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ABSTRACT

Chaotic attractors appear in various physical and biological models; however, rigorous proofs of their existence and bifurcations are rare. In
this paper, we construct a simple piecewise-smooth model which switches between three three-dimensional linear systems that yield a singular
hyperbolic attractor whose structure and bifurcations are similar to those of the celebrated Lorenz attractor. Due to integrability of the linear
systems composing the model, we derive a Poincaré return map to rigorously prove the existence of the Lorenz-type attractor and explicitly
characterize bifurcations that lead to its birth, structural changes, and disappearance. In particular, we analytically calculate a bifurcation
curve explicit in the model’s parameters that corresponds to the formation of homoclinic orbits of a saddle, often referred to as a “homoclinic
butter�y.” We explicitly indicate the system’s parameters that yield a bifurcation of two heteroclinic orbits connecting the saddle �xed point
and two symmetrical saddle periodic orbits that gives birth to the chaotic attractor as in the Lorenz system. These analytical tasks are out of
reach for the original nonintegrable Lorenz system. Our approach to designing piecewise-smooth dynamical systems with a prede�ned chaotic
attractor and exact solutions may open the door to the synthesis and rigorous analysis of hyperbolic attractors.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5115789

Does the Lorenz attractor exist? Although the Lorenz attractor1 is
an icon of chaos theory andhas held that title since 1963, it was not
until 1999 that the question of its existence was answered in the
a�rmative via a rigorous computer-assisted proof.2,3 Obstacles to
proving the existence of a chaotic attractor in a nonlinear system
of ordinary di�erential equations (ODEs) include one’s inability
to obtain exact solutions due to nonintegrability of the under-
lying dynamical system. To avoid this obstacle, we propose an
elegant geometrical method of synthesizing a piecewise-smooth
ODE system that can switch between several linear systems with
known exact solutions that can display a chaotic attractor whose
structure and bifurcations can be described rigorously without
any computer assistance. This strange chaotic attractor resem-
bles the Lorenz attractor and has similar bifurcation properties.
We analytically construct a Poincaré return map to character-
ize a bifurcation sequence that causes the emergence and disap-
pearance of the chaotic attractor and calculate the corresponding

bifurcation curves expressed explicitly via the system’s parame-
ters.We also rigorously prove that one of the Lyapunov exponents
of each trajectory comprising the attractor is positive, thereby
demonstrating its chaoticity. Our geometrical approach promises
to allow for constructing analytically tractable piecewise-smooth
dynamical systems that can reproduce main properties of other
known attractors, including the Rössler attractor that is notori-
ously known for its resistance to analytical studies.

I. INTRODUCTION

The classical Lorenz attractor1 has been the symbol of chaotic
dynamics for more than 50 years. The discovery of the Lorenz attrac-
tor led to formulating a general concept of a strange attractor4which,
in simplewords,5 is an attracting, invariant limit set composed of only
unstable trajectories.
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The Lorenz system and its extensions were studied in detail
through geometrical models6–14 by constructing discrete-time maps
that model the behavior of �ow-generated Poincaré return maps.
Rigorous studies of the geometrical models revealed major bifurca-
tional properties of the Lorenz attractor that were also con�rmed via
numerical simulations. These properties include bifurcational routes
to the birth of the strange chaotic attractor in the Lorenz system such
as (i) the major route (COD1) through a codimension-one bifurca-
tion that involves the formation of two heteroclinic orbits of the sad-
dle �xed point that connect to two symmetric saddle periodic orbits7,8

and (ii) a codimension-two bifurcation route (COD2) through a
codimension-two bifurcation of a homoclinic butter�y with a zero
saddle value.11–13 Other details of the �ne bifurcation structure of the
Lorenz system associated with the birth, evolution, and disappear-
ance of the Lorenz attractor were studied through computer-assisted
and numerical methods.7,15–25 This body of work includes a detailed
computational analysis of the existence of in�nitely many periodic
orbits with speci�c symbolic signatures related to homoclinic and
heteroclinic bifurcations involving intersections with the stableman-
ifold of the saddle �xed point.15,18,20 A computer-assisted proof of
the existence of the chaotic Lorenz attractor was recently given in
Ref. 2. More speci�cally, this computer proof relied on interval-
arithmetic techniques for estimating the computational errors and
demonstrated that the Lorenz system has a chaotic attractor in a
small neighborhood of the classical parameter values.15 Earlier com-
puter proofs of the existence of chaotic (not necessarily attracting)
dynamics in the Lorenz system used a shooting method21 and the
demonstration of the existence of a horseshoe in the �ow-de�ned
Poincaré map22 and positive topological entropy.24

Extending earlier results11–13 related to the codimension-two
bifurcation route COD2, an analytical (free of computer assistance)
proof of the Lorenz attractor existence in an extended Lorenz sys-
tem was presented in Ref. 26. This proof relied on the veri�cation
of the Shilnikov criteria27 on the birth of a strange attractor and was
based on the study of a small vicinity of a codimension-two bifurca-
tion point, which corresponds to the homoclinic butter�y with a zero
saddle value and, therefore, requires a simultaneous change of two
parameters to reach it. These results represent signi�cant progress in
completely rigorous studies of the Lorenz system and its extension.
However, a rigorous analytical study of the emergence of the Lorenz
attractor through the codimension-one heteroclinic bifurcation via
the main route COD1 seems elusive. Such a study would require
analytically �nding these heteroclinic orbits in the original Lorenz
system to explicitly identify the corresponding system parameters.
This study is associatedwithmany technical di�culties due to nonin-
tegrability of the nonlinear Lorenz system and, therefore, remains out
of reach. However, rigorous computer-assisted methods,28 includ-
ing a priori bootstrap,23 yielded a parameter-dependent study of the
Lorenz system and validated heteroclinic connections related to the
main bifurcation route COD1. Similarly, while a rigorous analyti-
cal proof29 of a homoclinic bifurcation (the homoclinic butter�y) in
the Lorenz system dates back to 1984, determining explicit parame-
ters under which the bifurcation occurs in the Lorenz system is only
possible via computer-assisted methods.25

In this paper, we address these problems in a di�erent setting
wherewe replace the original Lorenz systemwith a piecewise-smooth
ODE system, which switches between three linear systems andwhose

structure and chaotic attractor are similar to those of the Lorenz
system. As trajectories of the piecewise-smooth systems are “glued”
from trajectories of the linear systems, we are able to rigorously
prove the existence of a strange attractor and explicitly indicate the
system’s parameters that correspond to the codimension-one het-
eroclinic bifurcation and the main route COD1 as in the Lorenz
system.

Piecewise-linear and piecewise-smooth systems were widely
used in dynamical systems theory in di�erent contexts and
applications.30–33 Their potential advantage over their nonlinear
counterparts is the ability to derive explicit solutions in some par-
titions of a system’s phase space and “glue” the solutions at the parti-
tions’ boundaries. Traditionally, piecewise-linear dynamical systems
are derived from nonlinear dynamical systems by replacing nonlin-
earities with piecewise-linear functions to replicate the dynamics of a
given nonlinear system and simplify its analysis. The classical exam-
ple of such a replacement is the seminal work by Levinson34 that
targeted the dynamics of the driven Van der Pol equation where the
term (x2 − 1) was approximated by a piecewise constant function.34

The use of the piecewise-linear system allowed Levinson to provide
a rigorous basis for the classical result by Cartwright and Littlewood
on the emergence of a complicated set of periodic orbits in the driven
Van der Pol equation,35 which is largely viewed as a �rst example of a
deterministic system with possible chaotic behavior.

Piecewise-linear systems were also used to approximate and
model the dynamics of the Lorenz system. Examples include a
Lorenz-type piecewise-linear system36 and a partial and complete
linearized version of the Lorenz system37 which were proposed to
simplify chaotic circuit implementations for potential engineering
and physics applications of chaos. Yet, no rigorous insights into the
bifurcation structure of the piecewise-linear Lorenz systems were
given.

Another large class of dynamical systems is piecewise-smooth
dynamical systems30,31,38 widely used in engineering as relay, auto-
matic control, and switching systems.39–42 An important example of
such a piecewise-smooth system is a model of human gait,43 which
switches between two potentially linear systems44 when a walker
switches from one leg to the other. As a result, the trajectory of
the piecewise-smooth system is composed of two linear solutions,
thereby allowing one to derive exact forms of the walker’s periodic
motion.45

In this work, we exploit the simplicity of piecewise-smooth
dynamical systems toward developing a new approach to construct-
ing analytically tractable piecewise-smooth dynamical systems that
can reproduce main properties of a chaotic nonlinear system and
facilitate its rigorous analysis. Our approach is motivated by the fol-
lowing logic. Suppose that a bifurcation structure of a chaotic attrac-
tor in a nonlinear, nonintegrable system, be it the Lorenz, Chua,46 or
Rössler47 system, is known to a certain degree from direct numerical
simulations. Can one construct a piecewise-smooth system for which
it is possible to rigorously describe both the structure of the chaotic
attractor and explicitly identify bifurcation routes to its emergence
and disappearance that match the numerically revealed properties of
the original nonlinear system?

This work provides a positive answer to this question and
introduces a simple piecewise-smooth model which switches
between three three-dimensional linear systems that yield a singular
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hyperbolic attractor whose structure and bifurcations are similar to
those of the Lorenz attractor.Due to integrability of the linear systems
composing the model, we derive an exact Poincaré return map to
rigorously prove the existence of a chaotic Lorenz-type attractor and
characterize the two bifurcation routes COD1 and COD2 to the birth
of the strange attractor explicit in the system’s parameters. Using the
explicit Poincaré return map, we prove that a Lyapunov exponent of
each trajectory composing the attractor is positive and demonstrate
that the attractor is chaotic and belongs to the class of the Lorenz-
type singular hyperbolic attractors.48–50 Note that in contrast to the
classical hyperbolic attractors such as Anosov di�eomorphisms51 and
Smale-Williams solenoids,52 which are chaotic and structurally sta-
ble, Lorenz-type attractors undergo a countable number ofmultiloop
homoclinic bifurcations at which the attractors become structurally
unstable and, therefore, are called singular hyperbolic.

