength ck, which depends on the in- and out-degrees of nodes
i and j. We will then derive bounds on the coupling strengths ck

large enough to ensure stable synchronization in the symmetrized-
and-augmented undirected network. The bound for each undirected
edge k is calculated through the sum of the chosen path lengths
between any two nodes i and j, which pass through edge k, where
the path lengths are also weighted according to the in- and out-
degrees of nodes i and j. These bounds on ck are multiples of d
and, therefore, yield the threshold value of d, which, in turn, guaran-
tees stable synchronization in the original directed network (1) via
dij = wijd.

The process of turning the directed network (1) into the
symmetrized-and-augmented network and weighing the coupling
strengths ck and path lengths can be performed in the following
steps.

Step 1. We calculate the degree imbalance for each node

Db
i =

n
∑

k 6=i

(wki − wik)d as the difference between the sums of the cou-

pling weights of all its outgoing edges (the out-degree of node i) and
of all its incoming edges (the in-degree). Then, for each pair of nodes

i and j, we calculate the mean degree imbalance Db
ij =

Db
i +Db

j

2
.

Step 2. We symmetrize the directed connection graph D by
replacing the edge directed from node i to node j by an undirected
edge k with half the coupling strength coefficient c

sym

k = wijd/2. If
there are two directed edges between nodes i and j: one from node
i to node j and one in the reverse direction, the pair of directed
edges should be replaced by an undirected edge k with mean cou-

pling c
sym

k = dij+dji

2
= wij+wji

2
d. If the mean degree imbalance Db

ij < 0

and there is an edge k connecting nodes i and j, we add an extra

strength

∣

∣

∣

∣

Db
ij

n

∣

∣

∣

∣

to the mean coupling c
sym

k = c
sym
ij of the symmetrized

undirected edge. If the mean degree imbalance Db
ij < 0 and there is

no edge between nodes i and j, we create an undirected edge with

coupling strength c
aug

k =
∣

∣

∣

∣

Db
ij

n

∣

∣

∣

∣

, thereby augmenting the symmetrized

connection graph to a total of m edges. As a result, edge k between
nodes i and j on the symmetrized-and-augmented connection graph
has the strength

ck =











c
sym

k for symmetrized edge k with Db
ij ≥ 0,

c
sym

k + c
aug

k for symmetrized k with Db
ij < 0,

c
aug

k for augmenting edge k, where

c
sym

k =
wij + wji

2
d and

c
aug

k =

∣

∣

∣

∣

∣

Db
ij

n

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Db
i + Db

j

2n

∣

∣

∣

∣

∣

, where

Db
i =

n
∑

l 6=i

(wli − wil)d, Db
j =

n
∑

l 6=i

(wlj − wjl)d.

(2)

Thus, the edges of the symmetrized-and-augmented connection
graph that correspond to the existing edges of the original directed
graph have coupling c

sym

k or c
sym

k + c
aug

k , depending on the sign of the
mean degree imbalance Db

ij, whereas the new augmenting edges have

weaker coupling c
aug

k . It is important to emphasize that these weaker
connections do not exist in the original directed graph D and, there-
fore, represent “non-existent ties” between the corresponding nodes.
However, these “non-existent ties” have the power to determine the
synchronizability of the directed network D, as will be shown later
in the paper.

Step 3. We choose a path Pij between each pair of nodes i and
j, and determine its length |Pij| as the number of edges comprising
the path. Usually, a shortest path should be chosen. However, opti-
mizing the choice of paths, one may lower bounds on the critical
coupling, especially in dense directed networks. This point will be
discussed in more detail in Sec. V. If the mean degree imbalance Db

ij

is negative, then nodes i and j are always directly linked by either an
augmenting edge or by a weighted combination of the augmenting
edge and a symmetrized edge inherited from the original directed
graph. Therefore, the corresponding length is |Pij| = 1. To each of

the other chosen paths between nodes i and j with Db
ij ≥ 0, we assign

an extra weight 1 +
Db

ij

a
, thereby making its path length (1 +

Db
ij

a
)Pij.

Notice that if Db
ij = 0, then the extra weight becomes zero. There-

fore, the weighted length of the chosen path between any pair of
nodes i and j is given by

L(Pij) =











∣

∣Pij

∣

∣ = 1 if Db
ij < 0,

(

1 +
Db

ij

a

)

Pij otherwise.
(3)

Step 4. Similarly to the generalized connection graph method,24

we introduce a graph theoretical quantity bk that characterizes the
total length of the chosen weighted paths that go through each edge
k on the symmetrized-and-augmented graph. In terms of traffic
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networks, this quantity

bk =
n
∑

j>i; k∈Pij

L(Pij) (4)

can be viewed as the total weighted length of the chosen roads that
go through a given edge k which may be appropriately compared to
a busy street. Therefore, we call bk a “traffic” load on edge k.

Collecting the coupling threshold a for the simplest directed
two-node network and the graph theoretical quantities identified in
Steps 1–4, we place upper bounds on the coupling synchronization
thresholds according to the following general theorem.

Theorem 1 (Augmented graph stability method). Assume
that the directed connection graph D has at least one node, which
directly or indirectly drives all the others, thereby allowing complete
synchronization in the n-node network (1). Then, globally stable
complete synchronization in the directed network (1) with coupling
weights dij = wijd is guaranteed if the coupling constant d is large
enough such that for each edge k of the symmetrized-and-augmented
graph the following holds:

ck >
a

n
bk, k = 1, . . . , m, (5)

where the coupling strengths ck are multiples of d and given in
(2). The graph theoretical quantity bk, which we colloquially refer
to as a “traffic load” on edge k and defined in (4), represents the
sum of the weighted path lengths L(Pij) of all chosen paths Pij

which pass through a given edge k that belongs to the symmetrized-
and-augmented graph. The weighted path length L(Pij) is determined
by the mean degree imbalance and defined in (3). The constant a
is the coupling strength that is sufficient to ensure global stability of
synchronization in the simplest two-node directed network (1) with
d12 = d and d21 = 0, thereby requiring the network to be of Type I.
Therefore, the stability criterion (5) is restricted to Type I oscillator
networks in which the synchronization emerges and remains stable
for any coupling strength exceeding a threshold value.

