
SYNCHRONIZATION IN MULTILAYER NETWORKS: WHEN GOOD1

LINKS GO BAD ∗2

IGOR BELYKH† , DOUGLAS CARTER‡ , AND RUSSELL JETER§3

Abstract. Many complex biological and technological systems can be represented by multilayer4
networks where the nodes are coupled via several independent networks. Despite its significance5
from both the theoretical and application perspectives, synchronization in multilayer networks and6
its dependence on the network topology remain poorly understood. In this paper, we develop a7
universal connection graph-based method which opens up the possibility of explicitly assessing critical8
multilayer-induced interactions which can hamper network synchronization. The method reveals9
striking, counterintuitive effects caused by multilayer coupling. It demonstrates that a coupling10
which is favorable to synchronization in single-layer networks can reverse its role and destabilize11
synchronization when used in a multilayer network. This property is controlled by the traffic load on12
a given edge when the replacement of a lightly loaded edge in one layer with a coupling from another13
layer can promote synchronization, but a similar replacement of a highly loaded edge can break14
synchronization, forcing a “good” link to go “bad.” This method can be transformative in the highly15
active research field of synchronization in multilayer engineering and social networks, especially in16
regard to hidden effects not seen in single-layer networks.17
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1. Introduction. Complex networks are common models for many systems in21

physics, biology, engineering, and the social sciences [59, 2, 46]. Significant attention22

has been devoted to algebraic, statistical, and graph theoretical properties of networks23

and their relationship to network dynamics (see a review [21] and references therein).24

The strongest form of network cooperative dynamics is synchronization which plays25

a significant role in the functioning of a wide spectrum of technological and biological26

networks [22, 25, 32, 35, 63, 50, 45, 24, 30, 43], including adaptive and evolving27

networks [4, 53, 52, 58, 56, 37, 8, 31, 51].28

Despite the vast existence of literature on network dynamics and synchronization,29

the majority of research activities have been focused on oscillators connected through30

single-layer network (one type of coupling) [49, 33, 67, 20, 3, 65, 64, 16, 5, 66, 40, 11,31

14, 61, 47, 44, 1, 68, 48]. However, in many realistic biological and engineering systems32

the units can be coupled via multiple, independent systems and networks. Neurons are33

typically connected through different types of couplings such as excitatory, inhibitory,34

and electrical synapses, each corresponding to a different circuitry whose interplay35

affects network function [39, 13]. Pedestrians on a lively bridge are coupled via several36

layers of communication, including people-to-people interactions and feedback from37

the bridge that can lead to complex pedestrian-bridge dynamics [60, 29, 15, 12]. In38

engineering systems, examples of independent networks include coupled grids of power39
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stations and communication servers where the failure of nodes in one network can40

lead to the failure of dependent nodes in another network [23]. Such interconnected41

networks can be represented by multiplex or multilayer networks [38, 19, 62, 18] which42

include multiple systems and layers of connectivity. Multilayer-induced correlations43

can have significant ramifications for the dynamical processes on networks, including44

the effects on the speed of disease transmission in social networks [26] and the role of45

redundant interdependencies on the robustness of multiplex networks to failure [54].46

Typically, in single-layer networks of continuous time oscillators, synchronization47

becomes stable when the coupling strength between the oscillators exceeds a threshold48

value [49, 16]. This threshold depends on the individual oscillator dynamics and the49

network topology. In this context, a central problem is to determine the critical50

coupling strength necessary to guarantee the stability of synchronization. The master51

stability function [49] or the connection graph method [16, 5] are usually used to solve52

this problem in single-layer networks. Both methods reduce the dimensionality of the53

problem such that synchronization in a large, complex network can be predicted from54

the dynamics of the individual node and the network structure.55

Synchronization in multilayer networks has been studied in [57, 36, 27, 69]; how-56

ever, its critical properties and explicit dependence on intralayer and interlayer net-57

work structures remain poorly understood. This is in particular due to the inability58

of the existing eigenvalue methods, including the master stability function [49] to give59

detailed insight into the stability condition of synchronization as the eigenvalues, cor-60

responding to connection graphs composing a multilayer network, must be calculated61

via simultaneous diagonalization of two or more connectivity matrices. Simultaneous62

diagonalization of two or more matrices is impossible in general, unless the matrices63

commute [57, 36]. A nice approach based on simultaneous block diagonalization of64

two connectivity matrices was proposed in [36]. This application of the eigenvalue-65

based approach allows one to reduce the dimensionality of a large network to a smaller66

network whose synchronization condition can be used to evaluate the stability of syn-67

chronization in the large network. For some network topologies, this technique yields a68

substantial reduction of the dimensionality; however, this reduction is less significant,69

in general. The reduced network typically contains weighted positive and negative70

connections, including self loops such that the role of multilayer network topologies71

and the location of critical edges that control synchronization remain difficult to eval-72

uate.73

In this paper, we report significant progress towards removing this obstacle to74

studying synchronization in multilayer networks. We develop a new general stability75

approach, called the Multilayer Connection Graph method, which does not depend76

on explicit knowledge of the spectrum of the connectivity matrices and can handle77

multilayer networks with arbitrary network topologies, which are out of reach for the78

existing approaches. An example of a multilayer network in this study is a network79

of Lorenz systems where some of the oscillators are coupled through the x variable80

(first layer), some through the y variable (second layer), and some through both (in-81

terlayer connections). Our Multilayer Connection Graph method originates from the82

connection graph method [16, 5] for single-layer networks; however, this extension is83

highly non-trivial and requires overcoming a number of technically challenging issues.84

This includes the fact that the oscillators from two x and y layers in the networks of85

Lorenz systems are connected through the intrinsic, nonlinear equations of the Lorenz86

system. As a result, multilayer networks can have drastically different synchroniza-87

tion properties from those of single-layer networks. In particular, our method shows88

that an interlayer traffic load on an edge (in the sense of paths utilizing this edge)89
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is the crucial quantity which can be used to foster or hamper synchronization in a90

nonlinear fashion. For example, it demonstrates that replacing a link with a light91

interlayer traffic load by a stronger pairwise converging coupling (a “good” link) via92

another layer may lower the synchronization threshold and improve synchronizability.93

At the same time, such a replacement of a highly loaded link can make the network94

unsynchronizable, forcing the pairwise stabilizing “good” link to go “bad.”95

The layout of this paper is as follows. First, in Sec. 2, we present and discuss the96

network model. In Sec. 3, we start with a motivating example of how the replacement97

of some links in a multilayer network can improve or break network synchronization.98