Our approach is not limited to the Lorenz system, but rather
applicable to other chaotic ODE systems whose bifurcation struc-
ture, chaoticity, and hyperbolicity are yet to be described rigor-
ously. Strange hyperbolic attractors are hard to �nd in real physical
systems described by ODEs. Several candidates of such nonlinear
ODE systems with the Plykin attractor53,54 and the Smale-Williams
solenoids55,56 were identi�ed. A numerical analysis of these attrac-
tors gave a convincing argument in favor of their hyperbolicity;56

yet, a rigorous proof is still missing. In light of this, our approach
to designing piecewise-smooth dynamical systems with a prede�ned
chaotic attractor and explicit solutions may open the door to the
synthesis and an analytical proof of hyperbolic chaos in such sys-
tems. This approach complements our previous study57 which sug-
gested a way of embedding a singular hyperbolic attractor of a 2D
map with singularities (the Belykh map) into the 3D phase space
of a piecewise-smooth ODE system. This ODE system possesses a
singular hyperbolic attractor whose chaotic and ergodic properties
can be rigorously proved.58

The layout of this paper is as follows. First, in Sec. II, we give the
details of the model construction, discuss the phase space partition,
and characterize possible behavior of glued trajectories, including
sliding motions. In Sec. III, we construct an explicit Poincaré return
map that can be cast into a triangular form. In Secs. IV andV, we ana-
lyze the dynamics of this map and prove the existence of a singular
hyperbolic strange attractor and explicitly point out major bifurca-
tions associated with the emergence of the attractor. In Sec. VI, we
close the loop by going back to the �ow dynamics of our piecewise-
smooth system and connect the dynamics of the Poincaré return
map to the trajectories of the original ODE system. By doing so,
we give analytical proofs of bifurcations leading to the birth of the
strange attractor and explicitly link these bifurcations to the system’s
parameters. Section VII provides concluding remarks.

II. PIECEWISE-SMOOTH MODEL AND ITS PROPERTIES

The application of our approach to constructing a piecewise-
smooth ODE system that reproduces known, possibly chaotic
dynamics of a given ODE requires particular skills and a certain kind
of �nesse for constructing homoclinic and saddle orbits. However,
a general recipe can be given in the spirit of a school project which
begins with a “shoe box,” “colored wires,” and “glue” (see Fig. 1 to
appreciate the analogy). The recipe is as follows: (I) Identify �xed
points of the given system and partition the phase space into the cor-
responding regions each containing one �xed point (cut the shoe box,
add internal sections, and assign a color to each partition); (II) for
each �xed point, write a normal form that describes linear dynam-
ics around the �xed point and let this system govern all trajectories
in the corresponding partition of the phase space (cut and install the
wires (trajectories) according to their color coding); (III) arrange for
switching from one linear system to another at the separating sec-
tions to ensure the continuity of one trajectory by another from the

FIG. 1. The evolution of the unstable one-dimensional manifolds of saddle Os as a function of parameters b and ν. The phase space is partitioned into three regions Gs, Gl ,
and Gr (not shown). The box-shaped saddle area is formed by the vertical half-planes S1 and S2 and the horizontal section D (green plane). The left and right focus regions
are separated by the saddle region and the Z-shaped section Zs. Stable foci el and er determine the dynamics in the focus regions. Emanating from Os, the unstable manifold
is composed from the parts of the saddle (blue) and focal (red) trajectories. (a) b = 1.6 < bh, ν = 0.65. Point M1 lies in the region x > 0. The saddle part of the manifold
W u

1 with the initial point M1 returns to the boundary S1 (blue part of the trajectory). (b) b = bh = 2, ν = 0.65. Point M1 falls on the stable manifoldW
s so thatW u

1 returns to
Os and forms the right homoclinic orbit. Similarly, the left symmetrical unstable manifoldW

u
2 continued from pointM2 forms the left homoclinic orbit, completing the homoclinic

butterfly. (c) b = 2.6, ν = 0.9. Point M1 falls into the region x < 0. The saddle part of W u
1 originating from point M1 switches to the left and heads toward the left focus el .

The trajectories are calculated numerically. Other parameters are α = 2, λ = 0.294, ω = 2, and δ = 0.588.
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di�erent phase partition (connect and glue the colored wires at the
separating sections); (IV) tweak the normal forms and adjust the par-
titions for a desired result. In more scienti�c terms, the construction
of the piecewise-smooth system originates from the knowledge of the
dynamics and bifurcations of the Poincaré returnmapwhich informs
the phase space partition and the choice of speci�c linear systems.

In the following, we will start with the description of our switch-
ing piecewise-smooth ODE system and then construct a Poincaré
return map which will be used for elucidating the main bifurcations
and chaoticity of the attractor. However, in a historical retrospective,
we �rst designed the simplest Poincaré return map which repro-
duced the main properties and bifurcations of the Lorenz system and
then synthesized theODE system,whichmatches the Poincaré return
map, according to the recipe described above.

A. Model construction

We construct our switching piecewise-smooth system from the
following three-dimensional linear subsystems As, Al, and Ar :

As :
ẋ = x,
ẏ = −αy,
ż = −νz,

(x, y, z) ∈ Gs,

Al :
ẋ = −λ(x + 1) + ω(z − b),
ẏ = −δ(y + 1),
ż = −ω(x + 1) − λ(z − b),

(x, y, z) ∈ Gl,

Ar :
ẋ = −λ(x − 1) − ω(z − b),
ẏ = −δ(y − 1),
ż = ω(x − 1) − λ(z − b),

(x, y, z) ∈ Gr ,

(1)

where α, δ, ν, ω, λ, and b are positive parameters. These subsystems
are de�ned in the following partitions of the system’s phase space,Gs,
Gl, and Gr , respectively:

Gs : |x| < 1, y ∈ R
1, z < b,

Gl :











x ≤ −1 for z ≤ b,

x ≤ −1 for z > b and y ≥ 0,

x < 1 for z > b and dy < 0,

Gr :











x ≥ 1 for z ≤ b,

x ≥ 1 for z > b and y < 0,

x > −1 for z > b and y ≥ 0.

(2)

As the original Lorenz system, system (1) is invariant under the
involution (x, y, z) → (−x,−y, z) and has three equilibria. The lin-
ear subsystem As governs the dynamics of system (1) in the region
Gs. This system has a saddle �xed point Os at the origin; therefore,
we code-name Gs a saddle region. The subsystems Ar,l are de�ned in
the regions Gr,l and have symmetrical equilibria er,l = {±1,±1, b},
respectively. These equilibria are stable three-dimensional foci in the
subsystems Ar,l but may change their stability in full system (1). We
code-name Gr and Gl as right and left focus regions, respectively.

The saddle region Gs is bounded on the right and left by the
vertical half-planes S1 = {x = 1, y ∈ R

1, z < b} and S2 = {x = −1,
y ∈ R

1, z < b} (see Fig. 1). It is also bounded from above by the part

of the planeD = {|x| ≤ 1, y ∈ R
1, z = b} (the green horizontal plane

in Fig. 1). Below the plane D, the focus regions Gl and Gr are located
to the left and right of the vertical half-planes S2 and S1, respectively.
Above the plane D where there is no saddle region, the focus regions
are separated by the gray Z-shaped boundary Zs (see Fig. 1).

Note that the linear subsystemsAs,Al, andAr composing system
(1) are normal forms for a three-dimensional saddle and two stable
foci, respectively, and have simple analytical solutions. Namely, the
solution of the saddle system As with initial conditions in the plane
D with z(0) = b is

x(t) = x(0)et ,

y(t) = y(0)e−αt ,

z(t) = be−νt .

(3)

The solution of the focus system Ar with initial conditions
x(0) = x0 = 1, y(0) = y0, z(0) = z0 on S1 has the form

x(t) = 1 + (b − z0)e
−λt sin(ωt),

y(t) = 1 + (y0 − 1)e−δt ,

z(t) = b − (b − z0)e
−λt cos(ωt).

(4)

Similarly, the solution of the focus system Al with initial conditions
x(0) = −1, y(0) = y0, z(0) = z0 on S2 is de�ned by

x(t) = −1 − (b − z0)e
−λt sin(ωt),

y(t) = −1 + (y0 + 1)e−δt ,

z(t) = b − (b − z0)e
−λt cos(ωt).

(5)

The equilibria er,l lie on the boundaries of the Gr,l and Gs

regions where the intersections of the regions are the invariant lines
lr = (x = 1, z = b) and ll = (x = −1, z = b). Trajectories in vicini-
ties of the equilibria are composed (glued) from the trajectories of
the focus systems Ar,l and saddle system As de�ned through (3), (4),
and (5). Depending on the system’s parameters, the balance between
the saddle and focal parts of the trajectories can change. Increas-
ing parameter b transforms stable foci er,l into saddle foci, as will be
shown later in the paper. In light of this, it is worth emphasizing the
importance of placing the equilibria er,l on boundaries of Gr,l and Gs,
thereby allowing the equilibrium er,l to change their stability. Shifting
these equilibria from the boundaries so that the vicinity of er,l entirely
belongs to the focal parts of the phase spacewouldmake er,l stable foci
for any positive values of α, δ, ν,ω, λ, b, and, therefore, would prevent
the piecewise-smooth system (1) from having a Lorenz-type chaotic
attractor. The possibility remains that a complex attractor, which con-
tains stable slidingmotions on the boundariesGr andGl, may appear
and coexist with the stable foci.

The saddle Os has a two-dimensional stable manifold de�ned
in the saddle region by Ws

saddle = {x = 0, y ∈ R
1, z < b} (the yel-

low vertical plane in Fig. 1) and a one-dimensional unstable
manifold, de�ned in the saddle region by Wu

1saddle = {0 < x < 1,
y = z = 0} and Wu

2saddle = {−1 < x < 0, y = z = 0}. These mani-
folds and their continuations along the trajectories of systems Ar,l in
the focus regions form the global manifoldsWs,Wu

1 , andWu
2 of the

saddle Os in the full phase space of system (1).
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By construction, the section D with z = b is equivalent to the
global cross-section z = ρ − 1 in the original Lorenz system15

ẋ = σ(y − x), ẏ = ρx − y − xz, ż = xy − βz. (6)

Therefore, the parameter b in the piecewise-smooth system (1) plays
a role of ρ − 1 in the Lorenz system (6). Notice that the eigenvalues
of the saddleOL(0, 0, 0) in the Lorenz system arem1,2 = − 1

2
[σ + 1 ±

√

(σ − 1)2 + 4σρ], where the positive (negative) sign corresponds
to m1 (m2), and m3 = −β . Therefore, diagonalizing the linearized
system in the vicinity of the saddle OL yields

u̇ = u, ẇ = m2

m1

w, ż = − β

m1

z, (7)

where u and w are new variables corresponding to the eigenvectors
associated with eigenvaluesm1 andm2, respectively, and z is the orig-
inal variable corresponding tom3 since the z axis is an invariant line
of (6). In (7), the time derivative is calculated with respect to the new
time t̂ = t/m1. Comparing the linearized system (7) for the saddle
OL in the Lorenz systemwith the normal formAs for the saddleOs in
the piecewise-smooth system (1) suggests that the parameters α and
ν in (1) are equivalent to −m2/m1 and β/m1 in the Lorenz system
(6), respectively. The other parameters λ,ω, δ of system (1) control
the focus systems Al and Ar and do not have direct analogs in the
Lorenz system (6).