Proof. The proof closely follows the steps of the derivation of
the generalized connection graph method24 for directed networks up
to a point where the stability terms call for the introduction of aug-
menting edges which determine the concept of “non-existent ties”
and play a pivotal role in understanding the synchronizability of
directed networks. The complete proof is given in Appendix A. �

Remark 1. As the stability criterion (5) is formulated in terms
of the symmetrized-and-augmented network, its practical appli-
cation to the original directed graph might require an additional
clarification. Recall that the coupling strengths of the directed edges
are dkij

= wijd, where wij are given weights and d is the coupling

to be varied to ensure stable synchronization. Thus, satisfying the
criterion (5) for ck yields the critical value of d = d∗

k for each edge
k of the symmetrized-and-augmented graph so that the maximum
value d∗ = max

k
{d∗

k} should be substituted into dkij
= wijd to obtain

a distribution of coupling strengths dij that guarantees stable syn-
chronization in the directed network. Often, the maximum value
d∗ corresponds to an augmenting edge that does not exist on the
directed graph but controls synchronization in the entire directed
network via this maximum value d∗, validating the power of the
“non-existent ties.”

Remark 2. The stability conditions (5) may yield conservative
upper bounds on the coupling strengths sufficient for global sta-
bility of synchronization, and the eigenvalue-based methods yield
a tighter, optimal bound. In terms of Theorem 1, this bound for
directed networks with uniform coupling strengths dij = d can be
formulated for Type I oscillators as follows:20,24 d > a/|<λ2|, where
<λ2 is the real part of the second largest eigenvalue λ2 of the
Laplacian connection matrix D. However, the stability condition (5)
allows for explicitly connecting changes in the network topology,
including the removal and addition of links with the synchroniz-
ability of a given network. This task is often out of reach for the
eigenvalue-based methods, as it is generally elusive to explicitly
translate re-wiring or other structural changes in a directed network
into an increase or decrease of <λ2.

In Sec. IV, we will walk the reader through the application of
the augmented graph stability method to specific directed networks
and illustrate its predictive power.

IV. WHEN THE ADDITION OF EDGES DESTABILIZES

SYNCHRONIZATION

To connect the general results to networks of specific Type
I oscillators, hereafter, we will consider directed networks (1) of
x-coupled Lorenz oscillators

ẋi = σ(yi − xi) +
n
∑

j=1

dijxj,

ẏi = rxi − yi − xizi,

żi = −bzi + xiyi, i = 1, . . . , n,

(6)

where σ , r, and b are intrinsic parameters. The coupling constant
a used in the stability criterion (5) of Theorem 1 was previously
calculated and explicitly expressed via the intrinsic parameters as
follows:23,69

a =
b(b + 1)(r + σ)2

16(b − 1)
− σ . (7)

Derived through the application of a Lyapunov function, this com-
pletely rigorous bound is conservative. Alternatively, one could use
a numerically assisted version of our method where a could be
found numerically. In this semi-analytical setting, the constant a
would play a role of the largest transversal Lyapunov exponent used
in the master stability function.14 For the standard parameters of
the Lorenz system: σ = 10, r = 28, and b = 8/3, this numerically
calculated constant a ≈ 7.79.

Having estimated the impact of the individual oscillators com-
prising the directed network (1)–(6) in terms of constant a, we can
apply the augmented graph method to specific networks, thereby
revealing the role of the network topology and its structural changes.

A. A three-node network

Consider the three-node directed network (6) of Fig. 1(a) (top
panel) with the coupling strengths d21 = d and d32 = 2d. Below, we
follow the four steps through which the augmented graph method
can be applied to this network.
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FIG. 1. Three-node network in which the addition of a strong reciprocal edge
has a desynchronizing effect. (a) The original directed network (top panel) and
its symmetrized-and-augmented counterpart (bottom panel). Notice the appear-
ance of an augmenting edge (red dashed line) with coupling strength d/6,
making the graph complete. (b) Network after the addition of a reciprocal edge
(dotted gray arrowed line) (top panel). The corresponding symmetrized graph
(bottom panel). Notice the absence of the augmenting edge, which makes the
symmetrized network locally coupled. As predicted by the changes in the sym-
metrized-and-augmented network, the synchronizability of the directed network
has worsened after the edge addition (also indicated by a drop in |λ2| from 1 to

| −5+
√
17

2
| ≈ 0.438).

Step 1. The degree imbalance Db
i for each node of the network is

Db
1 = d − 0 = d, Db

2 = 2d − d = d, Db
3 = 0 − 2d = −2d.

The mean degree imbalance Db
ij =

Db
i +Db

j

2
for each pair of nodes i and

j is

Db
12 = d, Db

23 = −
d

2
, Db

13 = −
d

2
.

Step 2. Symmetrize the directed graph by replacing each
directed edge by an undirected edge with half the coupling strength
such that the strengths of the symmetrized edges are c

sym
12 = d

2
and

c
sym
23 = d. Based on the mean degree imbalance Db

ij identified in

Step 1, (i) we add an extra coupling weight | Dij

n
| to the existing

edges of the symmetrized graph if Db
ij ≤ 0; and (ii) we create an

augmenting edge for each pair of nodes with Dij < 0, which are
not connected by a symmetrized edge. This results in creating the
symmetrized-and-augmented graph depicted in Fig. 1(a) (bottom

panel), where the coupling strengths are

c12 = c
sym
12 =

d

2
, c23 = c

sym
23 +

∣

∣

∣

∣

Db
23

n

∣

∣

∣

∣

= d +
d

6
,

c
aug
13 =

∣

∣

∣

∣

D13

n

∣

∣

∣

∣

=
d

6
.

Notice that we have added weight d
6

to the existing edge between

nodes 2 and 3 (edge e23) because Db
23 < 0. We have also created an

augmenting edge e13 with weight d
aug
13 because Db

13 < 0 and the nodes
1 and 3 are not connected through the original directed graph.

Step 3. Choose the shortest path Pij between nodes i, j of the
symmetrized-and-augmented graph (there are three possible pairs
of nodes) such that

P12 : e12, P23 : e23, P13 : e13.

Since mean degree imbalances Db
23 < 0 and Db

13 < 0, the cor-
responding path lengths remain unweighted such that L(P23)

= |P23| = 1 and L(P13) = |P13| = 1. As Db
12 > 0, we need to weigh

L(P12) = 1 + d
a
.