In Sec. 4, we formulate the Multilayer Connection Graph method for predicting99

synchronization in multilayer networks. In Secs. 5-7, we show how to apply the100

general method to specific network topologies. In Sec. 8, a brief discussion of the101

obtained results is given. Finally, the Appendix contains the complete derivation of102

the general method. MATLAB code for algorithms used for calculating network traffic103

loads is given in the Supplement.104

2. Network model and problem statement. We start with a network of n105

oscillators with three connectivity layers:106

(2.1)
dxi

dt
= F(xi) +

n∑
j=1

cijPxj +

n∑
j=1

dijLxj +

n∑
j=1

gijMxj , i = 1, ..., n,107

where xi = (x1i , ..., x
s
i ) is the s state vector containing the coordinates of the i-th108

oscillator, F : Rs → Rs describes the oscillators’ individual dynamics, C = (cij),109

D = (dij), and G = (gij), are n × n Laplacian connectivity matrices with zero-110

row sums and nonnegative off-diagonal elements cij = cji, dij = dji, and gij = gji,111

respectively [16]. These connectivity matrices C, D, and G define three different112

connection layers (also denoted by C, D, and G with m, l, and q edges, respectively).113

The inner matrices P, L, and M determine which variables couple the oscillators114

within the C, D, and G layers, respectively. Without loss of generality, we will be115

considering oscillators of dimension s = 3 with xi = (xi, yi, zi). Therefore, the C graph116

with the inner matrix P = diag(1, 0, 0) will correspond to the first-layer connections117

via x, the D graph with the inner matrix L = diag(0, 1, 0 ) will indicate the second-118

layer connections via y, and the graph G with the matrix M = diag(0, 0, 1) will119

represent the third-layer connections via z. Overall, the oscillators of the network are120

connected through a combination of the three layers. The graphs are assumed to be121

undirected [16]. Oscillators, comprising the network (2.1), can be periodic or chaotic.122

As chaotic oscillators are difficult to synchronize, they are usually used as test bed123

examples for probing the effectiveness of a given stability approach. Although, we124

will show that the chaoticity of the oscillators is not important for the non-intuitive125

effects of multilayer synchronization. The oscillators used in the numerical verification126

of our stability method are chaotic Lorenz [41], chaotic double scroll oscillators [42],127

and periodic Hindmarsh-Rose oscillator models [34].128

In this paper, we are interested in the stability of complete synchronization de-129

fined by the synchronization manifold S = {x1(t) = x2(t) = ... = xn(t) = s(t)},130

where the synchronous solution s(t) = (x(t), y(t), z(t)) is governed by the uncoupled131

individual oscillator. Our main objective is to determine a threshold value for the132

coupling strengths required for the stability of the synchronization manifold S. We133

seek to predict this threshold or the absence thereof in the general network (2.1)134

from synchronization in the simplest two-node network and graph properties of the135

multilayer network structures.136
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Based on their synchronization properties and a way they are coupled, oscillators137

can be divided into three main types [21]. Type I oscillators are capable of synchro-138

nizing globally and retaining synchronization for any coupling strengths exceeding139

the synchronization threshold. Most known oscillators, including the Lorenz, double140

scroll, and Hindmarsh-Rose oscillators belong to Type I systems. A much narrower141

Type II class of oscillators contains x-coupled Rössler systems [49] in which synchro-142

nization becomes stable but eventually looses its stability with an increase of coupling143

[33]. Type III oscillators cannot be synchronized by a given choice of coupling. In144

this work, we limit our consideration to the large class of Type I networks; however,145

an extension of our method to Type II networks could be performed with moderate146

effort and remains a subject of future study.147

3. A motivating example and a puzzle. To illustrate the complexity of as-148

sessing multilayer connections and their controversial role in fostering or hindering149

synchronization, we begin with simple two-layer networks of chaotic Lorenz oscilla-150

tors, depicted in Fig. 1(a-c). The two-layer networks are chosen as a minimum model151

which can exhibit counterintuitive effects due to the multilayer structure. For the152

two-layer networks of Lorenz oscillators, the vector equation (2.1) can be written in153

a more reader-friendly scalar form:154

(3.1)

ẋi = σ(yi − xi) +
n∑

j=1

cijxj ,

ẏi = rxi − yi − xizi +
n∑

j=1

dijyj ,

żi = −bzi + xiyi, i = 1, ..., n,

155

where the connectivity matrix C = (cij) describes the topology of x connections (black156

edges in Fig. 1(a-c)), and matrix D = (dij) describes the location of one y edge (blue157

or red edge). Notice the absence of the z coupling and, therefore, of the third layer G.158

The parameters of the individual Lorenz oscillator are standard: σ = 10, r = 28, and159

b = 8/3. The strengths of the x and y coupling are homogeneous (cij = c, dij = d)160

and varied uniformly (c = d).161

We are interested in the question of how the replacement of an x edge in the162

network of Fig. 1(a) with a y edge can affect synchronization. To address this ques-163

tion, we first need to understand synchronization properties of two-node single-layer164

networks of x-coupled and y-coupled Lorenz systems. It is well-known that if the165

coupling in a single-layer network (3.1) with either all x or all y connections exceeds166

a critical threshold, then synchronization becomes stable and persists for any c > c∗167

and d > d∗, respectively [16].168

Calculated numerically1, these coupling thresholds are c∗ ≈ 3.81 for the two-node169

x-coupled network and d∗ ≈ 1.42 for the y-coupled network. As the synchronization170

threshold d∗ is significantly lower, one could expect that replacing an x edge with171

a presumably better converging y coupling improves synchronization. This is true172

for the network in Fig. 1(b) when x edge 5-6 is replaced with a y edge, yielding a173

minor reduction in the synchronization threshold from c∗ ≈ 17.94 in the single-layer174

x-coupled network in Fig. 1(a) to c∗ ≈ 17.74 in the multilayer network in Fig. 1(b).175

The network of Fig. 1(c) replaces an x edge with a y edge, and naturally we would176

1Numerical calculations of coupling thresholds c∗ and d∗ throughout this paper were performed
using an eighth-order Runge-Kutta method with step size h = 0.001. Initial conditions for (xi, yi, zi)
are chosen uniformly at random within the unit hypersphere. Synchronization has been defined as
the sum of all difference variables less than 0.00001.
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(a)

(b)

(c)

(d)