Throughout the paper, we assume that the parameters satisfy the
conditions

1

2
< ν < 1 < α. (8)

The part of this inequality ν < 1 implies that the saddle value of the
saddle Os, η = 1 − ν > 0. The additional inequality 1 < α pushes
the eigenvalues 1 and −ν to be nearest to zero and, therefore,
makes the plane W lead = ((x, z) ∈ Gs, y = 0) determine the leading
(weaker) direction as a piece of the leading stable manifoldWs. This
property is chosen to match the property of the original Lorenz sys-
tem, which allows Wu

1 and Wu
2 to form desired homoclinic orbits

and lead to the emergence of complex dynamics.59 The origin of the
remaining part of the inequality 1/2 < ν will be explained in Sec. IV
(see Remark 2).

B. Gluing the trajectories

Trajectories of the piecewise-smooth system (1) are composed
of trajectories of systems As, Ar , and Al, which are explicitly given
by the solutions (3), (4), and (5). We demonstrate the gluing pro-
cess through constructing the one-dimensional unstable manifold
Wu

1 emanating from the saddle Os in the region Gs, extending to the
region Gr , and eventually spiraling out in Gl and Gr [see Fig. 1(a)].

We start from the saddle Os and follow the unstable manifold
Wu

1 in the direction of the vertical half-plane S1. The part of the
manifold in the saddle region is de�ned through (3) (a blue line seg-
ment in Fig. 1). The manifold intersects the half-plane S1 at the point
(x0 = 1, y0 = 0, z0 = 0) ∈ S1, which becomes its exit point from the
region Gs. This point becomes the initial condition for the solution
(4), which continues the manifold Wu

1saddle as it enters into the right
focus regionGr (the red curve ending at the pointM1 in Fig. 1).When
the focal part of the unstable manifold reaches the pointM1 that lies
on the upper boundary of the saddle regionGs, the planeD (the green

plane in Fig. 1), the trajectory is further continued by a trajectory
de�ned through the saddle system As (the right blue curved line in
Fig. 1). The shape of the glued unstable manifold essentially depends
on the location of the point M1 with respect to the stable manifold
of the saddle Ws (the yellow vertical plane in Fig. 1) [compare the
trajectories in Figs. 1(a) and 1(c)].

As it will be rigorously shown in Sec. VI, the relative location
of point M1 with respect to Ws is controlled by the parameter b,
which is hereafter chosen as a bifurcation parameter. For small b, the
pointM1 lies in the region x > 0 and the saddle trajectory originating
from the pointM1 returns the unstable manifoldWu

1 to the regionGr

[see Fig. 1(a)]. Note that increasing the parameter b in the system Ar

makes the focal part of the glued unstablemanifold larger. As a result,
for some b = bh, the point M1 falls on the stable manifold Ws, and
the unstable manifold Wu

1 becomes a homoclinic orbit of saddle Os

[see Fig. 1(b)]. This value bh will be explicitly derived in terms of the
other system’s parameters in Sec. VI.

With further increase in b > bh, the pointM1 crosses the border
line and falls into the region x < 0. In this case, the saddle trajec-
tory [the blue line in Fig. 1(c)] originating from pointM1 brings the
unstable manifoldWu

1 to the left focus region Gl. Sequential contin-
uation of this unstable manifold along the focal trajectory of the left
focus system Al [the red line in Fig. 1(c)] takes it to the y < 0 part
of the plane D. Further continuation of the one-dimensional man-
ifold Wu

1 to the saddle region Gs either brings it to the region Gl,
or immediately returns the manifold to the region Gr [see Fig. 1(c)].
By virtue of the system’s symmetry, the shape of the unstable saddle
manifoldWu

2 mirrors that ofWu
1 [not shown].

The homoclinic bifurcation of the symmetrical orbits of the sad-
dle Os at b = bh leads to the birth of two saddle limit cycles C1 and
C2 for b > bh as in the original Lorenz system (the detailed bifurca-
tion analysis is given in Sec. VI). These saddle limit cycles C1 and
C2 are composed of two glued pieces where one piece is de�ned by
a saddle trajectory (thick red curves in Fig. 2), whereas the other is
determined by a stable focus trajectory (thick blue curves in Fig. 2).
The prevalence of the saddle part of the trajectory over its focal part
determines the overall saddle type of the limit cycles.

Other trajectories of system (1) not shown in Figs. 1 and 2
are constructed through the same gluing process at the boundaries
of regions Gs, Gr , and Gl, with the exception of trajectories that
fall on the Z-shaped boundary Zs and produce sliding motions.
Figure 3 demonstrates a typical Lorenz-type attractor that appears
in the piecewise-smooth system (1) as a result of this gluing process
and switching among three linear systems As, Ar , and Al (a detailed
description of the attractor’s birth and properties is given in Sec. VI).

In the following, we will estimate the size of the system’s absorb-
ing domain which contains all of the system’s attractors. We will
characterize possible sliding motions and their location with respect
to the absorbing domain. The reader willing to accept the claims that
the sliding motions do not participate in the formation of the strange
Lorenz-type attractor without proofs can proceed to Sec. III without
loss of continuity.

C. Absorbing domain

The following assertion proves eventual dissipativeness of sys-
tem (1) and places an upper bound on the absorbing domain which
traps all trajectories of system (1).
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FIG. 2. The xz projection of the phase space similar to Fig. 1(c) at y = 0. The
shaded area bounded by the dashed green curve is the absorbing domain G,
plotted via (9). Two gray vertical lines at x = −1 and x = 1 correspond to the
lateral boundaries S1 and S2 of the saddle region. The green horizontal line at
z = b is the upper boundary D [cf. Fig. 1(c)]. Two saddle cycles C1 and C2 are
formed by the parts of the saddle (blue) and focus (red) trajectories and born as
a result of the homoclinic bifurcation. Two vertical pink lines are projections of the
vertical half-planes S+

1 and S+
2 and correspond to stable sliding motions. Note

that the trajectories (red lines) do not cross the stable sliding half-planes S+
1 and

S+
2 such that the saddle cycle C2 appears in front of the projection of S

+
2 , whereas

C1 is behind the projection of S
+
1 . (Inserts): Zoomed-in neighborhoods of points

b+ and the local vector fields. The part of the sliding vertical segment between
the point b+ and the global cross section (light green vertical line segment) is
one-way passable for trajectories. All trajectories are calculated numerically. The
parameters are b = 2.6, ν = 0.7, α = 2, λ = 0.294, ω = 2, and δ = 0.588.

FIG. 3. A Lorenz-type attractor in the piecewise-smooth system (1). Chaotic tra-
jectories are glued from pieces of saddle (blue) and focal (red) trajectories of three
linear systems. Parameters b = 3.8, α = 2, ν = 0.75, λ = 0.294, ω = 2, and
δ = 0.588.

Lemma 1: The region

G =















|y| ≤ 1,

0 ≤ z ≤ 2b for |x| ≤ 1,

Vl ≤ b2 for x < −1,

Vr ≤ b2 for x > 1,

(9)

with Vl,r = (x ± 1)2 + (z − b)2 is an absorbing domain which attracts
all trajectories of system (1).

Proof. Our goal is to construct a Lyapunov-like function and
identify its level atwhich the timederivative of the Lyapunov function
along the trajectories of system (1) equals zero, thereby determining
the boundary of the absorbing domain. As system (1) is piecewise-
smooth, we assemble such a Lyapunov function from several func-
tions that describe the behavior of the system in di�erent partitions
of the phase space.

Consider a Lyapunov functionV1 = y2 − 1 in the region |y| > 1
where V1 is positive. Its time derivative with respect to system (1)
is (i) V̇1 = −2δ(y ± 1) < 0 for |y| > 1, |x| > 1; hereafter, the plus
(minus) sign relates to the dynamics governed by the focus systemAl

(Ar) and (ii) V̇1 = −2αy2 < 0 for |y| > 1, |x| ≤ 1 which governs the
trajectories of the saddle system As. Therefore, all trajectories enter
the region |y| ≤ 1.

Similarly, we choose a directing Lyapunov function
V2 = (z − b)2 − b which is positive outside the interval 0 < z < 2b.
Recall that the trajectories of system (1) are governed by the focus
systems Al and Ar for z > b, and by all three saddle and focus sys-
tems As, Al, and Ar for z < b. Hence, outside the interval 0 < z < 2b
the time derivative of V2 with respect to (i) systems Al and Ar is
V̇2 = −2λ(z − b)2 − 2ω(z − b)(1 ± x) < 0 for |x| < 1 and (ii) the
saddle system As are V̇2 = −2ν(z − b)z < 0 in the region z < 0.
Therefore, all trajectories enter the region 0 < z < 2b for |x| ≤ 1.

Finally, we choose a directing Lyapunov functionV3 = Vl,r − b2

which is positive in the intervals in question x < −1 and x > 1,
respectively. Its time derivative along the trajectories of the focus sys-
tem Al : V̇3 = −2λVl < 0 for x < −1 and with respect to the focus
system Ar : V̇3 = −2λVr < 0 for x > 1. Hence, the trajectories from
these regions cross the surfaces Vl and V2.

Combining the bounds on the directing Lyapunov functionsV1,
V2, and V3, we obtain the absorbing domain G. �

D. Sliding motions

Due to its piecewise-smooth nature, system (1) can have sta-
ble sliding motions. Toward our goal of constructing a Lorenz-type
chaotic attractor which contains only saddle orbits, we seek to iden-
tify the system’s parameters for which the stable sliding motions do
not participate in the formation of the attractor.

The orientation of the vector �elds of systems As, Ar , and Al,
suggests the following.

1. The only (locally) stable sliding regions on the Z-shaped bound-

ary Zs are its parts S+
1 = {x = 1, z > b+ = b + 2λ

ω
, y < 0}

and S+
2 = {x = −1, z > b+ = b + 2λ

ω
, y > 0} (the pink verti-

cal lines in Fig. 2). This claim can be veri�ed by checking the
x directions of the vector �ows of systems Ar and Al at S

+
1 and
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S+
2 . For example, consider the left half-plane S+

2 with x = −1.
The local vector �eld to the right from this vertical half-plane S+

2

is governed by the focus system Ar . Therefore, this �ow in the
x direction is determined by ẋ = −λ(x − 1) − ω(z − b) such
that ẋ = 2λ − ω(z − b) at S+

2 with x = −1. As a result, ẋ < 0
at S+

2 for the right focus system Ar and the corresponding vector

�ow is oriented toward S+
2 as long as z > b+ = b + 2λ

ω
. Then,

for z < b+, the �ow to the right from S+
2 reverses its x direc-

tion and points to the right (see the left zoom-in in Fig. 2). At
the same time, the vector �eld to the left from S+

2 and its exten-
sion down to the section D at z = b is oriented in the positive x
direction and preserved in the interval b < z < b+. This is due
to the fact that this vector �eld is governed by the focus system
Al so that its x direction at S+

2 with x = −1 is de�ned through
ẋ = ω(z − b), which is positive on the boundary Zs at x = −1
everywhere above the sectionD (for z > b). As a result, the half-
plane S+

2 locally attracts trajectories from its left and right and
yields locally stable sliding motions. The extension of S+

2 from
z = b+ down to D (the bright green segment in the left zoom-in
of Fig. 2) is passable for the trajectories approaching it from the
left as the vector �elds from the left and right point in the same
direction of positive x.