Step 4. For each edge k of the symmetrized-and-augmented
graph, calculate its traffic load bk as the total length of the chosen
weighted paths. In this particular example, the symmetrized-and-
augmented graph is complete; therefore, there is only one chosen
path comprised of one edge that goes through each of edges e12, e23,
and e13. Therefore,

b12 = L(P12) = 1 +
d

a
, b23 = L(P23) = 1,

b13 = L(P13) = 1.

Thus, the stability criterion (5) applied to the edges of the
symmetrized-and-augmented graph of Fig. 1(a) (bottom panel)
becomes

c12 =
d

2
>

a

3

(

1 +
d

a

)

, c23 =
5d

6
>

a

3
, c13 =

d

6
>

a

3
. (8)

The maximum value d∗ = 2a corresponds to the edge e12 and the
augmenting edge e13 and yields an upper bound on the synchro-
nization threshold in the symmetrized-and-augmented network.
This bound in turn guarantees global stability of synchronization
in the original directed network of Fig. 1(a) (top panel). In terms
of the three-node directed network, this synchronization condition
becomes

d21 > d∗ = 2a, d32 > 2d∗ = 4a. (9)

To study how structural changes in the three-node network affect
synchronization, we add a reciprocal link between nodes 2 and
3, equal in weight to an existing directed link [see Fig. 1(b) (top
panel)]. Intuitively, one could expect that the addition of this strong
reciprocal edge, which makes the connection between nodes 2 and
3 undirected, should improve the synchronizability of the net-
work. However, as the application of the augmented graph stability
method (also verified through the calculation of |<λ2|) indicates,
this addition has the opposite, desynchronizing effect. The details
are given below.
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The addition of the reciprocal edge from node 3 to node 2
[Fig. 1(b) (top panel)] changes the degree imbalance of the nodes
so that

Db
1 = d − 0 = d, Db

2 = 0 − d = −d, Db
3 = 2d − 2d = 0.

Therefore, it affects the mean degree imbalances so that

Db
12 = 0, Db

23 = −
d

2
, Db

13 =
d

2
.

As the mean degree imbalance Db
13 becomes positive, the augment-

ing link between nodes 1 and 3 is no longer present [cf. Fig. 1(a)
(bottom panel)]. Therefore, the number of edges in the path P13

increases to 2 and this path becomes weighted by a factor of (1 + d
2a

)

due to Db
13 > 0. These changes also affect the weights of connections

in the symmetrized-and-augmented network as depicted in Fig. 1(b)
(bottom panel). Thus, the stability criterion (8) changes to

c12 =
d

2
>

a

3

(

1 + 2 +
d

a

)

, c23 =
13d

6
>

a

3

(

1 + 2 +
d

a

)

.

These inequalities hold true when d∗ = 6a yielded by the maximum
value c12. Thus, the synchronization condition (8) for the network
of Fig. 1(b) (bottom panel) after the addition of the reciprocal edge
becomes

d21 > d∗ = 6a, d32 > 2d∗ = 8a. (10)

Notice the significant increase of the synchronization threshold
bounds in the modified directed network predicted by the applica-
tion of the augmented graph method. Alternatively, due to the small
network size, the second largest eigenvalue λ2 of both the original
and modified networks can be computed analytically using the char-
acteristic polynomials of the Laplacian matrices. It is |λ2| = 1 for

the original and |λ2| = −5+
√

17
2

≈ −0.438 for the modified network,
thereby demonstrating that the addition of the directed strong edge
hinders synchronization. This qualitatively agrees with the change in
the bounds (8) and (10) computed by our method, but even in this
simple three-node network, it is not immediately transparent from
the characteristic polynomial what structural change in the network
should lead to the desynchronization.

B. The destructive role of small-world shortcuts

The application of the augmented graph method to specific net-
works also reveals a surprising role of directed small-world shortcuts
in reducing the synchronizability of directed networks. The directed
networks of Figs. 2 and 3 are examples which illustrate this claim.

Similarly to the example of Fig. 1, we first consider the five-
node network depicted in Fig. 2(a) (left), together with its structural
modification with two added shortcut edges [Fig. 2(b) (left)]. We
first apply our method to the unmodified, locally coupled network of
Fig. 2(a) (left) with the coupling weights d21 = 7d/10, d32 = 14d/5,
d43 = 10d, and d14 = 10d. As before, we should follow the four steps
of the method.

FIG. 2. Four-node network in which the addition of two shortcut edges hinders
synchronization. (a) Locally coupled directed network before modification (left);
the corresponding symmetrized-and-augmented graph with one augmenting edge
(red dashed edge) (right). (b) Network after the addition of two strong shortcut
edges (dotted arrowed edges) (left); its symmetrized analog without augmenting
edges (right). Remarkably, the symmetrized network becomes fully connected,
but the synchronizability of the directed network with the two added shortcuts
worsens as predicted by the augmented stability method and verified through the
decrease of |λ2| from 4.5061 to 3.3727 due to the change in the mean degree
imbalance.

Step 1. The degree imbalance of each node is

Db
1 = 0.7d − 10d = −9.3d, Db

2 = 2.8d − 0.7d = 2.1d,

Db
3 = 10d − 2.8d = 7.2d, Db

4 = 10d − 10d = 0.

The mean degree imbalance Db
ij =

Db
i +Db

j

2
for each pair of nodes is

then

Db
12 = −3.6d, Db

13 = −1.05d, Db
14 = −4.65d,

Db
23 = 4.65d, Db

24 = 1.05d, Db
34 = 3.6d.