Fig. 1. The puzzle: why do “good” links go “bad”? Synchronization in six-node networks
of Lorenz systems (3.1). (a) Single-layer network, with all x edges (black). (b) The replacement
of x edge 5-6 with a presumably better converging y coupling (blue) improves synchronization, as
expected (see (d)). (c) A similar replacement of x edge 2-3 with a y edge (red) makes synchronization
impossible by pushing the threshold to infinity (see (d)). (d). Systematic study of the coupling
threshold c∗ as a function of the y edge location that replaces an x edge in the original x-coupled
network (a). The blue solid line indicates numerically calculated thresholds. The black solid line
depicts the interlayer traffic bint for the respective y edge. Note a significant increase of bint that
causes the network to become unsynchronizable as predicted by the method. The predicted coupling
thresholds (blue dotted line) are computed from (4.12) using the exponential fit in Fig. 3 and scaling
factors β = 0.3517 and γ = 0.7180.

expect this to improve synchronization. Surprisingly, the contrary is true – this action177

makes the network unsynchronizable (see the coupling threshold jumping to infinity178

in Fig. 1(d)).179

What is the origin of this counterintuitive effect? Why do edges in a multilayer180

network reverse their stabilizing roles depending on the edge location whereas they181

are well behaved in single-layer networks? The connectivity matrices for x and y cou-182

pling in the networks in Fig. 1(b) and Fig. 1(c) do not commute and, therefore, the183

predictive power of the master stability function based methods [57, 36, 27] is severely184

impaired. This puzzle calls for an explanation and utlimately motivates the develop-185

ment of an effective, general method for assessing the stability of synchronization in186
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multilayer networks.187

In the following, we will develop such a method that identifies the location of188

critical interlayer links which control stable synchronization and reveals its explicit189

dependence on an interlayer traffic load on a given edge.190

4. Multilayer Connection Graph Method. In this section, we present the191

analytical method and then derive its practical numerically-assisted version which rep-192

resents an effective approach to assessing the role of critical links from the knowledge193

of two-node networks and graph characteristics of the underlying network topology.194

We then demonstrate how to apply the method to specific network configurations.195

196

4.1. Analytical method: conservative bounds. To formulate the main the-197

orem, we first need to make several assumptions and introduce important quantities.198

Towards assessing the role of the individual oscillator and type of pairwise coupling199

within each layer, we should consider three types of the two-node networks (2.1) which200

are only coupled through one variable. These are x-coupled, y-coupled, and z-coupled201

networks. For each of these two-node networks with coupling strengths c12 = c21 = c,202

d12 = d21 = d, and g12 = g21 = g, respectively, we assume that there exists a threshold203

value, c∗ for the x-coupled, d∗ for the y-coupled, and g∗ for the z-coupled network,204

which guarantees the global stability of synchronization for any coupling strength ex-205

ceeding the threshold values. This assumption implies that each x, y, and z coupling206

belongs to the Type I class of coupled oscillators. For mathematical convenience, we207

introduce the corresponding constants ax = 2c∗, ay = 2d∗, and az = 2g∗ which are208

the double coupling strengths that are sufficient for the synchronization in the x-, y-,209

and z-coupled two-node networks, respectively. Rigorous upper bounds on the dou-210

ble coupling strength ax explicit in parameters of the individual oscillator have been211

previously derived for coupled Lorenz oscillators [16], double-scroll Chua oscillators212

[17], driven nonlinear pendulums [10], and Hindmarsh-Rose neuron models [11].213

We also consider the two-node network with all x, y, and z coupling and introduce214

the triple (ωx, ωy, ωz) as a combination of the double coupling strengths c, d, and215

g that guarantee the synchronization in the xyz-coupled two-node network. These216

constants are such that ωx ≤ ax, ωy ≤ ay, and ωz ≤ az, where equality relates to217

the previous case of the two-node network coupled through one variable. Obviously,218

there are different possible combinations of ωx, ωy, and ωz to choose from; however,219

one should pick a combination that balances out the stability conditions. This point220

will be discussed in the next subsection in more detail.221

Similarly to the connection graph method for single-layer networks [16], we also222

need to introduce graph theoretical quantities that characterize the total length of223

the chosen paths that go through each edge of the three-layer network (2.1). This is224

done by choosing a set of paths {|Pij | i, j = 1, ..., n, j > i}, one for each pair of nodes225

i, j and then determining their lengths |Pij |, the number of edges in each Pij . We226

then partition the chosen paths into two categories such as (i) the paths within one227

layer that only contain edges of one coupling type, for example, x edges and (ii) the228

paths that are composed of two or three types of edges, for example, x and y edges.229

Starting from the first x layer C, we calculate the following quantity for each x edge230

k = 1, ...,m231

(4.1) bxk =
n∑

j>i; k∈Pij∈C
|Pij |.232

Here, bxk is the sum of the lengths of all chosen paths Pij between any pair of nodes233
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i and j which belong to the x layer C and go through a given x edge k. These paths234

are entirely composed of x edges. Similarly, we introduce235

(4.2) byk =

n∑
j>i; k∈Pij∈D

|Pij |, k = 1, ..., l, bzk =

n∑
j>i; k∈Pij∈G

|Pij |, k = 1, ..., q236

as the sums of all chosen paths Pij between any pair of nodes i and j which entirely237

belong to the y (z) layer and go through a given y (z) edge k. Finally, we introduce238

the quantity239

(4.3) bintk =
∑

j>i; k∈Pij :(i,j)/∈C,D,G

|Pij |240

as the sum of the lengths of all chosen paths Pij which pass through a given edge k241

and are composed from more than one type of edges. These are the paths between242

pairs of nodes i and j which belong to two different layers. For example, a path243

between two nodes from x and y layers is typically composed of x and y edges but244

may also contain z edges as the path from a node from the x layer may have to pass245

through the z layer to reach the y layer.246

In terms of traffic networks, the graph theoretical quantities bxk, b
y
k, b

z
k, and bintk247

represent the total lengths of the chosen roads that go through a given edge k which248

can be loosely analogized as a busy street. Therefore, we refer to them as “traffic”249

loads. In this view, the quantity bintk is a traffic load on edge k, caused by interlayer250

travelers.251

Having introduced the main constants ax, ay, az, ωx, ωy, ωz, related to the two-252

node network (2.1) and the traffic loads bxk, b
y
k, b

z
k, and bintk , we can formulate the Mul-253

tilayer Connection Graph Method. For convenience, we use the notations ck = cik,jk ,254

dk = dik,jk , and gk = gik,jk which indicate the coupling strengths of the corresponding255