Similarly, due to the system’s symmetry, the half-plane S+
1 cor-

responds to locally stable sliding motions, and its extension to D is
passable (see the right zoom-in in Fig. 2).

2. The middle section of the Z-shaped boundary (y = 0,
|x| < 1, z ≥ b) only contains unstable sliding motions. This can
be veri�ed by checking the y equations of the focus systems Al

andAr at y = 0. The negative and positive signs of ẏ inAl andAr ,
respectively, indicate that the local vector �elds of both systems
point out from the middle section of Zs, making it unstable.

To determine the eventual behavior of sliding trajectories on
the stable half-planes S+

1,2, we follow Filippov’s approach60 and de�ne
sliding motion on S+

1,2 through a (y, z) system obtained by averag-
ing the corresponding ẏ and ż components of the Al and Ar systems.
These average systems calculated for S+

2 with x = −1 and S+
1 with

x = 1 happen to be the same and take the form

ẏ = (ẏl + ẏr)/2 = −δy,

ż = (ẏl + ẏr)/2 = −ω − λ(z − b),
(10)

where yl and zr (yr and zr) correspond to the variables of the Al (Ar)
system.

The linear system (10) has a unique globally stable equilibrium

E =
(

y = 0, z = b − ω

λ

)

that is located below the point b+ where

the stable sliding half-planes S+
1,2 terminate. Hence, this globally sta-

ble point E enables the downward sliding motion everywhere on S+
1,2.

Thus, when all trajectories slide down along S+
1,2 and reach b+, they

continue to be pushed down toward E. Once the trajectories enter the
downward extension of S+

1,2 which is passable, they leave the sliding
motion half-planes and eventually reach the cross-section D (see the
zoom-ins in Fig. 2).

Toward our goal of proving the emergence of a strange chaotic
attractor without stable trajectories, we need to identify a set of the

system’s parameters where the stable sliding motions on the half-
planes S+

1,2 do not belong to the attractor. This leads to the following
statement.

Theorem 1: Attractors of system (1) contain no sliding motions
in the parameter region

δ > δcr = ω ln 2

π
,

b < bcr = 2

√

1 + λ2

ω2
exp

{

λ

ω

(

arctan
ω

λ
+ π

)

}

.

(11)

Proof. In order for any attractor of system (1) not to contain
slidingmotions, we require that any trajectory with initial conditions
on the global cross-section D never falls on the Z-shaped boundary
Zs (cf. Fig. 1), which glues the regions Gl and Gr and is the origin of
sliding motions.

The points on the cross-section D are transferred by trajecto-
ries of the saddle region Gs to its lateral boundaries S1 and S2 so that
the trajectories may not reach Zs. Therefore, the problem of bypass-
ing the boundary Zs is reduced to �nding a parameter region of the
focus systems Al and Ar where the trajectories starting from S1 and
S2 return to D, avoiding Zs.

As it was demonstrated above, the middle section of Zs is unsta-
ble and, therefore, unreachable so that we should only worry about
trajectories that may reach the stable sliding half-planes S+

1,2 which
are contained in Zs. Due to Lemma 1, the system’s absorbing domain
G does not expand beyond the interval |y| ≤ 1 in the y direction and
is limited by z = 2b in the z direction at x = ±1. Hence, only parts
of the half-planes S+

1,2 that belong to the absorbing domain matter.
These parts are

S+
1a : {x = 1, −1 < y < 0, b+<z < 2b},
S+
2a : {x = −1, 0 < y < 1, b+<z < 2b}.

(12)

For de�niteness, consider trajectories that initiate from the part
of the half-plane S1 that belongs to the absorbing domain S1a :
{x = 1, −1 < y < 0, z < b}. These trajectories are continued by the
focus system Ar . To avoid the presence of the sliding motions inside
the attractor, all trajectories leaving S1a should (i) not land on the
right vertical segment S+

1a and (ii) not reach the left vertical segment
S+
2a. We shall derive bounds on the system’s parameters for each of
the two cases separately.

Bound 1. Each trajectory with initial conditions on the vertical
segment S1a with x = 1 will either return to S1a or reach the exten-
sion of S1a with x = 1 in the region z > b in time τ1 = π/ω. This
extension is comprised of two parts: the stable sliding motion seg-
ment S+

1a for−1 < y < 0 and the nonsliding part for y > 0. The time
constant τ1 = π/ω comes from solving the x equation of system (4)
with the initial (x(0) = 1) and �nal (x(τ1) = 1) states, as the trajec-
tory departs from and comes back to the plane x = 1.We seek to �nd
the conditions under which each trajectory leaving S1a reaches the
plane x = 1 at y(τ1) > 0 and, therefore, lands on its nonsliding part. It
is important to emphasize that if a trajectorywith the initial condition
y(0) = −1 on the absorbing domain’s border y = 1 is transferred by
the focus linear system Ar far enough to enter the region y > 0 with
no sliding motions, then all other trajectories starting from S1a with
−1 < y < 0 will go even farther and will also miss the sliding region
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S+
1a. Solving the y equation of system (4) with the initial condition
y(0) = −1 yields the solution y(t) = 1 − 2e−δt . Substituting the time
constant τ1 = π/ω and requiring y(π/ω) > 0, we arrive at the condi-

tion δ > δcr = ω ln 2

π
, which guarantees that each trajectory starting

from S1a will not land on the sliding motion segment S+
1a.

Bound 2.We seek to identify a set of parameters which guaran-
tee that trajectories launching from S1a cannot reach the left vertical
half-plane S+

2 that corresponds to stable sliding motions. These tra-
jectories of the focus system Ar with initial points at S1a are bounded
in (x, z) by a two-dimensional surface composed of trajectories with
initial conditions x = 1, |y| ≤ 1, and z = 0. In particular, the unsta-
ble manifold Wu

1 of saddle Os belongs to this surface. Therefore, it
is su�cient to demonstrate that if the unstable manifold Wu

1 does
not extend to S+

2 , then any other trajectory starting from S1a cannot
reach S+

2 either. The unstable manifoldWu
1 emanating fromOs inter-

sects S1a at the point x = 1, y = 0, z = 0 and then is continued by the
focus system Ar . Therefore, the corresponding x and z solutions (4)
of the focus system Ar with the initial (x(0) = 1, z(0) = 0) and �nal

(x(τ2) = −1, z(τ2) = b+ = b + 2λ

ω
) states yield the conditions

e−λτ2 sin(ωτ2) = − 2

bcr
,

e−λτ2 cos(ωτ2) = − 2λ

ωbcr
,

(13)

which de�ne the critical value bcr of parameter b for which Wu
1 can

still be tangent to the end point b+ = b + 2λ

ω
of the half-plane S+

2 (see

the left zoom-in in Fig. 2). Dividing the �rst equation by the second
equation in (13) yields the time τ2 = 1

ω
arctan ω

λ
. Substituting τ2 into

(13) and using the trigonometric identity, we obtain

bcr = 2

√

1 + λ2

ω2
exp

{

λ

ω

(

arctan
ω

λ
+ π

)

}

. (14)

Thus, for b < bcr , the unstable manifoldWu
1 and all other trajectories

starting from S1a have no tangency with the stable sliding half-plane
S+
2 and hit the cross-section D without reaching S+

2 . Due to the sys-
tem’s symmetry, the same argument carries over to the trajectories
starting from S2 which are governed by the focus system Al. �

III. POINCARÉ RETURN MAP: THE CONSTRUCTION

Following the steps of the classical studies of the Lorenz
system,6–13we will construct a �ow-de�ned Poincaré returnmap that
allows for characterizing a bifurcation sequence that leads to the birth
of the Lorenz-type attractor and prove the chaoticity of the attrac-
tor. This Poincaré return map possesses a unique property of being
explicitly given by glued, closed-form solutions of the piecewise-
smooth system (1). To construct the Poincaré map, we choose
D =

{

|x| ≤ 1, |y| ≤ 1, z = b
}

as a Poincaré cross section and analyze
how this section is mapped into itself by trajectories of the saddle and
focus systems.We choose the parameters that satisfy the condition of
Theorem 1, which guarantees that trajectories of systems Ar and Al

starting from S1,2 may not reach the stable sliding regions S+
1,2. There-

fore, under the conditions (11),D is a global cross section such that all

FIG. 4. The construction of the Poincaré return map (20). The cross-section
D = D1 ∪ D2 (green) is mapped into itself by trajectories of the piecewise-smooth
system (1). The initial point (green dot) in D1 (D2) is first mapped into the vertical
half-plane S1 (S2) by the map T1 (T2). Its image in S1 (S2) is then mapped into
the cross-section D by the map Tr (Tl ). The line l = W s ∩ D : x = 0 (pink) is a
singularity line whose image is two points of intersection between D = D1 ∪ D2

and unstable manifolds W u
1 (red) and W u

2 (blue). The meaning of blue and red
color coding (left vs right trajectories) differs from that of Figs. 1–3 (saddle vs
focal parts).

trajectories starting fromDwill return back to it. The cross-sectionD
is divided into two symmetrical parts, D1 = D

∣

∣

x≥0
and D2 = D

∣

∣

x≤0
,

by the stable manifoldWs of the saddleOs along the line l = Ws ∩ D
(see Fig. 4).

We shall �rst derive the Poincaré return map F1 = TrT1 of the
half-section D1 as a composition of the maps T1 : D1 → S1 and Tr :
S1 → D. Here, the map T1 is generated by the trajectories of the sad-
dle system that transfer points from the half-sectionD1 to the vertical
half-plane S1. Their subsequent transfer from S1 back toD by the tra-
jectories of the focus system Ar yields the map Tr . Once we establish
an explicit form of F1 = TrT1, we will be able to obtain its comple-
mentmapF2 = TlT2,D2 → D, which is odd symmetrical toF1. Thus,
we shall �rst concentrate on the derivation of F1.

Using the solution (3) of system As with the initial condi-
tions in D1 such that z(0) = 0 and the �nal boundary conditions
(x(τ ) = 1, y(τ ), z(τ )) ∈ S1, we obtain the transition time τ and coor-
dinates in S1 as follows:

τ = − ln x(0),

y(τ ) = y(0)e−ατ ,

z(τ ) = be−ντ .