Step 2. Exactly as in the three-node example of Fig. 1, we sym-
metrize and augment the graph and strengthen edges with negative
degree imbalance; the resultant undirected network is depicted in
Fig. 2(a) (right). Here, we have augmented the network with an
edge e13 of strength c13 = 1.05d/4 = 0.2625d. The strengths of the
symmetrized edges e12, e23, e34, and e14 inherited from the directed
network are c12 = 1.25d, c23 = 1.4d, c34 = 5d, and e14 = 6.1625d,
respectively.
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FIG. 3. Small-world network in which the addition of four directed shortcuts sig-
nificantly worsens its synchronizability. (a) The original network (left): a directed
ring of 30 nodes with a single reversed directed edge (between the two orange
nodes) and one shortcut edge. The coupling strength d is uniform for all edges.
The symmetrized-and-augmented graph (right): there are, in total, 51 augment-
ing edges; one with weight d/20 (green dotted line between the magenta nodes),
25 edges with weight d/30 (gray dashed lines), and 25 edges having weight
d/60 (red dashed lines). The actual synchronization threshold is determined by

a
|<λ2 |

= a. (b) The modified network upon the addition of four shortcuts (dashed

lines) with uniform coupling strength d (left). The symmetrized-and-augmented
graph (right): the number of augmenting edges has reduced significantly; the
25 gray edges from the unperturbed symmetrized-and-augmented graph in (a)
remain, while all other augmenting edges have disappeared. The synchronization
threshold increases by more than an order of magnitude, to a

|<λ2 |
= 15.1515a.

Step 3. As in the previous example, we select the shortest
paths between endpoints of each node pair in the symmetrized-and-
augmented graph of Fig. 2(a) (right),

P12 : e12, P13 : e13, P14 : e14,
P23 : e23, P24 : e12, e14, P34 : e34,

where the lengths of the following paths must be weighted as their
endpoint nodes have a negative mean degree imbalance Db

ij

L(P23) = 1 +
2.325d

a
, L(P24) = 2 +

1.05d

a
,

L(P34) = 1 +
1.8d

a
.

Step 4. Calculating the traffic load bk for each edge e12, e23,
e34, e14 of the symmetrized-and-augmented graph and collecting the
weighted coupling strengths, we can write the stability criterion (5)

for the edges of the symmetrized-and-augmented graph

c12 = 1.25d >
a

4

(

3 +
1.05d

2a

)

, c13 = 0.2625d >
a

4
,

c23 = 1.4d >
a

4

(

1 +
2.325d

a

)

, c34 = 5d >
a

4

(

1 +
1.8d

a

)

,

c14 = 6.1625d > a
4

(

3 +
1.05d

2a

)

.

This stability criterion is constrained by the inequality on the bottle-
neck edge e23 yielding the bound d∗ = 0.91a. Therefore, this bound
determines the stability criterion for the directed network of Fig. 2(a)
(left)

d21 > 7d∗/10 = 0.637a, d32 > 14d∗/5 = 2.548,

d43 > 10d∗ = 9.1a, d14 > 10d∗ = 9.1a.
(11)

To better illustrate that the addition of small-world shortcuts,
which improves the connectivity of a directed network, may reduce
its synchronizability, we modify the locally coupled network Fig. 2(a)
(left) in an extreme way by adding two shortcuts [Fig. 2(b) (left)].
According to our method, this modification yields a globally coupled
symmetrized network of Fig. 2(b) (right), which has no augment-
ing edges. Let us check how this modification affects the stability
criterion (11).

The addition of shortcut edges with coupling weights d31 = d
and d42 = 2d changes the degree imbalance of each node:

Db
1 = −10.3d, Db

2 = 4.1d, Db
3 = 6.2d, Db

4 = −2d

so that the mean degree imbalances associated with each pair
become

Db
12 = −3.1d, Db

13 = −2.05d, Db
14 = −6.15d,

Db
23 = 5.15d, Db

24 = 1.05d, Db
34 = 2.1d.

Remarkably, the primary effect of making the symmetrized graph
fully connected is essentially in increasing the degree imbalance of
nodes 2 and 3, connected by edge e23, which is the bottleneck edge
of the unperturbed network without the shortcuts. As in the previ-
ous example, it is straightforward to show that this edge is also the
bottleneck of the fully connected symmetrized network. As a result,
the modified inequality c23 = 1.4d > a

4
(1 + 5.15d

a
) yields the bound

d∗ > 6.667a. Thus, the addition of the two small-world shortcuts
increases the synchronization criterion bound from d∗ = 0.91a to
d∗ = 6.667a, suggesting that the perturbed network becomes more
resistant to synchronization. Based on the Lyapunov functions used
to prove global stability of synchronization, our method gives suffi-
cient stability conditions in the form of upper bounds d∗. Therefore,
the magnitude of the predicted change in the synchronization sta-
bility criterion differs from the actual one estimated by numerically
calculated |λ2|, which decreased from 4.5061 to 3.3727 upon the
addition of the two shortcuts.

To convince the reader that the desynchronizing effect of small-
world connections is also present in larger directed networks, we
consider an unweighted directed ring of 30 oscillators with a single
reversed directed edge [Fig. 3(a)] and then modify this network by
adding four extra shortcut edges in a five-point star configuration
with the existing shortcut [Fig. 3(b)]. Applying our method to the
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unperturbed network of Fig. 3(a) (left), we obtain the symmetrized-
and-augmented network of Fig. 3(a) (right), which contains 51
weighted augmenting edges. Remarkably, the addition of the four
small-world shortcuts significantly reduces the number of augment-
ing edges in the corresponding symmetrized-and-augmented net-
work of Fig. 3(b) (right). More precisely, this addition preserves only
25 augmenting edges with weight d/20, making the other 26 aug-
menting edges disappear; instead, it only offers four symmetrized
connections corresponding to the four directed shortcuts. As the
augmenting edges help decrease the traffic load on the edges exist-
ing in the original directed network by offering detours around the
heavily loaded bottleneck edges, it is natural to hypothesize that the
disappearance of nearly a half of these augmenting shortcuts should
significantly worsen the synchronizability of the perturbed network.
This straightforward conclusion does offer a correct, qualitative pre-
diction, which leverages the predictive power of the “non-existent
ties” (augmenting edges) even without going into the detailed cal-
culations of the upper bounds through the stability criterion (5).
We knowingly omit these calculations and test this claim directly
through changes in the actual synchronization threshold a/|<λ2|
which, as predicted by the disappearance of 26 out of 51 augmenting
edges, indicates a sharp increase by more than an order of magni-
tude, from a to 15.15a upon the addition of the four small-world
shortcuts.

As in the previous examples, predicting this sharp change in
terms of a potential impact of the shortcut addition on the eigen-
value λ2—without actually calculating it—represents a significant
challenge and seems elusive. In light of this, the appearance or dis-
appearance of a large portion of “non-existent ties” might be used as
a simple indicator of a significant improvement or deterioration of
the network synchronizability.