edges k on the x, y, and z layer graphs, respectively.256

Theorem 4.1 (sufficient conditions). Complete synchronization in the three-257

layer network (2.1) is globally stable if for each edge k258

(4.4)
ck >

1
n

{
ax · bxk + ωx · bintk + αk

x

}
, k = 1, ...,m,

dk >
1
n

{
ay · byk + ωy · bintk + αk

y

}
, k = 1, ..., l,

gk >
1
n

{
az · bzk + ωz · bintk + αk

z

}
, k = 1, ..., q,

259

where the constants αk
x, α

k
y , and αk

z are chosen large enough such that they can glob-260

ally stabilize the auxiliary stability systems written for the difference variables that261

correspond to an edge k : Xk = Xij = xj − xi :262

(4.5)
for αk

x : Ẋk =

[
1∫
0

DF(vxj + (1− v)xi)dv

]
Xk+

ωyb
int
k LXk + ωzb

int
k MXk − (ax + αk

x)PXk,

263

264

(4.6)
for αk

y : Ẋk =

[
1∫
0

DF(vxj + (1− v)xi)dv

]
Xk+

ωxb
int
k PXk + ωzb

int
k MXk − (ay + αk

y)LXk,

265

266

(4.7)
for αk

z : Ẋk =

[
1∫
0

DF(vxj + (1− v)xi)dv

]
Xk+

ωxb
int
k PXk + ωyb

int
k LXk − (az + αk

z)MXk,

267
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where DF is the s×s Jacobian matrix of F and the notation
1∫
0

DF(vxj +(1−v)xi)dv268

represents the mean value theorem applied to the difference of vector functions F(xj)−269

F(xi).270

Proof. The proof closely follows the notations and steps in the derivation of the271

connection graph method [16] for single-layer networks up to a point where the sta-272

bility argument becomes drastically different and yields the new terms ωxb
int
k , ωyb

int
k ,273

and ωzb
int
k which play a pivotal role in synchronization of multilayer networks. The274

complete proof is given in the Appendix.275

Remark 1. It is important to notice that positive terms +ωyb
int
k LXk and +ωzb

int
k MXk276

in the equation (4.5), +ωxb
int
k PXk and +ωzb

int
k MXk in (4.6), and +ωxb

int
k PXk and277

+ωyb
int
k LXk in (4.7) play a destabilizing role such that a heavily loaded edge with a278

high bintk can represent a potential problem for making the systems (4.5)-(4.7) stable279

at all. This observation has dramatic consequences for synchronization in specific280

multilayer networks described in the following sections and also is a key to solving281

the puzzle of Fig. 1.282

Remark 2. If all x, y, and z connection graphs are connected such that all oscilla-283

tors are coupled via all three graphs, the stability of synchronization can be simply284

assessed by applying the connection graph method [16] for each of the x, y, and z285

connected graphs and combining the three conditions as follows: ck + dk + gk >286
1
n {axb

x
k + ayb

y
k + azb

z
k} (cf. the condition (9.25) in the Appendix). As a result, one287

should not expect the effects due to the multilayer coupling discussed in the motivat-288

ing example.289

290

Remark 3. The stability criterion (4.4) can be directly extended to oscillators of291

higher dimensions and/or multiple connection layers. For example, in the case of a292

four-layer network of five-dimensional oscillators with variables x, y, z, u, w coupled293

through the first four variables x, y, z, u, the stability criterion (4.4) should be simply294

extended by adding a similar inequality for the coupling strength corresponding to295

edges from the fourth additional layer with au, b
u
k , ωu, and αk

u defined similarly to296

the constants corresponding to the x, y, and z variables. The remaining uncoupled297

variable w does not play an explicit role in the stability criterion; however, it affects298

(i) the choice of values for ωx, ωy, ωz, ωu required for synchronization in the two299

node xyzu-coupled network and (ii) the values of αk
x, α

k
y , α

k
z , α

k
u via the increased300

dimensionality of the four auxiliary systems similar to (4.5)-(4.7).301

While the stability criterion (4.4) is completely rigorous, the theoretical bounds302

derived by using Lyapunov functions may give large overestimates on the threshold303

coupling strength. As a result, bounds of the constants αk
x, α

k
y , and αk

z that are304

required to stabilize the auxiliary systems (4.5)-(4.7) may be too conservative or not305

exist.306

In the following subsection, we take a more practical route towards developing307

a semi-analytical approach which evaluates local stability of synchronization. This308

computer-assisted version of the method combines numerically calculated constants309

associated with the individual oscillator dynamics with graph theoretical quantities310

such as traffic loads. In this way, this method combines the best of both worlds –311

the master stability function and the developed connection graph-based method – and312

becomes an effective, predictive tool for the general multilayer network (2.1) where the313

synchronization threshold or the absence thereof can be deduced from the properties314

of the individual oscillators and the network topologies of the connection layers.315
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4.2. Numerically-assisted multilayer connection graph method. For the316

sake of clarity, we consider the general network (2.1) with only two connection layers317

C and D. Its general vector equation (2.1) can be re-written in the scalar form:318

(4.8)

ẋi = F (xi, yi, zi) +
n∑

j=1

cijxj ,

ẏi = Q(xi, yi, zi) +
n∑

j=1

dijyj ,

żi = R(xi, yi, zi), i = 1, ..., n,

319

with xi = (xi, yi, zi) and F = (F (xi, yi, zi), Q(xi, yi, zi), R(xi, yi, zi)).320

The stability conditions (4.4) can be directly adapted to the two-layer network321

(4.8) by only considering the two first inequalities for ck and dk with αk
x and αk

y322

calculated via the auxiliary systems (4.5) and (4.6) without the terms containing the323

projection matrix M. Computer-assisted derivation of the stability conditions (4.4)324

for the network (4.8) is a four-step process which can be summarized as follows.325

Step 1: Synchronization thresholds in a two-node network.326

Calculate a stability diagram for synchronization in the simplest two-node xy-coupled327

network with c12 = c21 = c and d12 = d21 = d, using the variational equations for328

infinitesimal transverse perturbations ξ = x2 − x1, η = y2 − y1, and ζ = z2 − z1 :329

(4.9)
ξ̇ = Fx(s)ξ + Fy(s)η + Fz(s)ζ − 2cξ
η̇ = Qx(s)ξ +Qy(s)η +Qz(s)ζ − 2dη

ζ̇ = Rx(s)ξ +Ry(s)η +Rz(s)ζ.