(15)

Substituting τ into the y and z equations, we derive the explicit form
of the map T1

T1 :
y(τ ) = y(0)eα ln x(0) = y(0)xα(0),

z(τ ) = beνlnx(0) = bxν(0).
(16)
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To construct the map Tr : S1 → D, we analyze the solution (4) of
the system Ar with the initial ({x = 1, z = z0, y = y0} ∈ S1) and the

�nal boundary ({x(τ ′), y(τ ′), z(τ ′)} ∈ D) conditions where τ ′ = 3π

2ω
is the travel time from S1 to D. Note that the value of τ ′ origi-
nates from the condition cosωτ ′ = 0 obtained by setting z(τ ′) = b

in the z-equation of (4) where τ ′ = 3π

2ω
corresponds to the desired

intersection of the plane z = b from above. Thus, we obtain the
map Tr

Tr :
x(τ ′) = 1 − (b − z0)e

− 3πλ
2ω ,

y(τ ′) = 1 + (y0 − 1)e−
3πδ
2ω .

(17)

To close the loop in deriving the composition map F1 = TrT1 :
D1 → D, we replace y0 and z0 in (17) with y(τ ) and z(τ ) from (16),
respectively, and obtain the explicit form of the map F1

F1 :
x̄ = 1 + be−

3πλ
2ω (xν − 1),

ȳ = 1 + e−
3πδ
2ω (xαy − 1),

(18)

where x = x(0), x̄ = x(τ ′), y = y(0), and ȳ = y(τ ′).
Due to the odd symmetry in x and y, the explicit form of the

map F2 : D2 → D can be obtained from (18) by replacing (x, y) with
(−x,−y). For convenience, we introduce two new parameters

γ = be−
3πλ
2ω , r = e−

3πδ
2ω (19)

such that the complete map F : D → D takes the form

F :

x̄ = f (x) ≡ 1 − γ + γ xν ,

ȳ = g(x, y) ≡ 1 − r + rxαy,
for x > 0,

x̄ = f (x) ≡ γ − 1 − γ |x|ν ,
ȳ = g(x, y) ≡ r − 1 + r|x|αy,

for x < 0.

(20)

The map F is discontinuous at x = 0 so that the line l = Ws ∩ D :
x = 0 is mapped into the saddle point Os and, therefore, points on
l do not return back to the cross-section D. However, points from
an in�nitesimal neighborhood of line l, (x = ±ε, y ∈ [−1,+1]) do
return to D, passing by a close vicinity of the saddle point Os. In the
limit of ε → 0, the images of these points are two pointsM1 andM2

(Fig. 1), which are the intersections of the cross-section D with the
one-dimensional unstablemanifoldsWu

1 for x > 0 andWu
2 for x < 0,

respectively. By continuity, we de�ne the map F at the discontinuity
line l : (x = 0, y ∈ [−1,+1]) as follows:

F
∣

∣

x=0
:

(x̄, ȳ) = M1(1 − γ , 1 − r) for x → +0,
(x̄, ȳ) = M2(γ − 1, r − 1) for x → −0.

(21)

Note that for γ = 1 (b = bh = e
3πλ
2ω ) the unstable manifoldsWu

1 and
Wu

2 place the pointsM1 andM2 on the line x = 0 and, therefore, form
two homoclinic orbits of the saddleOs [see Fig. 1(b)]. Finally, tomake
the map F well-de�ned, hereafter we assume that the parameters r

and γ satisfy the conditions

r <
1

2
√
2
,

γ < γcr = 2

√

1 + λ2

ω2
exp

{

λ

ω

(

arctan
ω

λ
− π

2

)}

.

(22)

These conditions correspond to the parameter range (11) that guar-
antees the absence of sliding motions in any attractor of the �ow
system (1) and hence of the map F.

Observe that the map F has a triangular form such that the x
equation of the map F, x̄ = f (x), does not depend on y and drives
its y equation. Therefore, we call the 1-D map x̄ = f (x) the “master”
map. The triangular form of the 2Dmap F which naturally yields the
1-D master map is a key property which signi�cantly simpli�es our
rigorous analysis. The appearance of this triangular form is rooted
in the use of the normal forms which uncouple the x and z variables
from the y variable in the focus systemsAl,r in (1). As a result, the cor-
responding dynamics along the x and z directions are independent
from the motion along the y axis.

In the following, we will �rst study attractors and bifurcation
properties of this master map to eventually reveal the properties of
the complete 2D map F and ultimately prove the emergence of a
chaotic Lorenz-type attractor in the original �ow system (1).

IV. DYNAMICS OF THE 1-D MASTER MAP

Obtained from (20), the 1-D master map has the form

x̄ = f (x) ≡ 1 − γ + γ xν for x > 0,

x̄ = f (x) ≡ γ − 1 − γ |x|ν for x < 0,
(23)

where x̄ indicates the subsequent iterate xk+1 of xk under the action
of f . As in (21), the map is discontinuous at the point x = 0 and
de�ned as

f (0) =
{

1 − γ for x → +0,

γ − 1 for x → −0.
(24)

By construction, the master map (23) is related to the cross-section
D, and, therefore, is de�ned on the intervalX = [−1, 1]. Its two �xed
points el = x∗

1 = −1 and er = x∗
2 = 1 at the ends of the interval X

correspond to the equilibrium points el and er of the �ow system (1),
respectively.

We will analyze attractors and their bifurcations in the master
map (20) as a function of parameters γ and ν. Our analysis can be
summarized in the following theorem:

Theorem 2: 1. In the parameter region I (Fig. 5),

0 < γ < γh = 1, (25)

the master map (23) has two stable �xed points er(x = 1) and
el(x = −1) whose basins of attraction are the entire interval
(−1, 1)\(x = 0) [see Fig. 6(a)]. At γh = 1, corresponding to the homo-
clinic butter�y in the piecewise-smooth system (1), the singular point
x = 0 maps into itself such that two unstable points Pr(x = xr) and
Pl(x = xl = −xr) appear with increasing γ from γh = 1.
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FIG. 5. The bifurcation diagram of the 1-D master map (23). Region I (gray) cor-
responds to globally stable fixed points er and el . Region II (white) corresponds
to the dynamics similar to that of region I, except for the emergence of two unsta-
ble fixed points Pr and Pl and the invariant Cantor set of unstable trajectories
that make the attraction basins of er , el riddled. In region III (yellow), the map
has three coexisting attractors: a strange chaotic attractor SA and two stable
fixed points er and el . In region IV (green), the strange chaotic attractor is the
only system’s attractor. The horizontal line γ = γcr corresponds to the disap-
pearance of the strange attractor due to the presence of stable sliding motions in
the piecewise-smooth system (1).

2. In the parameter region II,

1 < γ < γhet , (26)

where γhet is the root of the equation

γ − 2(γ − 1)1−ν = 0, (27)

the stable �xed points er and el attract all trajectories from the interval
(−1, 1), besides the unstable �xed points Pr and Pl, and a nontrivial
invariant Cantor set of unstable trajectories [see Fig. 6(b)].

3. In the parameter region III,

γhet ≤ γ < ν−1, (28)

the map has a strange chaotic attractor (SA) which is contained inside
the invariant interval XSA = (1 − γ , γ − 1) [light green square in
Fig. 6(c)]. This attractor is characterized by the property

f ′(x) > 1, x ∈ XSA (29)

and coexists with the two stable (er and el) and two unstable (Pr and
Pl) �xed points [Fig. 6(c)].

4. In the parameter region IV,

ν−1 ≤ γ < γcr , (30)

where γcr is de�ned in (22), the map has a unique (strange chaotic)
attractor contained in the interval XSA and whose basin of attraction is
the entire interval X [Fig. 6(d)].

5. In the parameter region V (not marked in Fig. 5),

γ ≥ γcr , (31)

the attractor SA looses its chaotic property due to the emergence of sta-
ble slidingmotions in the piecewise-smooth system (1) (see Theorem 1).

Proof. Region I: 0 < γ < γh = 1.
The function f (x) > x for ∀x ∈ (0, 1); therefore, each trajectory

with x0 ∈ (0, 1) approaches the endpoint of interval (0, 1), �xed point
er(x = 1), whose local stability can also be veri�ed as f ′(1) = γ ν < 1
and f ′(−1) = γ ν < 1 for γ < ν−1. A similar argument applies to the
stability of the �xed point el(x = −1) which attracts all trajectories
from the interval (−1, 0).

Region II: 1 < γ < γhet .
Two unstable points Pr(x = xr) and Pl(x = xl = −xr) appear

after two disjoint parts of the graph f (x) merged together at the sin-
gularity point x = 0 at γ = γh = 1, thereby exchanging the relative
positions of their x̄ intercepts for γ > 1 [compare Figs. 6(a) and 6(b)].
This justi�es the left hand side of inequality (26).

The right-hand side of inequality (26) comes from the condition
that the �xed point Pr(x = xr)must be located lower than the x̄ inter-
cept of the left leave of the graph f (x) [see Fig. 6(b)]. This is truewhen
xr < γ − 1, where xr = 1 − γ + γ xν

r . Equating xr and γ yields the

FIG. 6. The dependence of the master map’s function f(x) (blue) on γ . (a) 0 < γ < γh = 1 (region I in Fig. 5): two stable fixed points el and er . (b) 1 < γ < γhet (region
II): the emergence of unstable fixed points Pl(x = xl) and Pr(x = xr). The fixed point Pr(x = xr) [Pl(x = xl)] is below (above) x̄ = γ − 1 [x̄ = 1 − γ ], which yields the
Cantor set of unstable trajectories that are trapped inside the interval (xl , xr). (c) γhet ≤ γ < ν−1 (region III): The birth of a strange chaotic attractor SA which coexists with
stable fixed points er and el . The unstable fixed point Pr(x = xr) [Pl(x = xl)] lies above (below) x̄ = γ − 1 [x̄ = 1 − γ ] making the interval (1 − γ , γ − 1) invariant for
the attractor SA. (d) ν−1 ≤ γ < γcr (region IV): A unique (strange chaotic) attractor SA. The stable fixed points el and er have merged with the unstable points Pl and Pr

and exchanged their stability, becoming unstable. The fixed points Pl and Pr lie outside of the interval [−1, 1] and are not shown.
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condition (27) and critical value γhet . In this case where γ − 1 > xr ,
points from the interval (−x0, x0)where x0 is the preimage of the left
�xed point xl = 1 − γ + γ xν

0 leave the interval (xl, xr) and reach one
of the stable �xed points er and el. What is left in the interval (xl, xr)
after all preimages of the interval (−x0, x0) are removed is the Cantor
set of unstable trajectories that are trapped inside the interval (xl, xr).

Region III: γhet ≤ γ < ν−1.
As shown above, increasing γ such that γ > γhet , moves the

coordinate of the �xed point Pr(x = xr) above the x̄1 = γ − 1 inter-
cept. This, together with the new location of the point Pl(x = xl)
below the other x̄2 = 1 − γ intercept, creates the trapping domain
XSA = (1 − γ , γ − 1) such that trajectories with x0 ∈ XSA cannot
leave this interval, making it invariant [see Fig. 6(c)].