V. COMPARISON WITH THE EXISTING METHODS

In order to compare the proposed augmented graph method
with the existing generalized connection graph method24 and the
eigenvalue-based methods,14,21,22 we consider two more networks of
coupled Lorenz oscillators (1)–(6) for which the numerically calcu-
lated constant a = 7.79 is chosen instead of the more conservative
analytical bound (7).

The first example (depicted in Fig. 4) is a 62-node network of
two identical undirected components with their hubs connected by
an asymmetrical coupling. The asymmetry introduced via parameter
ω induces 30 augmenting edges of strength ω−1

124
in the symmetrized-

and-augmented graph [Fig. 4(a) (bottom)]. As a result, increasing
ω lowers the actual synchronization threshold (d∗ = a/|<λ2|) and
its bounds due to the augmented graph and generalized connection
graph methods. The generalized connection graph, which consists
in symmetrizing directed connections, outperforms the augmented
graph method when the asymmetry is fairly small (ω < 2). In this
case, the contribution of weak augmenting edges is less signifi-
cant than an additional strengthening of the existing connections
due to the generalized connection method. However, the proposed
augmented graph method yields significantly lower bounds in the
stronger asymmetrical network (ω > 2), which approach the opti-
mal bounds due to the eigenvalue method. It is worth noticing
that increasing the asymmetry of the directed connection which

FIG. 4. (a) Network of two identical undirected components asymmetrically cou-
pled via their hubs. Each component is a four-nearest-neighbor ring of 30 nodes
with undirected connections to a hub. The coupling within each component has
uniform strength d. Asymmetrical connections between the hubs have strengths
d and ωd (top). Corresponding symmetrized-and-augmented network with aug-
menting edges (red dashed lines) all of strength ω−1

124
(bottom). (b) Bound on

the synchronization threshold d∗ in the asymmetrical network as a function of
parameterω, calculated by the augmented graphmethod (d∗

aug, bluemarkers), the

generalized connection graph method24 (d∗
gcg, red markers), and the eigenvalue

method (d∗ = a/|<λ2|, black markers). Constant a = 7.79 relates to networks
of x-coupled Lorenz oscillators (6). The augmented graph method yields signifi-
cantly lower bounds compared to the generalized connection graph method (for
ω > 2) and approaches the performance of the eigenvalue method when the
asymmetry increases via ω.

makes one component a stronger driver of the other consistently
improves the synchronizability. This observation agrees with the
previous study of networks, which are composed of two strongly
connected components and coupled via a weak directed link whose
strengthening can improve synchronization.58
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To further investigate how the relative performance of the
methods changes when network connectivity increases, we consider
the network of Fig. 5. This is a 2K-nearest-neighbor network with
additional outbound connections from one node to all other nodes.
The application of the augmented graph method to this network
yields a symmetrized-and-augmented graph, which has augmenting
edges of weight d

50
between every node pair except for those contain-

ing the source node (not shown). As a result, the augmented method
performs better than the generalized connection graph in sparser
networks with lower K [see Fig. 5 (bottom)] due to the stronger
impact of the added augmented edges. As the local connectivity of
the network increases with K, it approaches a complete network

FIG. 5. (a) 2K-nearest-neighbor ring of 100 nodes with additional directed con-
nections (blue arrowed lines) from one source node (pink). Undirected local
connections within the ring and directed shortcuts have strengths d and 2d,
respectively. (b) Bound on the synchronization threshold d∗ as a function of K,
calculated by the augmented graph method (d∗

aug), generalized connection graph

method (d∗
gcg), and the eigenvalue method. Constant a = 7.79 as in Fig. 4. The

augmented graph method performs significantly better than the generalized con-
nection method and closer to the eigenvalue method in sparser networks (with
lower K).

and the generalized connection graph method becomes more viable.
Notably, increasing K by one corresponds to the addition of two
reciprocal edges to the outbound edges from the source node,
reducing the degree imbalance of two nodes to zero. In terms of
the symmetrized-and-augmented graph, this reduces the number
of augmenting edges and worsens the relative performance of the
augmented graph method as K increases.

In the above examples, we have chosen shortest paths to derive
the synchronization bounds (5). While this choice is convenient
and often unique in a sparse network, it often leads to the appear-
ance of bottleneck edges with a high traffic load bk, which makes
the synchronization bound conservative. In light of this, the per-
formance of the augmented graph method can be improved by
optimizing the choice paths between two nodes through a simple
algebraic rearrangement. This is particularly relevant to dense net-
works, which offer a rich choice of possible paths between nodes.
We have developed such an optimization algorithm that reroutes
certain paths through “high-traffic” edges and, therefore, lowers
the synchronization bound (5) for the bottleneck edge by increas-
ing synchronization bounds for other less loaded edges of the
symmetrized-and-augmented graph. This algorithm is described in
Appendix B through an example of the network depicted in Fig. 6.
Its Python implementation is available online.59

VI. CONCLUSIONS

The synchronizability of directed oscillator networks with dif-
fusive coupling is known to be controlled by the eigenvalues of
the Laplacian connection matrix. However, the general problem of
explicitly assessing how a structural modification of the directed net-
work topology (for example, the addition, removal, or re-weighting
of an edge) changes the spectrum of the connectivity matrix is far
from being solved. Therefore, it is often difficult to predict signifi-
cant changes in the synchronizability of a directed network caused
by local modifications of its structure, unless a specific class of
weakly coupled directed networks and small structural perturba-
tions are considered.58

In this paper, we sought to close this gap by creating a novel
connection graph stability method, which links the synchronizabil-
ity of a directed network with its possible structural modifications
without relying on the spectrum of the Laplacian connection matrix.
This augmented graph method for determining global stability of
synchronization in a directed network combines the Lyapunov func-
tion method with graph theoretical quantities such as the degree
imbalance of a node and a traffic load on an edge. Drawing paral-
lels to traffic on busy streets, we defined the traffic load on an edge
as the total weighted length of the chosen paths that pass through the
edge. The principal novel component of the method is in symmetriz-
ing and augmenting the directed graph and analyzing the non-local
effects of the mean degree imbalance among nodes that control the
appearance of augmenting edges. Remarkably, the emergence or dis-
appearance of the augmenting edges (termed as “non-existent ties”)
due to the addition or removal of an edge in the original directed
network help predict large-magnitude changes in the synchroniz-
ability of directed networks. In particular, we demonstrated that the
addition of small-world connections to a directed network surpris-
ingly worsens its synchronizability, provided that this addition leads
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to the disappearance of a large fraction of augmenting edges in the
symmetrized-and-augmented network.