330

Here, the partial derivatives form the Jacobian DF as in (4.5) and are evaluated at331

the synchronous solution s(t) = (x(t), y(t), z(t)).332

Use the stability diagram to determine threshold coupling strengths that guar-333

antee stable synchronization in (i) the two-node x-coupled network with c∗ = ax/2334

and d = 0; (ii) the two-node y-coupled network with d∗ = ay/2 and c = 0; and (iii)335

the two-node xy network with c∗ = ωx and d∗ = ωy (see Fig. 2). The new constants336

ax and ay are double coupling strengths required for synchronization in the two x-337

coupled and y-coupled oscillators (4.8), respectively. Note that different combinations338

of c = ωx and d = ωy in the xy-coupled network can yield stable synchronization.339

The choice of the pair (ωx, ωy) is somewhat arbitrary; however, it dictates the choice340

of constants in the stability diagrams in Step 3. It is often a good idea to choose ωx341

and ωy such that both are non-zero and lie somewhere in the middle range of (ωx, ωy)342

to balance out the stability conditions in Step 4.343

Step 2: Graph theoretical quantities and traffic loads.344

This calculation is similar to that of the connection graph method for single-layer345

networks [16], except that the traffic load should be partitioned into three groups:346

intralayer traffic loads bxk and byk within the x and y layer, respectively, and inter-347

layer traffic load bintk between the layers. To do so, we first choose a set of paths348

{|Pij | i, j = 1, ..., n, j > i}, one for each pair of vertices i, j, and determine their349

lengths |(Pij |, the number of edges in each Pij . Then, for each edge k of the x (y)350

layer graph, we calculate the sum bxk (byk) of the lengths of all Pij that are composed of351

only x (y) edges and pass through k. We repeat the same procedure to calculate the352

sum bintk of the lengths of all Pij that contain both x and y edges and pass through k.353

These constants depend on the choice of the paths Pij . Usually, one uses the shortest354

path from vertex i to vertex j. Sometimes, however, a different choice of paths can355

lead to lower bounds [11]. In the following section, we will walk the reader through a356
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Fig. 2. Stability of synchronization in a two-node network of xy-coupled Lorenz systems (3.1)
as a function of the x coupling, ωx and the y coupling, ωy. Yellow depicts instability (non-zero
synchronization error) and purple depicts stability (zero synchronization error). The white dot
indicates the pair (ωx, ωy) used in the predictions shown in Fig. 1(d) and Fig. 4(c).

detailed calculation of traffic loads bxk, b
y
k, and interlayer bintk in the six-node networks357

of Fig. 1.358

Note that Steps 1 and 2 are quite similar to those one takes when applying the359

master stability function or the connection graph method to single-layer networks.360

That is, one identifies the role of the single node (via the calculation of the Lya-361

punov exponents in Step 1) and the role of the underlying network topology (via the362

calculation of the traffic loads in Step 2).363

The next step is a new component of the method which does not follow from364

the connection graph method for single-layer networks and allows one to reveal and365

explain the surprising phenomena, including the previously described puzzle due to366

the multilayer network structure.367

Step 3: Auxiliary stability diagrams to determine αk
x and αk

y .368

The auxiliary global stability systems (4.5) and (4.6) for each edge k can be written369

for the local stability in terms of the variational system (4.9) as follows:370

(4.10)
ξ̇ = Fx(s)ξ + Fy(s)η + Fz(s)ζ − (ax + αk

x)ξ
η̇ = Qx(s)ξ +Qy(s)η +Qz(s)ζ +Aη

ζ̇ = Rx(s)ξ +Ry(s)η +Rz(s)ζ,

371

(4.11)
ξ̇ = Fx(s)ξ + Fy(s)η + Fz(s)ζ +Bξ
η̇ = Qx(s)ξ +Qy(s)η +Qz(s)ζ − (ay + αk

y)η

ζ̇ = Rx(s)ξ +Ry(s)η +Rz(s)ζ.

372

where A = βωyb
int
k and B = βωxb

int
k with a scaling parameter β to be determined.373

As in (4.4), the auxiliary stability system (4.10) corresponds to the differences374

between the nodes connected by an x edge, and (4.11) corresponds to the differences375

between nodes coupled via a y edge. If the connection layers overlap and the same376

nodes are connected through both x and y edges, then the auxiliary systems (4.10)377

and (4.11) should be applied to the corresponding x and y edges independently. Their378

contributions will then appear in the general stability conditions (see Step 4) for ck379

and dk for the same edge k.380
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Notice that αk
x [αk

y ] must be large enough to stabilize (4.10) [(4.11)] in the presence381

of the destabilizing term +Aη [+Bξ]. While ax = 2c∗, ay = 2d∗, ωx, and ωy are382

chosen and fixed in Step 1 (cf. Fig. 2), the traffic load bintk on a given edge k (which383

is determined in Step 2) controls the choice of αk
x and αk

y . Thus, if the edge is highly384

loaded with a large bintk making A large, then the contribution of the destabilizing term385

+Aη in the η-equation of system (4.10) cannot always be compensated by increasing386

αk
xξ in the ξ-equation. Therefore, the auxiliary system (4.10) can become unstable,387

independently of how large the stabilization coefficient αk
x is. The same argument388

relates to the destabilization of the auxiliary system (4.11) via the positive term389

+Bξ.390

It is important to emphasize that diagrams for the local stability of the two391

three-dimensional auxiliary systems (4.10) and (4.11) can be calculated once and392

then be used to identify threshold values for constants αk
x and αk

y for each edge k393

with a given traffic load bintk . To do so, one should calculate the stability diagram394

for the threshold value of αk
x [αk

y ] necessary to stabilize the systems (4.10) [(4.11)] as395

a function of parameter A [B]. When generating the diagrams, A and B should be396

used as free parameters, thereby treating βωyb
int
k and βωxb

int
k as single, aggregated397

control parameters. As a result, the threshold value for αk
x [αk

y ] required to stabilize398

the auxiliary system (4.10) [(4.11)] for a given edge k with bintk can simply be taken399

from the diagram much in the vein of the master stability function [49] (see Fig. 3).400

Because of the Cauchy-Schwarz inequality used in the derivation of the analytical401

method (see the Appendix), bintk provides an overestimate for the terms added to the402

auxiliary system, we have added the scaling factor 0 < β ≤ 1 to bintk in A and B to403

compensate for this overestimate. To choose the scaling factor, one can use one point404

on the threshold value curve for αk
x or αk

y (see Fig. 3).405

Step 4: Putting pieces together. Using the constants identified in Steps 1-3, we can406

predict synchronization coupling thresholds for the local stability of synchronization407

in the multilayer network (4.8) via the numerically assisted modification of (4.4):408

(4.12)
ck >

1
n

[
γ1ax · bxk + βωx · bintk + αk

x

]
,

dk >
1
n

[
γ2ay · byk + βωy · bintk + αk

y

]
.