The derivative f ′(x) = γ ν|x|ν−1 in the considered interval
1/2 < ν < 1 [cf. assumption (8)] is a decreasing function of |x|
with lim|x|→0 f

′(|x|) = ∞. Under these conditions, f ′(xl) > 1 and
f ′(xr) > 1 (recall that the �xed points Pl and Pr are unstable). There-
fore, f ′(x) > 1 for each point in the interval Xlr = {|x| < xr , x 6= 0}
= {xl < x < xr , x 6= 0}. The invariant interval XSA = (1 − γ , γ −
1) ∈ Xlr , then f ′(x) > 1 for ∀x ∈ XSA such that the trapping, invari-
ant intervalXSA contains only unstable trajectories. These trajectories
form a strange chaotic attractor and �ll out the interval XSA. The
unstable �xed points Pl and Pr separate the attraction basins of the
strange attractor SA and stable �xed points el and er . The right side
of the inequality (28) γ < ν−1 guarantees that xr < 1 and xl > −1
such that the points Pl and Pr do not merge with el and er .

Region IV: ν−1 ≤ γ < γcr .
At γ = ν−1, the �xed points Pr and er (Pl and el) merge together

as a result of a transcritical bifurcation and exchange their stability
with further increase in γ > ν−1. The Pl and Pr leave the interval
[−1, 1] and become irrelevant to the dynamics of the �ow system (1).
These changes preserve f ′(x) > 1 for ∀x ∈ XSA and, therefore, do not
a�ect the strange attractor SA, except that it becomes the only attrac-
tor of the map. This attractor preserves up to γ < γcr beyond which
(in region V) the 1-Dmap does not adequately describe the �ow sys-
tem (1) due to the emergence of slidingmotions which become a part
of the system’s attractor (see Theorem 1). �

Remark 1: The 1-D map (23) can be transformed into the
standard 1-D Lorenz map9,11,12,15,61

ξ̄ = −µ + ξ ν for ξ > 0,

ξ̄ = µ − |ξ |ν for ξ < 0,
(32)

by rescaling the variable x = kξ with k = γ
1

1−ν and introducing a

new parameter µ = (γ − 1)γ
1

1−ν . However, there is a peculiar dif-
ference between the bifurcations of �xed points in the 1-D master
map (23) and the standard 1-D Lorenz map (32). The parameter µ

in the standard 1-D Lorenz map is independent and can be changed
monotonically fromanegative to a positive value, thereby leading to a
saddle-node bifurcation at which the �xed points Pr and er (Pl and el)
merge together and disappear. On the contrary, the parameter µ in
the 1-D map (32) obtained from the 1-D master map (23) is a func-
tion of parameters γ and ν which has its maximum value at γ = 1/ν.
This value corresponds to the transcritical bifurcation at which the
�xed points Pr and er (Pl and el) merge together as a result of increas-
ing γ , which reaches γ = 1/ν. Further increasing γ decreasesµ and,

therefore, does not lead to the disappearance of the �xed points as in
the standard 1-D map (32) with the independent parameter µ, but
rather induces their exchange of stability, rendering the �xed point
er (el) unstable. However, the �xed points er and el do not participate
in the formation of the strange attractor and lie outside its invariant
interval XSA [see Fig. 6(d)]. As a result, this discrepancy between the
�xed points of the 1-Dmastermap (23) and the standard Lorenzmap
(32) with independent µ is not important.

Remark 2: The curves γ = γhet(ν) and γ = ν−1, that de�ne
region III, intersect at ν = 1/2 and ν = 1, thereby justifying our
earlier assumption on the interval 1/2 < ν < 1 where the strange
attractormay exist, depending on γ . Note that γcr < 2 forλ > 0 since
γcr

∣

∣

λ=0
= 2 and the partial derivative (γcr)λ < 0 indicating that γcr is a

decreasing function of λ. This condition γcr < 2 guarantees that the
horizontal line γ = γcr lies below the γ = 2 intercept of the curve
γ = ν−1. Therefore, region IV ν−1 ≤ γ < γcr , which corresponds to
the existence of the unique (strange) attractor of the map, remains
nonempty for most values of 1/2 < ν < 1, except ν close to 1/2 (see
Fig. 5).

V. DYNAMICS OF THE COMPLETE 2D MAP

Our goal is to connect the dynamics and bifurcations of the
1-D master map (23) to those of the complete 2D map F (20). It is
important to notice that the y equation of the map (20): ȳ = g(x, y)
≡ r − 1 + r|x|αy is linear in y, with a discrete time-varying coe�-
cient xwhich is governed by a trajectory of the master map (23). Due
to the condition (22) on permissible values of parameter r, we can
conclude that

r|x|α <
1

2
√
2

< 1, ∀x ∈ [−1, 1]. (33)

As a result, the y equation of (20) is contracting for ∀x ∈ [−1, 1] lying
in the cross-sectionD. Thus, the y equation of (20) adds a stable direc-
tion to trajectories of the 1-D master map, thereby (i) preserving the
stability of �xed points el and er when they are stable and (ii) turning
unstable trajectories of the master map (20) into saddle trajectories
of the 2D map (20). However, there are a few caveats associated with
homoclinic and heteroclinic orbits that involve the discontinuity line
l = (x = 0) where the 2D map is nonsmooth, and a careful proof of
the above claim is needed. This leads to the following statement.

Lemma 2: 1. Stable �xed points el and er of the 1-D master
map (20) in the parameter region 0 < γ < ν−1 yield stable �xed points
el(x = −1, y = −1) and er = (x = 1, y = 1) of the 2D map (20).

2. Any unstable p-periodic (aperiodic) orbit of the 1-D master
map, which is located inside the interval X = (1 − γ , γ − 1) and
does not contain the singularity point x = 0 induces a unique saddle
p-periodic (aperiodic) orbit of the 2D map (20).

Proof. Due to the triangular form of the 2D map (20) where
the x-equation drives the y-equation, each trajectory of the 1-D
master map {x0, . . . xk, xk+1, . . .} generates a sequence of line seg-
ments {L0 = (xk, yk ∈ [−1, 1]), . . . Lk, Lk+1, . . .} in the 2Dmap. These
line segments are often called leaves in a foliation on a Poincaré
section of the Lorenz system.61 For any xk = f k(x0), yk = gk(x0, y0),
k = 1, 2, . . ., the leaf Lk = {xk, yk ∈ [−1, 1]} is mapped into the leaf
Lk+1 = {xk+1, yk+1 ∈ [−1, 1]}. In particular, the leaf L1, correspond-
ing to a �xed point of the 1-D master map, is invariant and maps
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into itself. Let Op = {x∗
1 , x

∗
2 , . . . , x

∗
p , x

∗
p+1 = x∗

1} be a p-periodic orbit
of the 1-Dmastermapwhich does not initiate from and never returns
to the singularity point x = 0. This orbit induces the periodic leaves
{

L1, L2, . . . , Lp, L1
}

such that any leafLj, j ∈ [1, p] ismapped into itself
after p iterations. Substituting the values xk from the orbit Op into
the y equation of 2D map (20), we obtain a sequence of linear maps
yk+1 = g(xk, yk), where we have switched to the conventional sub-
script notation for the next iterate. The composition of these maps
results in the linear pth-iterate map of the leaf Lj into itself

yj+p = Qj + Q0yj, j = 1, p, (34)

whereQ0 =
∏p

k=1 r|xk|α andQj = const ∈ Lj. The linear map (34) is
contracting due to the inequality Q0 < 1 which follows from (33).

Hence, this map has a unique stable �xed point y∗
j = Qj

1 − Q0

. Con-

necting the sequence of stable �xed points y∗
1 , y

∗
2 , . . ., y

∗
p to the cor-

responding xk values from the orbit Op, we obtain a unique periodic

orbit of the 2D map (20) Õp = {(x∗
1 , y

∗
1), (x

∗
2 , y

∗
2), . . . , (x

∗
p , y

∗
p)}.

The eigenvalues of the Jacobianmatrix of 2Dmap (20) are f ′(x∗
k)

and r|x∗
k |α , where x∗

k is governed by the periodic orbit Õp. Therefore,

the Lyapunov exponents of the orbit Õp are

hx = 1

p

p
∑

k=1

ln |f ′(x∗
k)|, hy = 1

p

p
∑

k=1

ln r|x∗
k |α . (35)

Due to the conditions (29) and (33), we obtain

hx > 0, hy < 0 for γ > 1. (36)

This condition excludes the �xed points el and er of the 2D map,
which are stable in the parameter region 0 < γ < ν−1, with hx < 0

and hy < 0. Thus, Õp is a unique saddle periodic orbit.

A similar argument applies to an unstable nonwandering, aperi-
odic trajectoryO∞ = {x∗

1 , x
∗
2 , . . .} of the 1-D master map which does

not contain the singularity point x = 0 and yields a saddle aperiodic

trajectory of the 2D map, Õ∞ = {(x∗
1 , y

∗
1), (x

∗
2 , y

∗
2), . . .}. Its Lyapunov

exponents are

hx = lim
n→∞

1

n

n
∑

k=1

ln |f ′(x∗
k)|, hy = lim

n→∞

1

n

n
∑

k=1

ln r|x∗
k |α (37)

whose lower and upper limits are bounded and satisfy the condition

(36). Therefore, Õ∞ is a unique orbit that corresponds to O∞. �

This lemma allows us to directly apply the statements of
Theorem 2 to the dynamics of the 2D map. Before doing so and
formulating these statements as a corollary, we shall discuss how
the cross-section D transforms under the action of the 2D map F.
As in the Poincaré return maps6–8 of the original Lorenz system,
the image FD of the cross-section D generated by our piecewise-
smooth system (1) has two symmetric triangular shaped compo-
nents F1D1 and F2D2 (see Fig. 7). The shape of the image F1D1

is de�ned by the image of its boundary ∂D1 = l ∪ l1 ∪ l+ ∪ l−,
where l = (x = 0, y ∈ [−1, 1]), l1 = (x = 1, y ∈ [−1, 1]), l+ = (x ∈
(0, 1), y = 1), and l− = (x ∈ (0, 1), y = −1). The image of the sin-
gularity line l is the point F1l = M1(1 − γ , 1 − r); the image of
the invariant line l1 is the segment F1l1 = (x = 1, y ∈ [1 − 2r, 1]),
where its upper boundary point is the �xed point er(x = 1, y = 1).
The image of the top line l+ is given in a parametric form
F1l+ = (f (x), g(x, 1), x ∈ (0, 1]). Similarly, the image of the bottom
line l− is F1l− = (f (x), g(x,−1), x ∈ (0, 1]).

It is important to notice that the pointsM1 andM2 become cusp
points if α > ν [cf. the imposed condition (8)]. This claim can be
veri�ed as follows. The upper bound of the triangular shaped com-
ponent, F1l+, is described by a function ȳ = κ+(x̄), x̄ ∈ (1 − γ , 1],
which is de�ned parametrically via x̄ = f (x), ȳ = g(x, 1), x ∈ (0, 1].