Based on the application of Lyapunov functions, our method
gives sufficient stability conditions though it might not always pre-
dict the precise, and often complex, dependence of the coupling
synchronization threshold on all possible modifications of a directed
network. However, it provides a robust and direct characterization
of this dependence on the mean degree imbalance controlling the
“non-existent ties.” Being an extension of the generalized connec-
tion method,24 our method usually out-performs the latter in sparse
and multi-component networks, where the addition of augment-
ing edges between distant or poorly connected nodes has a stronger
impact on reducing the stability bound. With the help of the devel-
oped optimization algorithm aimed to evenly distribute traffic loads
on the edges and avoid bottlenecks, our method often approaches
the optimal performance of the eigenvalue-based methods in dense
networks, where the choice of possible paths is abundant.

A combination of our method with the multilayer connection
graph method52 for predicting the stability of synchronization in
undirected networks with multiple layers of coupling promises to
become a fundamental tool for studying synchronization in directed
multilayer networks, which otherwise cannot be effectively handled
by the eigenvalue-based methods. This is due to the fact that the
connectivity matrices corresponding to two or more connection
layers do not commute in general, and, therefore, the eigenvalues
of the connectivity matrices cannot be directly used. The multi-
layer networks are known to exhibit striking, counterintuitive effects
when the replacement of a lightly loaded edge in one layer with a
coupling from another layer improves the synchronization, but a
similar replacement of a highly loaded edge can make the network
unsynchronizable.52 The richness of synchronization behavior in
undirected multilayer networks together with the nontrivial effects
of edge addition in directed single-layer networks described in this
paper call for studies of synchronization in directed multilayer
networks and represent a subject of future work.

APPENDIX A: THE PROOF OF THEOREM 1

In this appendix, we develop the augmented connection graph
method and prove Theorem 1. Our goal is to derive upper bounds
on the coupling strength that guarantees global asymptotic stability
of the synchronization manifold S in the system (1). To develop our
stability method, we follow the steps of the proof of the generalized
connection graph method,24 up to a certain step where we introduce
a new stability argument via the addition of augmenting edges.

We introduce the difference variables

Xij = xj − xi, i, j = 1, . . . , n, (A1)

whose global convergence to zero will imply the transversal global
stability of the synchronization manifold S. Then, we subtract the
ith equation from the jth equation in network system (1) to obtain
the equations for the transversal stability of S

Ẋij = F(xj) − F(xi) + d

n
∑

k=1

{wjkPXjk − wikPXik}, i, j = 1, . . . , n.

(A2)

The function difference F(xj) − F(xi) can be rewritten in a
compact vector form

F(xj) − F(xi) =





1
∫

0

DF(vxj + (1 − v)xi)dv



Xij,

where DF is the h × h Jacobian matrix of F. Therefore, we obtain

Ẋij =





1
∫

0

DF(βxj + (1 − v)xi)dv



Xij

+ d

n
∑

k=1

{wjkPXjk − wikPXik}, i, j = 1, . . . , n. (A3)

We will prove global stability of complete synchronization in
the network (1) by showing that the equilibrium O = {Xij = 0,
i, j = 1, . . . , n} can be made globally asymptotically stable by
increasing the coupling strength. The first intrinsic term in Eq. (A3)
yields instability via the divergence of trajectories within the indi-

vidual, possibly chaotic oscillators. The second term d
n
∑

k=1

{wjkPXjk

− wikPXik} accounts for the contribution of the directed network
connections and may overcome the unstable term, provided that the
coupling is strong enough.

As in the derivation of the generalized connection graph
method,24 the difference variable system (A3) is redundant and con-
tains all possible (n − 1)n/2 non-zero differences Xij. Technically,
only n − 1 linearly independent differences are necessary to prove
the convergence between n variables Xij. However, the consideration
of all non-zero Xij are a key component of our method, which allows
cross terms to disappear in the stability description which follows.

We add and subtract additional terms aPXij from the difference
system (A3) and obtain

Ẋij =





1
∫

0

DF(vxj + (1 − v)xi)dv − aP



Xij + aPXij

+ d

n
∑

k=1

{wjkPXjk − wikPXik}, i, j = 1, . . . , n, (A4)

where the positive parameter a is to be determined.
The introduction of the terms aPXij allows for deriving stability

conditions of fixed point Xij = 0, i, j = 1, . . . , n in two steps. Notice
that the negative terms −aPXij promote the stability of the fixed
point such that increasing parameter a can help overcome instabil-
ities caused by positive eigenvalues of the Jacobian DF. At the same
time, the instability induced by the positive terms +aPXij can be
compensated by the coupling terms via increasing d.

We first introduce the following auxiliary systems for
i, j = 1, . . . , n obtained by removing +aPXij and the coupling terms
from system (A4)

Ẋij =





1
∫

0

DF(vxj + (1 − v)xi) dv − aP



Xij. (A5)

Chaos 30, 043102 (2020); doi: 10.1063/1.5134920 30, 043102-11

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Notice that system (A5) coincides with the difference system for
global stability of synchronization in a two-oscillator directed net-
work (1) with w12 > 0 and w21 = 0

Ẋ12 =





1
∫

0

DF(vx2 + (1 − v)x1) dv − w12dP



X12, (A6)

where w12d represents the parameter a.
Our immediate goal is to place an upper bound on the value of

w12d = a which makes the trivial fixed point X12 = 0 of system (A6)
globally stable and, therefore, guarantees global stability of synchro-
nization in the simplest two-oscillator directed network (1). This
also places a constraint on the choice of the individual oscillator as
only Type I oscillators5 are capable of synchronizing globally and
maintaining synchronization for any coupling strength exceeding
the critical threshold a. As a result, our proof is limited to Type
I oscillators. The derivation of this upper bound involves the con-
struction of a Lyapunov function W = 1

2
XT

12 · Ih · X12, where Ih is an
h × h identity matrix and proving that its derivative along the solu-
tions of system (A6) is negative definite, provided that w12d > a.
This is a fairly straightforward calculation for Type I oscillators
that was performed, for example, for x-coupled Lorenz oscillators in
Ref. 23 and for coupled Hindmarsh–Rose neuron models in Ref. 27,
where the synchronization threshold a for a two-node network was
explicitly connected with the individual oscillators’ parameters [see
the bound (7) for two coupled Lorenz systems (6)].