409

Notice the presence of additional scaling factors γ1 and γ2 which are chosen to com-410

pensate for the conservative nature of bxk and byk as in the connection graph stability411

method for single-layer networks [16, 5]. γ1 (γ2) scales down the term ax

n [
ay

n ] to412

match the coupling needed to synchronize the network (4.8) which contains only x413

edges (y edges) with bintk = 0.414

In the case of two-layer networks (4.8) with uniform coupling within each layer415

ck = c and dk = d, the stability criterion (4.12) should be satisfied for c > max
k

ck416

and d > max
k

dk. The auxiliary systems (4.10) and (4.11) are typically quite sensitive417

to changes in A and B, resulting in large αk
x or αk

y that dominate the other two418

terms in the stability condition (4.12). Therefore, it is often sufficient to check the419

stability condition (4.12) for only two edges (one from each x and y layers) which420

have maximum interlayer traffic loads among the edges of the corresponding layers.421

These maximum traffic loads max
k

bintk yield the maximum values of αk
x or αk

y that in422

turn maximize the threshold values c and d.423

Note that the principal new component of our method is the use of the auxiliary424

stability diagrams which indicate how the dynamics of the given oscillator comprising425

the network can be stabilized via one variable corresponding to one connection layer426
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when an instability is introduced via the other variable from another connection layer.427

These stability diagrams are calculated for the three-dimensional variational systems428

(4.10) and (4.11) and allow for predicting the synchronization threshold in a large429

multilayer network by using purely graph theoretical quantities such as traffic loads.430

In this sense, these diagrams can be viewed as a hybrid of the master stability function431

and the connection graph method, applied to multilayer networks.432

In the following section, we will walk the reader through the implementation433

of the stability conditions (4.12) for specific two-layer networks and illustrate their434

implications for the stability of synchronization.435

5. Application of the method: solving the puzzle. Armed with the pre-436

dictive method, we first return to the puzzle to better understand synchronization437

properties of the six-node networks of Lorenz oscillators (3.1) from Fig. 1. Below we438

follow the four steps of how our numerically-assisted method can be applied to these439

networks.440

Step 1: Calculate ax, ay, ωx, and ωy.441

Consider the simplest two-node network (3.1) with both x and y coupling: c12 = c21 =442

c and d12 = d21 = d. Use the variational equations (4.9) to determine threshold cou-443

pling strengths that guarantee stable synchronization in (i) the two-node x-coupled444

network with c∗ = ax/2 and d = 0; (ii) the two-node y-coupled network with d∗ = ay/2445

and c = 0; and (iii) the two-node xy network with c∗ = ωx and d∗ = ωy.446

The numerically calculated thresholds for the x-coupled and y-coupled two-node447

network (3.1) reported in Sec. 3 are c∗ ≈ 7.62/2 and d∗ ≈ 2.84/2, respectively. This448

yields the double coupling strength constants ax = 7.62 and ax = 2.84 to be used in449

(4.12).450

Note that different combinations of c = ωx and d = ωy in the xy-coupled network451

yield stable synchronization (see Fig. 2). Without loss of generality, we choose c =452

ωx = 5 and d = ωy = 0.5 as a point on the stability boundary in Fig. 2 and keep these453

values fixed for the prediction of the synchronization threshold in larger two-layer454

networks (3.1) with arbitrary topologies.455

Step 2: Calculate traffic loads bxk, b
y
k, and bintk .456

We use the six-node multilayer network of Fig. 1(b) as an example for calculating457

intralayer traffic loads bxk and byk within the x and y layer, respectively, and interlayer458

traffic load bintk between the layers. To compute all of the paths that pass through a459

given edge, it is recommended that the reader algorithmically finds the shortest path460

between every pair of oscillators, and take note of the paths that go through edge k461

and differentiate the paths that entirely belong to only the x or y layers and the ones462

that contain a combination of x and y edges. As a result, we can find each edge’s463

traffic loads as follows464

(5.1)

bx12 = |P12|+ |P13|+ |P14|+ |P15|+ |P16| =
1 + 2 + 3 + 3 + 4 = 13,

bx23 = |P13|+ |P14|+ |P15|+ |P16|+ |P23|+
|P24|+ |P25|+ |P26| = 20,

bx34 = |P14|+ |P16|+ |P24|+ |P26|+ |P34| = 15
bx35 = |P15|+ |P25|+ |P35| = 6, bx46 = |P16|+ |P46| = 5,
by56 = |P56| = 1, bint12 = 0, bint23 = 0, bint34 = 0,
bint35 = |P36| = 2, bint46 = |P45| = 2,
bint56 = |P36|+ |P45| = 4.

465

Note that the maximum interlayer traffic load on this network is fairly low and due466
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to our choice of paths is bint56 = 4 although it could have also been minimized to zero,467

provided that all paths to node 6 bypass edge 56.468

At the same time, the interlayer traffic load in the network of Fig. 1(c) is sig-469

nificantly higher since there are no alternatives to go around the “bottle neck” edge470

2-3 when traveling from nodes 1 and 2 to nodes 4, 5, and 6. For the same choice of471

shortest paths, we get bint23 = 19. The remaining bxk, b
y
k for the network of Fig. 1(c)472

can be calculated similarly to (5.1).473

Step 3: Determine αk
x and αk

y .474

The auxiliary systems (4.10) and (4.11) which play the role of a master stability475

function for synchronization in two-layer networks of Lorenz systems (3.1) take the476

form:477

(5.2)
ξ̇ = σ(η − ξ)− (ax + αk

x)ξ,
η̇ = (r − z(t)) ξ − η − x(t)ζ + βωyb

int
k η

ζ̇ = y(t)ξ + x(t)η − bζ,
478

479

(5.3)
ξ̇ = σ(η − ξ) + βωxb

int
k ξ

η̇ = (r − z(t)) ξ − η − x(t)ζ − (ay + αk
y)η,

ζ̇ = y(t)ξ + x(t)η − bζ,
480

where x(t), y(t), and z(t) correspond to the synchronous solution and are defined by481

the uncoupled Lorenz system.482

As in the auxiliary systems (4.10) and (4.11), the subscripts k in ξ, η, and ζ are483

omitted to indicate that the 3D auxiliary systems (5.2) and (5.3) should be calculated484

only once and the desired values of αk
x and αk

y for an edge k can simply be read off485

from the stability diagrams (see Fig. 3). Notice that if the edge is loaded with a high486

bintk , then the contribution of the positive term +βωyb
int
k η in the η-equation of system487

(5.2) cannot always be compensated by increasing −αk
xξ in the ξ-equation. Typically,488

this happens when the positive term exceeds the proper negative linear terms such as489

−η (technically, through a combination of terms in the Routh-Hurwitz criterion).