FIG. 7. The action of 2D map (20) as a function of parameter γ . The green triangular shaped areas are the images of cross-section D = (|x| ≤ 1, |y| ≤ 1). Points M1 and
M2 are the images of singularity line l. (a) 1 < γ < γhet (parameter region II in Fig. 5). The blue vertical (black curved) lines are the stable (unstable) manifolds of saddle
fixed points Pl and Pr . Point H1 (H2) corresponds to a heteroclinic contour formed through transversal intersection between the stable manifold of Pl (Pr ) and the unstable
manifold of Pr (Pl ). The shaded area contains the Cantor set of saddle trajectories. Attraction basins of stable fixed points er and el are marked in yellow. (b) γhet ≤ γ < ν−1

(parameter region III). The strange attractor located in the invariant area (light green) coexists with two stable fixed points el and er . Two white vertical stripes are the attraction
basin of SA. (c) ν−1 ≤ γ < γcr (parameter region IV). The points Pr and Pl are no longer located inside the cross-section D. Fixed points e1 and er became saddles and
made the strange attractor the only stable limit set of the map. The diagram from parameter region I is not shown.
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Its derivative κ+
x̄ = gx(x,1)

fx(x)
= rα

γ ν
xα−ν is positive for the region of inter-

est x ∈ (0, 1], which corresponds to the interval x̄ ∈ (1 − γ , 1] for
its image. For α > ν, the derivative κ+

x̄ approaches zero as x →
0. Therefore, the graph of κ+

x̄ has a horizontal tangent at x = 0,
i.e., at the point M1. Similarly, the graph of the lower bound, F1l−,
is de�ned by the function ȳ = κ−(x̄), x̄ ∈ (1 − γ , 1] determined
by x̄ = f (x), ȳ = g(x,−1), x ∈ (0, 1]. Its derivative κ−

x̄ = −κ+
x̄ , and,

therefore, the graph of κ−(x̄) also has a horizontal tangent at
x = 0, corresponding toM1. Therefore, the pointM1 is a cusp point
where the graphs of the upper and lower bounds merge together
horizontally.

The shape of the image F2D2 is odd symmetric to F1D1 and
consists of the point M2(γ − 1, r − 1), the segment (x = −1, y ∈
[−1, 2r − 1]) containing the �xed point el(x = −1, y = −1), and
two lateral lines (f (x), g(x, 1), x ∈ [−1, 0)) and (f (x), g(x,−1), x ∈
[−1, 0)). Due to the symmetry,M2 is also a cusp point for α > ν.

The evolution of themutual arrangements of pointsM1,M2, and
the singularity line l as a function of parameter γ controls the bifurca-
tions and attractors of the 2Dmap as stated in the following corollary
of Theorem 2 and Lemma 2.

Corollary 1: 1. In the parameter region I (25) (Fig. 5), the
dynamics of the 2D map F is identical to that of the master map (23)
except for the addition of the stable direction to the stable �xed points
er(x = 1, y = 1) and el(x = −1, y = −1). In terms of the images of
Fig. 7, F1D1 ⊂ D1 and F2D2 ⊂ D2 such that the cusp point of the tri-
angular image, M1 (M2), also lies in F1D1 (F2D2) and does not reach
the singularity line l. Subsequent images Fk · · · F1D1 (Fk..F2D2) pre-
serve this arrangement and eventually shrink to the �xed point el (er).
For γ = 1, the cusp points M1 and M2 reach the line l to form the
homoclinic butter�y in the piecewise-smooth system (1).

2. In the parameter region II (26), there appear two saddle points
Pr(xr , yr), Pl(xl, yl), where xr and xl are the coordinates of the unstable
�xed points Pl and Pr of the 1-D master map [see Fig. 7(a)]. The 1-D
stable manifold Ws

r of Pr is the invariant leaf Lr = (x = xr , |y| ≤ 1).
The x coordinate of point Pr is the stable �xed point of the 1-D mas-

ter map corresponding to the leaf Lr , i.e., yr = 1 − r

1 − r|xr|α
. The 1-D

unstable manifold Wu
r of the point Pr has the edge points M1 and er .

Symmetrically, the 1-D stable manifold Ws
l of Pl is the invariant leaf

Ll = (x = xl, |y| ≤ 1).
Due to the mutual arrangement of the points M1, M2, and stable

manifoldsWs
l ,W

s
r of saddle points Pl andPr , there exist two heteroclinic

points H1 = Ws
l ∩ Wu

r and H2 = Ws
r ∩ Wu

l such that the iterative
points FkH1 ∪ FkH2, k ∈ Z, form a heteroclinic contour between two
saddle points Pl and Pr . Induced by the dynamics of the 1-D master
map, there exists the Cantor set of saddle trajectories which are located
inside the domain bounded by the stable and unstable manifolds of
saddle points Pl and Pr [inside the shaded area in Fig. 7(a)]. In this
parameter region, the only attractors of the 2D map are stable �xed
points er and el.

3. For γ = γhet , the point M1 (M2) merges with H1 (H2), causing
a heteroclinic bifurcation. In terms of the piecewise-smooth system (1),
this bifurcation occurs when the unstable manifold Wu

1 (W
u
2 ) of saddle

O whose image is point M1 (M2) falls on the stable manifold Ws
l (W

s
r)

of the saddle limit cycle represented by the saddle point Pl (Pr).
4. In the parameter region III (28), the point M1 (M2) lies to the

right (left) from the stable manifold Ws
l (W

s
r) of saddles Pl (Pr) [see

Fig. 7(b)]. The strange attractor composed of only saddle trajectories is
located in the region bounded by the points M1 and M2 in the x direc-
tion. The attraction basins of stable points el and er are bounded by the
stable manifolds of saddles Pl and Pr , respectively.

5. In the parameter region IV (30), the strange attractor is a
unique attracting set of the 2D map F due to a transcritical bifurca-
tion transition similar to that of the 1-D master map when the saddle
and stable points Pr , er (Pl, el, respectively) merge together at γ = ν−1

and exchanged their stability. The points Pl and Pr left the cross-section
D while edge �xed points er and el became saddle, making the strange
attractor the only attractor [see Fig. 7(c)]. The chaoticity of this attrac-
tor is guaranteed by the presence of the positive Lyapunov exponent hx
due to (36). The singularity of this strange attractor is caused by the sin-
gular trajectories FkM1 and FkM2, k ∈ Z, which change the structure
of the attractor when these trajectories return to the line l = Ws ∩ D,
FkM1 ∈ l, FkM2 ∈ l.

VI. BACK TO THE FLOW DYNAMICS

According to Theorem 1, any trajectory of the piecewise-
smooth system (1) reaches the absorbing domain G, making the
cross-section D global. Therefore, the dynamics of the piecewise-
smooth system (1) inside the absorbing domain G is fully de�ned
by the trajectories of the 2D map F : D → D (20). Given a discrete
time orbit of the 2D map (20) K = {. . . , (x∗

k , y
∗
k), (x

∗
k+1, y

∗
k+1), . . . ,

k = 0, 1, 2, . . .}, connecting point (x∗
k , y

∗
k) with point (x∗

k+1, y
∗
k+1) by

the corresponding systems’As andAr,l solutions (3),(4), (5) yields the
piece of the trajectory of the piecewise-smooth system (1) for any two
neighbor iterative points of the discrete-time trajectory K of the 2D
map.

As a result, bifurcation routes to the birth and disappearance
of a strange attractor in the piecewise-smooth system (1) are iden-
tical to those of the 2D map (20), which are in turn determined by
the 1-D master map (23). Therefore, we can recast the bifurcation
diagram of the master map (Fig. 5) into the bifurcation parameters

of the piecewise-smooth system (1), b = γ exp
3πλ

2ω
[cf. (19)] and

ν, where ν is the same in both the �ow system (1) and master map
(see Fig. 8). To do so, we shall vary b by increasing γ , while keeping
other parameters α, λ, δ, and ω of the piecewise-smooth system (1)
�xed. Here, α > 1 is chosen to satisfy the condition (8) and δ < δcr is
chosen according to (11) in Theorem 1. Thus, Theorems 2, Lemma 2,
andCorollary 1 can be summarized in terms of the piecewise-smooth
system (1) as follows.

Theorem 3: A. In the parameter region (region I in Fig. 8),

0 < b < bh = exp
3πλ

2ω
, (38)

system (1) has two stable foci el and er that attract all system’s trajec-
tories, except for the saddle Os and its stable 2D manifold Ws which
separates the attraction basins [see Fig. 9(a) for the typical dynamics].
B. The surface

bh = exp
3πλ

2ω
(39)

corresponds to a homoclinic bifurcation of saddle Os whose stable
and unstable manifolds form two symmetrical homoclinic orbits (the
homoclinic butter�y) [see Fig. 9(b)].
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FIG. 8. The bifurcation diagram of Fig. 5 recast into the parameters of the piece-
wise-smooth system (1). Regions I–IV and their meaning are identical to those in
Fig. 5. The bifurcation curves bh, bhet , bunq, and bcr are plotted via the explicit for-
mulas given in Theorem 3. The parameters are given in Fig. 9. The vertical dashed
line ν = 0.65 exemplifies the main codimension-one bifurcation route COD1 to
chaos. Points A, B, C, D, E, and F represent the typical dynamics in the corre-
sponding regions depicted in Fig. 9. The curved dashed line indicates the route
analogous to the route COD2 to chaos through the formation of the homoclinic
butterfly with a zero saddle value in the Lorenz system.

C. In the parameter region (region II in Fig. 8),

bh = exp
3πλ

2ω
< b < bhet = γhet exp

3πλ

2ω
, (40)

where γhet is the inverse function of ν = 1 + ln 2−ln γ

ln(γ−1)
, the stable foci er

and el coexist with two symmetrical saddle cycles C1 and C2 which cor-
respond to the saddle �xed points Pr = C1 ∩ D and Pl = C2 ∩ D of the
2Dmap. The unstable and stable manifolds of periodic orbits C1,2 inter-
sect transversely, giving rise to a complicated Cantor set of saddle orbits
[see Fig. 9(c) for the typical dynamics (the saddle cycles C1 and C2 are
shown in Fig. 2)].

D. The surface

bhet = γhet exp
3πλ

2ω
(41)

corresponds to a heteroclinic bifurcation which yields the formation of
two symmetrical heteroclinic contours composed of the unstable mani-
folds Wu of saddle point Os that fall on the stable 2D manifolds of the
saddle limit cycles C1 and C2 [see Fig. 9(d)].

E. In the parameter region (region III in Fig. 8),

bhet ≤ b < bunq = ν−1 exp
3πλ

2ω
, (42)

a strange chaotic Lorenz-type attractor which is born as the result of
the heteroclinic bifurcation at bhet coexists with two stable foci el and er
[see Fig. 9(E)].