Using this bound a, which guarantees the stability of the aux-
iliary systems (A5), we can reduce the stability analysis of the full
system (A4) to the following system by eliminating the term in
brackets so that

Ẋij = aPXij + d

n
∑

k=1

{wjkPXjk − wikPXik}, (A7)

where the positive term aPXij, controlled by the bound a, promotes
instability and must be compensated for by the coupling term.

We introduce a Lyapunov function

V =
1

4

n
∑

i=1

n
∑

j=1

XT
ij · Ih · Xij, (A8)

whose time derivative along trajectories of system (A7) is

V̇ =
1

2

n
∑

i=1

n
∑

j=1

aXT
ijPXij −

1

2

n
∑

i=1

n
∑

j=1

n
∑

k=1

d{wjkX
T
jiPXjk + wikX

T
ikPXij}.

(A9)

Performing simple algebraic manipulations (see Ref. 70 for the
details of this passage), we can bound the right-hand side (RHS) of
(A9) as follows:

V̇ ≤
n−1
∑

i=1

n
∑

j>i

aXT
ijPXij − nd

n−1
∑

i=1

n
∑

j>i

wij + wji

2
XT

ijPXij

+
n−1
∑

i=1

n
∑

j>i

Db
i + Db

j

2
XT

ijPXij, (A10)

where Db
i =

n
∑

k=1

wkid and Dc
j =

n
∑

k=1

wkjd are the ith and jth column

sums of the connection matrix D, respectively. In terms of graph
quantities, the column sum Db

i =
∑

k 6=i

wkid −
∑

k 6=i

wikd amounts to the

difference between the sums of the coupling weights of all its out-
going edges (the out-degree of node i) and of all its incoming edges
(the in-degree). We call this quantity the degree imbalance of node

i. The quantity
Db

i +Db
j

2
= Db

ij is then the mean degree imbalance for a

pair of nodes i and j.
The negative definiteness of V̇ implies the stability of the differ-

ence system (A4). Therefore, we need to find the conditions under
which the RHS of inequality (A10) is a negative quadratic form. This
yields the following inequality:

s
∑

ν=1

n
∑

j=1,i>i

wij + wji

2
dXν 2

ij −
s
∑

ν=1

n
∑

j=1,i>i

d

n
Db

ijX
ν 2
ij

>
a

n

s
∑

ν=1

n
∑

j=1,i>i

Xν 2
ij , (A11)

where we have replaced the vector terms XT
ijPXij with their scalar

components Xν 2
ij = (xν

j − xν
i )

2, ν = 1, . . . , s (recall that the h × h

projection matrix P couples the oscillators through their s first
variables).

In (A11), the coupling weights
wij+wji

2
correspond to edges on

the symmetrized connection graph obtained by replacing a direct
edge from node i to node j and an edge in the reverse direction by
an undirected edge with the mean coupling weight. Therefore, the
difference variables Xij in the first sum on the left-hand side (LHS) of
(A11) correspond to pairs of nodes directly connected by an edge on
the symmetrized graph. At the same time, the difference variables in
the second sum on the LHS and the sum on RHS correspond to any
possible pairs of nodes. Notice that the mean degree imbalance Db

ij

between nodes i and j may be positive, negative, or zero. Therefore,
pairs of nodes with negative Db

ij yield positive terms in the second

sum on LHS and are favorable for lowering inequality (A11). On
the contrary, negative terms dDb

ijX
ν 2
ij with Db

ij > 0 worsen inequality

(A11) and should be assigned to the RHS.
So far, we have closely followed the steps of the derivation of

the generalized connection graph method,24 in which one assigns
each negative term d

n
Db

ijX
ν 2
ij with Db

ij > 0 to the RHS if nodes i and

j are not directly connected by an edge on the directed graph D. As
a result, the remaining positive terms d

n
Db

ijX
ν 2
ij with Db

ij < 0, where

i and j are linked by an edge on D are left on the LHS and com-

bined with the terms
wij+wji

2
dXν 2

ij . This amounts to weighing the

symmetrized connection graph by adding an extra coupling | d
n
Db

ij|
to the existing symmetrized edge with coupling

wij+wji

2
d.

While this redistribution of the positive and negative terms
d
n
Db

ijX
ν 2
ij preserves the structure of the symmetrized graph and

makes the application of the generalized connection graph method24

convenient, assigning the positive terms with Db
ij < 0 differently can

be of help for improving the synchronization criterion in certain
classes of directed networks, as shown in Sec. V. Here, we take this
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route, which leads to our augmented graph stability method. Thus,
in contrast to the generalized connection graph method, we keep all
terms dDb

ijX
ν 2
ij with Db

ij < 0 on the LHS of (A11). This amounts to

symmetrizing and weighing the original directed connection graph
D and adding a new undirected edge between nodes i and j if their
mean degree imbalance Db

ij < 0 and the nodes are not directly con-

nected via the original directed graph. Therefore, to each edge k on
the symmetrized-and-augmented connection graph C, we assign the
following coupling weight:

ck =



















c
sym

k for existing edge k with Db
ij ≥ 0,

c
sym

k + c
aug

k for existing edge k with Db
ij < 0,

c
aug

k =

∣

∣

∣

∣

∣

Db
ij

n

∣

∣

∣

∣

∣

for augmenting edge k, where

c
sym

k =
wij + wji

2
d, c

aug

k =

∣

∣

∣

∣

∣

Db
ij

n

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Db
i + Db

j

2n

∣

∣

∣

∣

∣

.