(a) (b)

Fig. 3. Stability of the auxiliary systems (5.2) and (5.3) for coupled Lorenz oscillators. Yellow
depicts instability of the origin while purple indicates its stability. The dependence of the stabilizing
term αx on βωybint

k is estimated by the exponential function αx = 0.4645 exp
(
2.408βωybint

k

)
(dashed

curve), and is used to predict synchronization thresholds in networks of Fig. 1 and Fig. 4.

490

13

This manuscript is for review purposes only.



The complex relationship between these terms in regard to stabilizing (5.2) and491

(5.3) is shown in Fig. 3. Notice the coefficient β on the βωyb
int
k and βωxb

int
k axes. The492

diagrams of Fig. 3 confirm the existence of threshold values for βωyb
int
k and βωxb

int
k493

such that even infinitely large values of αx and αy cannot compensate for the caused494

instability and stabilize systems (5.2) and (5.3).495

To better quantify this dependence to be used in predicting synchronization496

thresholds in networks of Lorenz oscillators, we approximate the stability boundary497

in Fig. 3(a) by the exponential function498

(5.4) αx = 0.4645 exp
(
2.408βωyb

int
k

)
.499

The stability diagrams of Fig. 3 along with Fig. 2 account for the role of the indi-500

vidual oscillators composing the networks and the way these oscillators are coupled501

(through x and y coupling) in the stability of synchronization. These diagrams repre-502

sent an analog of the master stability function in single-layer networks [49] and help503

in solving, once and for all, the question of stability for synchronization in two-layer504

networks involving the Lorenz oscillator through the criterion (4.12), where the role of505

multilayer network topologies is assessed via the calculation of pure graph theoretical506

quantities as shown in the next step.507

508

Step 4: Putting pieces together to solve the puzzle. Given the stability diagram of509

Fig. 3 with abrupt threshold dependences of αk
x and αk

y on increasing interlayer traffic510

load bintk , the effect of synchrony breaking when a highly loaded x edge is replaced with511

a better pairwise stabilizing y (see Sec. 3 ) is no longer a puzzle and directly follows512

from the application of our stability method. Actually, in a historical retrospective, we513

first developed the general method that revealed this and other highly counterintuitive514

effects due to the multilayer structure and then constructed the network examples.515

To make the presentation more appealing before it becomes too technical, we have516

decided to put forward the motivating example. As our exhaustive study of various517

network configurations suggests, we hypothesize that six-node networks of Fig. 1 are518

minimum size networks of Lorenz oscillators that exhibit the synchrony breaking519

phenomenon.520

To test the predictive power of our approach with the constants identified in521

Steps 1-3, we perform a systematic study of how one edge replacement, in which we522

replace only one x edge in the single-layer, x-coupled network of Fig. 1(a) with a523

y edge, affects synchronization. The edge replacement is performed in the order of524

the increasing interlayer traffic load on this edge, bintk . After computing the coupling525

threshold required to synchronize the new network, this edge reverts back to being526

an x edge. This results in multiple networks of five x edges and one y edge. The two527

multilayer networks of Fig. 1(b) and Fig. 1(c) with the drastically different synchro-528

nization properties are two instances of this replacement process. Fig. 1(d) presents529

the actual synchronization threshold values (blue solid line), the interlayer traffic loads530

bint (black line) calculated similarly to (5.1), and the threshold values predicted by531

the numerically-assisted criterion (4.4) with constants ax = 7.20, ay = 2.63, ωx = 5.00532

and ωy = 0.50 chosen above. The constants αk
x and αk

y are taken from the diagrams533

of Fig. 3(a) and Fig. 3(b), respectively. As the stability system (5.2) is much more534

sensitive to the changes in bintk than (5.3) (cf. the onset of instability in Figs. 3(a-b)),535

the threshold values for cij in the criterion (4.12) for the x layer largely dominate536

over dij . Thus, since the synchronization threshold for the entire network (3.1) with537

uniform coupling c = d is defined by the maximum of the thresholds cij or dij for538
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each edge of the multilayer graph, the maximum threshold values predicted by the539

method and depicted in Fig. 1(d) are the ones corresponding to x edges with coupling540

c. These threshold values are calculated using (4.12) as follows541

(5.5) c > max
k

{
ck =

1

n

[
γax · bxk + βωx · bintk + αk

x

]}
,542

where αk
x is defined by the stability diagram of Fig. 3(a) via the approximating func-543

tion (5.4) for each edge k, and ax, ωx, and bintk are determined in Steps 1-3. The544

scaling factor γ which is chosen to scale down the term ax

n to match the coupling545

needed to synchronize the six-node network of Fig. 1(a) with only x edges. The scal-546

ing factor β is then chosen for the network of Fig. 1(b) with the lowest bintk = 4 to547

match the actual synchronization threshold and then kept constant for predicting the548

thresholds in the other six-node networks with one replaced x edge. Figure 1(d) shows549

that the predicted thresholds are fairly close to the actual ones, and the criterion (5.5)550

correctly predicts an increase or decrease of the coupling threshold for each six-node551

network and ultimately predicts synchrony break for the network with the replaced x552

edge 2-3.553

As Fig. 1(d) indicates that when lightly loaded edges (edges with fewer chosen554

paths passing through them) are replaced, the effect on the synchronization stability555

is fairly small. As discussed in the description of the motivating example, the replace-556

ment of x edge 5-6 with a y edge improves synchronization by slightly lowering the557

synchronization threshold. According to our stability criterion (4.4), this happens due558

to a slight decrease in the traffic load on the bottleneck edge bx23 (see (5.1)), compared559

to the original network of Fig. 1(a) with all x edges where one additional path P16560

goes through edge 2-3. As a result, it decreases the contribution of the dominating561

term axb
x
k in (4.4). At the same time, the contribution of the other factors ωyb

int
k and562

αk
x remain insignificant, especially due to the fact that αk

x still lies on a flat part of the563

approximating curve (5.4) before this exponential curve takes off at larger values of564

bintk . On the other hand, such a replacement of the bottleneck node 2-3 in the network565

of Fig. 1(c) significantly increases the intralayer traffic load bintk , requiring infinitely566

large αx
23 to stabilize the stability system (5.2) and causing synchronization to break.567