E–F. The surface

bunq = ν−1 exp
3πλ

2ω
(43)

corresponds to a subcritical Andronov-Hopf-like bifurcation62when the
saddle periodic orbit C1 (C2) shrinks to the stable focus er (el) and
disappear, rendering er (el) a saddle-focus.

F. In the parameter region (region IV in Fig. 8)

ν−1 exp
3πλ

2ω
≤ b < 2

√

1 + λ2

ω2
exp

{

λ

ω

(

arctan
ω

λ
+ π

)

}

, (44)

the strange Lorenz-type attractor becomes a unique attractor of the
piecewise-smooth system (1) [see Fig. 9(f)].

G. The surface

b = bcr = 2

√

1 + λ2

ω2
exp

{

λ

ω

(

arctan
ω

λ
+ π

)

}

(45)

corresponds to the emergence of stable slidingmotions inside the attrac-
tor which destroy its chaoticity.

Proof. The proof of claims A–G directly follows from the corre-
sponding claims of Theorem 2, Lemma 2, and Corollary 1. However,
one point in claim E–F which states that the transcritical bifurca-
tion in the 2D map (20) induces a subcritical Andronov-Hopf-like
bifurcation in the piecewise-smooth system (1) requires a clari�ca-
tion. Recall that this transcritical bifurcation occurs in the 2D map
(20) when the �xed points Pr and er (Pl and el) merge together
and exchange their stability such that the point Pr (Pl) becomes
stable and leaves the cross-section D = (|x| ≤ 1, |y| ≤ 1). However,
this bifurcation transition does not fully translate into bifurcations
in the piecewise-smooth system (1) as piecewise-smooth systems
can exhibit transitions not possible in smooth systems, including
boundary equilibrium bifurcations.38,63 More speci�cally, before the
bifurcation, in the parameter region III, the �xed point Pr (Pl) of
the 2D map represents a saddle limit cycle C1 (C2), while the �xed
point er (el) of the 2Dmap corresponds a stable focus er (el) in (1). At
b = bunq, the stable focus undergoes a subcritical Andronov-Hopf-
like bifurcation so that the saddle limit cycle shrinks into the stable
focus. According to the transcritical transition in the 2D map, one
would expect that the �xed point and the limit cycle would exchange
their stability, making the stable focus a saddle-focus and giving birth
to a small-amplitude stable limit cycle. However, this is not the case
since the prototype of this limit cycle, the point Pl lies outside the
cross-section D such that it is not de�ned by the �ow of system (1)
and, therefore, is irrelevant to the dynamics of the piecewise-smooth
system (1) and should be ignored. This results in the bifurcation
transition described in claim E–F that the saddle limit cycle C1 (C2)
merges into the stable focus point er (el) and disappears, rendering er
(el) a saddle-focus. �

Figure 8 indicates the bifurcation route COD1 in the piecewise-
smooth system (1) which is identical to the main route COD1 to the
birth of the Lorenz attractor in the original Lorenz system. It is worth
noticing that the codimension-two route COD2 in the Lorenz model
can be realized in the piecewise-smooth system as indicated in Fig. 8.
Here, one has to follow the dashed curve and change two parameters
ν and b simultaneously as ν may only be equal to 1 at the bifurca-
tion point (see Remark 2). Note that the piecewise-smooth system
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FIG. 9. The dynamics of the piecewise-smooth system (1) as a function of parameter b. Subplots (a), (b), (c), (d), (e), and (f) demonstrate the dynamics that correspond
to points (a), (b), (c), (d), (e), and (f) in the bifurcation diagram of Fig. 8, respectively. (a) b = 1.5. Two stable foci el and er (pink circles) attract the unstable manifolds
(red and blue) of saddle Os. (b) b = bh = 2. The homoclinic butterfly. The unstable manifolds (red and blue) return to saddle Os, forming two symmetric homoclinic orbits.
The nonsmooth shape of the homoclinic orbits is due to the piecewise-smooth nature of system (1). (c) b = 2.3 Stable foci er and el coexist with two symmetrical saddle
cycles C1 and C2 (not shown). (d) b = bhet = 2.557. The heteroclinic bifurcation. It involves the formation of two heteroclinic orbits of saddleOs that connect to two symmetric
saddle limit cycles C1 and C2. The Lorenz-type strange attractor is born at this bifurcation (not shown). (e) b = 2.8. The strange attractor (red) coexists with stable foci el and
er . The purple trajectories are attracted by el and er . (f) b = 3.4. The strange attractor is the only attractor of system (1). Other parameters are α = 2, ν = 0.65, λ = 0.294,
ω = 2, and δ = 0.588.

allowed us to explicitly indicate the system’s parameters that yield
the complete cascade of bifurcations leading to chaos, including the
homoclinic butter�y (point B) and the heteroclinic bifurcation (point
C) (also see Fig. 9). These analytical tasks are out of reach for the
Lorenz system.

Recall that the 2D map (20), which yields the bifurcation
diagram of Fig. 8, is constructed under the condition (22) on
the system’s parameters that guarantees that the attractors of
the piecewise-smooth system (1) do not contain sliding motions.
Although it has a di�erent origin, this restriction can be viewed as
an analog of the foliation condition in the geometric Lorenz model
which guarantees that the chaotic attractor is described by the one-
dimensional Lorenz map.15 Failure of the foliation condition16,64,65 in
the original Lorenz system leads to the appearance of Smale horse-
shoes in the Lorenzmap and the transformation of the chaotic Lorenz
attractor into a quasiattractor that contains stable periodic orbits.

Similarly, failure of the condition (22) for b ≥ bcr leads to the dis-
appearance of the singular hyperbolic Lorenz-type attractor due to
the emergence of the stable sliding motions. A remarkable feature
of the piecewise-smooth system (1) is that it can o�er a rigorous
description for the structure and bifurcations of the system’s quasiat-
tractors which contain stable sliding motions in the parameter range
b ≥ bcr . This can be done by re�ning the construction of the Poincaré
return map (20), which should account for the trajectories of focus
systemsAr andAl that reach the stable sliding regions and eventually
return to the cross-section D. The locations of the points at which
these trajectories land on the cross-section D representing the next
iterate of the Poincaré return map can be rigorously identi�ed via
the linear system (10). In terms of the explicit 1-D master map, this
re�nement due to the stable sliding motions will induce two sym-
metric �at fragments in the graph of function f (x) which lead to the
collapse of the corresponding x intervals into two points as opposed
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to the appearance of hooked horseshoes in the geometric Lorenzmap
due to the failed foliation condition.65 The detailed analysis of the
emerging quasiattractor is beyond the scope of this work and will be
reported elsewhere.

VII. CONCLUSIONS

In this paper, we have proposed a geometrical approach to build-
ing a piecewise-smooth ODE model which switches between three-
dimensional linear ODE systems and generates a chaotic attractor
whose existence can be rigorously proven.Wehave chosen the Lorenz
attractor as a motivating example to reproduce its structure and the
sequence of bifurcations that leads to its formation and disappear-
ance, but in a more analytically tractable system than the original
nonintegrable Lorenz system.

The use of our piecewise-smooth ODE model has allowed for
characterizing this sequence of bifurcations rigorously and express-
ing the corresponding bifurcation curves explicitly via the system’s
parameters. In particular, we have analytically calculated a bifurca-
tion curve that corresponds to the formation of homoclinic orbits of
a saddle, known as homoclinic butter�ies.We have rigorously proved
that the Lorenz-type attractor in our model is born as a result of
a bifurcation of two heteroclinic orbits connecting the saddle �xed
point and two symmetrical saddle periodic orbits, as in the original
Lorenz system. Similarly, we have demonstrated that the attractor can
be a unique attracting set or can coexist with two stable equilibria.
Remarkably, our system has reproduced the well-known cascade of
bifurcations that gives birth to the Lorenz attractor in the Lorenz sys-
tem rather precisely. We have used an explicit Poincaré return map
and analytically calculated Lyapunov exponents for the system’s tra-
jectories to prove the existence of the chaotic Lorenz-type attractor
in our piecewise-smooth system. Notably, a similar task of proving
the existence of the original Lorenz attractor turned out to be a long-
term existing challenge that had been resolved only recently.2,3,26 In
this regard, our piecewise-smooth ODE model in which a strange
hyperbolic attractor is glued from graphs of closed-form solutions
o�ers a simpler approach to rigorously proving the existence of a
chaotic attractor. However, this novel approach comes with the price
of a synthetically designed dynamical system and its increased struc-
tural complexity due to necessary switching between its three linear
components.

Due to its construction, the main properties of our Lorenz-type
attractor are analytically tractable, including its hyperbolicity. As a
result, our piecewise-smooth ODE system along with its triangular-
formed, explicit Poincaré map may allow for studying its ergodic
properties and constructing its natural invariant measure similarly
to the classical ergodic theory studies of the Lorenz system.66–68

Our geometrical approach is not limited to three-dimensional
systems and can be extended to reproduce the dynamics of high-
dimensional versions of the Lorenz system.69 A straightforward
extension of the model and our analysis involves the replacement
of the y scalar variable with a vector. Our geometrical approach of
building an analytically tractable piecewise-smooth dynamical sys-
tem with a prede�ned chaotic attractor can also be applied to repro-
duce and rigorously prove bifurcation properties of chaotic attractors
which are similar to their counterparts in the classical nonswitching
dynamical systems, including the Chua and Rössler attractors whose

quantitative analysis has been largely limited to numerical simula-
tions. The Chua system is a classical example of a three-dimensional
piecewise-linear system which contains a saddle-focus and exhibits
Shilnikov chaos. While the use of a piecewise-linear function as a
nonlinearity in the Chua system simpli�es the system’s analysis, a
rigorous, computer-free study of the system’s attractor is impaired by
the inability to derive closed-form solutions and explicitly assess their
stability.40 In light of this, constructing a piecewise-smooth dynami-
cal system similar to the one proposed in this paper which switches
between three linear subsystems (as the Chua system also has three
equilibra) may o�er a way of synthesizing and rigorously studying a
chaotic attractor which resembles the Chua attractor.

When used as a unit composing a dynamical network, our
analytically tractable model may provide a rigorous basis for
understanding complex cooperative dynamics of coupled systems.
These include evolving70 and stochastically switching dynamical
networks71,72 which exhibit highly-nontrivial dynamics such as the
emergence of ghost attractors73 and unexpected regions of interme-
diate switching, called windows of opportunity,74 in which synchro-
nization in a switching network of chaotic oscillators becomes stable
even though it is unstable in the averaged/fast switching network.
While the emergence of windows of opportunity was analytically
addressed for networks of coupled chaotic maps,75,76 its rigorous
proof for networks of coupled ODE systems calls for future studies.
In light of this, the use of our piecewise-smooth ODE model with
closed-form solutions and Lyapunov exponents may become a key
to rigorously solving this stability problem.
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