(A12)

Denote the difference variables Xν
ij on the LHS of (A11) by Xν

k , where

k = 1, . . . , m indicates an edge on the symmetrized-and-augmented
graph C. Notice that the graph C may contain more edges than the
original directed graph D, due to the presence of augmenting edges.
Thus, in terms of the undirected connection graph C, inequality
(A11) can be re-written as follows:

s
∑

ν=1

m
∑

k=1

ckX
ν 2
k >

a

n

s
∑

ν=1

n
∑

j=1,i>i

(

1 + χ

(

Db
ij

2a

))

Xν 2
ij , (A13)

where the function χ(ξ) =
{

ξ , if ξ > 0
0, if x ≤ 0

indicates that only terms

Db
ij

2a
> 0 are taken into account on the RHS. As in the connection

graph method for undirected networks,23 we seek to express all dif-
ference variables Xν

ij, i, j = 1, . . . , n on the RHS of (A13) through the

difference variables Xν
k on the LHS that correspond to edges of the

symmetrized-and-augmented graph C. This can be done by choos-
ing a path from node i to node j for any pair of oscillators (i, j). We
denote this path by Pij. Its path length |Pij| is the number of edges
comprising the path. For example, if the path P14 passes through
nodes with indices 1, 2, 3, and 4, then the difference variables can
be written as Xν

14 = xν
4 − xν

1 = (xν
4 − xν

3) + (xν
3 − xν

2) + (xν
2 − xν

1)

= Xν
12 + Xν

23 + Xν
34, where the differences Xν

12, X
ν
23, and Xν

34 corre-
spond to the edges and the path length |P14| = 3. As we have to
deal not with the variables Xν

ij, but with their squares Xν 2
ij , we apply

the Cauchy–Schwartz inequality, which yields in the above example:
Xν 2

14 = (Xν
12 + Xν

23 + Xν
34)

2 ≤ 3(Xν 2
12 + Xν 2

23 + Xν 2
34 ), where the factor

3 indicates the number of edges comprising the path.
Depending on the sign of mean degree imbalance Db

ij, some of

the path lengths will be weighted due to the presence of nonunit

factors

(

1 +
Dc

i +Dc
j

2a

)

on the RHS of inequality (A13). Thus, for any

pair of nodes i and j, we associate to each chosen path Pij its weighted
length

L(Pij) =







∣

∣Pij

∣

∣ = 1 if Db
ij < 0,

(

1 +
Db

ij

a

)

Pij otherwise.
(A14)

Note that a pair of nodes i and j with the mean degree imbalance
Db

ij < 0 is always connected by either an augmenting edge k with

coupling strength c
aug

k or by a weighted combination of the augment-
ing edge and a symmetrized edge with the total strength c

sym

k + c
aug

k .
As a result, the corresponding weighted path length L(Pij) simply
equals |Pij| = 1.

Replacing the square terms Xν 2
ij on the RHS with their bounds

expressed via Xν 2
k and collecting the weighted path lengths L(Pij), we

can turn inequality (A13) into the following condition:

s
∑

ν=1

m
∑

k=1

ckX
ν 2
k >

a

n

s
∑

ν=1

m
∑

k=1

bkX
ν 2
k , (A15)

where bk =
n
∑

j>i; k∈Pij

L(Pij) is the total weighted length of the chosen

paths Pij that go through a given edge k on the symmetrized-and-
augmented graph C. Dropping the summation signs and the dif-
ference variables, we obtain the criterion on the coupling strengths
of each edge of the symmetrized-and-augmented graph C, which
guarantees positive definiteness of the time derivative V̇,

ck >
a

n
bk, k = 1, . . . , m. (A16)

Therefore, under condition (A16), complete synchronization in the
original directed network (1) is globally asymptotically stable. This
completes the proof of Theorem 1.

APPENDIX B: THE OPTIMIZATION ALGORITHM

The optimization algorithm for choosing paths that minimize
the synchronization bound (5) is as follows:

• Step A: Allocate an indexable queue Q of path choices where each
entry of Q contains a choice of a path from every node to every
other node. Initialize Q with a single element containing the set
of one shortest path between each node pair. Denote by Q0 the
first entry of Q at the current iteration, that is, the next choice
of paths to consider, being the least recently inserted entry. Con-
sider a set V of elements, which have been removed from Q;
initially, V is the empty set. Let d? be the current best bound on the
synchronization threshold determined by the algorithm. Initially,
d? = ∞.

• Step B: Compute the synchronization bound (5), d?
new, for the

symmetrized-and-augmented network, using the choice of paths
Q0. Identify the bottleneck edge euv, which yields the synchro-
nization bound. Pick a chosen path Pij between two nodes i, j that
traverses the bottleneck edge and reroute the path through a dif-
ferent vertex adjacent to u. Replace Pij with the rerouted path in
Q0 and store the resulting set of paths in a new variable Q1.

• Step C: If, and only if, d?
new < d?, reset d? = d?

new, and if Q1 6∈ V,
insert Q1 into Q and V.

• Step D: Repeat steps B and C until Q is empty.
• Step E: When the procedure terminates, d? is the lowest bound on

the synchronization threshold obtainable by this algorithm.

Figure 6 presents a simple example of a dense network for
which our optimization algorithm significantly improves the syn-
chronization bound d∗. The use of the shortest path between each
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FIG. 6. An example of a network for which the optimization algorithm significantly
lowers the bound (A13), from d? = 10a to d? = 2a. The eigenvalue-based bound
is a

|<λ2 |
= a. (Top): Directed network with uniform coupling strength d. (Bottom):

Corresponding symmetrized-and-augmented graph with four augmenting edges
(red dotted lines).

node pair to calculate traffic load bk in (5) yields a conserva-
tive upper bound on the synchronization threshold: d∗

12 = 10a due
to the long path P24 = e21, e14 through the bottleneck edge e12

in the symmetrized-and-augmented graph [Fig. 6 (bottom)]. Our
algorithm then attempts to reroute each chosen path which goes
through the bottleneck edge e12. The rerouting of path P24 through
edges e26 and e64 yields the inequality d∗

12 > 2a on the bottleneck
edge without producing a worse bound on any other edge. There-
fore, the bound is reduced significantly, i.e., by a factor of 5, due
to reduced traffic load on edge e12. Further re-routings do not yield
improvements on this bound. Therefore, the procedure terminates
after seven iterations. Further details of the above calculations can
be found in a Python implementation of the optimization algorithm
applied to this network.59
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