6. Synchrony breakdown in larger networks. To demonstrate that similar568

synchrony breakdown phenomena occur in larger networks and can be effectively569

predicted by our method, we consider a 20-node network of Lorenz (and then double-570

scroll) oscillators described in Fig. 4(a). The network is initially coupled entirely571

through the x variable. To test our prediction that replacing edges with a high traffic572

load can make the network unsynchronizable, we index the edges according to their573

bxk. Edges similar to edge 10-12 have very few paths that pass through them, and574

subsequently have a low bxk (and in turn, bintk , shown as the black curve in Fig. 4(c)).575

We successively replace x edges (denoted by black edges in Fig. 4(a)) with y edges576

(denoted by gray edges in Fig. 4(b)), according to this ordering until the network is577

completely connected through y edges. The values of bintk range from 0 (for edge 10-12578

with edge ranking index 1 (see Fig. 4(c)), bypassed by all chosen interlayer paths) to579

100−400 for highly loaded edges (for example, for edge 3-5 for which every path from580

node 3 of the x layer graph to any other node in the y-layer must pass through it).581

6.1. Twenty-node networks of Lorenz oscillators. The coupling necessary582

to synchronize the x-coupled Lorenz network (3.1) described in Fig. 4(a) is c ≈ 86.95.583

As outlying, low traffic edges are replaced with y edges, there is almost no effect on the584
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(a)

(b)

(c)

Fig. 4. Effect of successively replacing x coupling edges with y coupling edges on synchro-
nization in a 20-node network of Lorenz oscillators (3.1). (a) Original x-coupled network before
replacing edges according to their traffic load. (b) Snapshot of the multilayer network before the
edge 3-5, labeled as the 13-th edge according to the traffic load ranking, is replaced. The replacement
of this critical edge (red) yields the breakdown of synchronization in the network. Further successive
replacement of remaining x edges (gray) with higher traffic load preserves the instability of syn-
chronization, until all 25 edges have been replaced with a y edge, yielding a single-layer y-coupled
network with bint = 0 that is able to synchronize again. (c) Actual (blue solid line) and predicted
(blue dotted line) threshold for the coupling strength required to synchronize the network after the
i-th x edge has been successively replaced with a y edge. The black solid line depicts the interlayer
traffic bint for the respective edge. The predicted coupling thresholds are computed from (5.5) using
the exponential fit in Fig. 3 and scaling factors β = 0.031 and γ = 0.5993.

threshold for the coupling strength required to synchronize the network, evidenced by585

the lack of change in the actual coupling threshold for the first eight edges replaced in586

Fig. 4(c). As successively more loaded edges are replaced in the network (indicated587

by the dramatic increase in bint), the network becomes more difficult to synchronize,588

until edge 13 (edge 3-5 which is depicted in red in Fig. 4(b)) is replaced. After589
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which, synchronization is no longer feasible for the network for any additional edge590

replacement, until edge 25 (edge 14-15 in Fig. 4). Replacing edge 25, shown in Fig.591

4(b) corresponds to finishing the successive edge replacement process, and results in a592

graph identical to the one in Fig. 4(a), but in which all of the edges represent y coupling593

(gray) instead of x coupling (black). This reinforces our traffic load predictions for594

the breakdown of synchrony in two ways: (i) after enough highly loaded edges are595

replaced (even with a normally favorable coupling type), the network can no longer596

synchronize for any coupling strength, (ii) replacing only one edge that is very highly597

loaded can make the network unsynchronizable, evidenced by the network having no598

synchronizing coupling value even when all but one edge has been replaced (see edge599

index 24 in Fig. 4(c)).600

As in the six-node example of Fig. 1(a), we have obtained a good fit in Fig. 4(c)601

which only focuses on placing the stability conditions on x edges in (4.4), because the602

stability term αx required to stabilize the x stability system (5.2) must be significantly603

higher than αy in the y stability system (5.2) (compare Figs. 3(a-b)). We use the same604

criterion (5.5) with the same constants ax, ωx, and αk
x to predict the synchronization605

threshold and only need to identify the traffic loads bintk and the scaling factors γ606

and β for a better fit, once and for all variations of the multilayer network topologies607

used in Fig. 4(c). In contrast to the six-node network example where traffic load608

bintk can be easily calculated by hand as in (5.1), computing bintk for the 20-node or609

larger networks is a laborious task which was performed by an algebraic algorithm,610

implemented as MATLAB code and given in the Supplement. While the values of611

bintk heavily depend on the choice of paths from one node to another, our algorithm612

uses the natural choice of the shortest paths, computed via Dijkstra’s algorithm [28].613

Optimizing the choices of not necessarily shortest paths that distribute traffic loads614

on edges more equally may yield even better predictions and fits.615

6.2. Networks of double scroll oscillators. To illustrate the generality of616

synchrony break phenomenon when “good” but highly-loaded links go “bad”, we apply617

our numerically-assisted method to networks (2.1), comprised by chaotic double-scroll618

oscillators [42]619

(6.1)

ẋi = κ(yi − xi − h(x)) +
n∑

j=1

cijxj ,

ẏi = xi − yi + zi +
n∑

j=1

dijyj ,

żi = −λyi − µzi, i = 1, ..., n,

620

with621

h(x) =

 m1(x+ 1)−m0 x < −1
m0x −1 ≤ x ≤ 1
m1(x− 1) +m0 x > 1

622

and standard parameters κ = 10, m0 = −1.27, m1 = −0.68, λ = 15, and µ = 0.038.623

Similarly to networks of Lorenz oscillators (3.1), a pair of double-scroll oscil-624

lators (6.1) can be synchronized through either the x or y variable, and the min-625

imum coupling strength required for synchronization in a two-node y-coupled net-626

work, d∗ = 1.16 is much lower than the coupling threshold in the two-node x-coupled627

network, c∗ = 5.94.628

In Fig. 5, we apply our method to predict the synchronization thresholds in the 20-629

node network of Fig. 4 as in the same network of Lorenz oscillators. When successively630
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Fig. 5. Effect of successively replacing x edges with y edges on the synchronization threshold
in a 20 node network of double-scroll oscillators. The network topology, edge replacement process,
and notations are identical to those in Fig. 4(a-b). Notice the same location of critical links (edges
13 to 24) whose replacement leads to synchrony breaks as in the network of Lorenz oscillators (cf.
Fig. 4(c)).

replacing x edges in the network, there is initially a decrease in the coupling threshold631

for synchronization, when peripheral edges or edges in highly connected regions of the632

graph with low traffic loads bintk are replaced with more favorable y edges that provide633

better pairwise convergence to synchronization. Then, as with the network of Lorenz634

oscillators, when edge 13 (edge 3-5) is replaced with a y edge, synchronization is no635

longer attainable. Synchronization then returns when the entire x-coupled network636

has been replaced with y edges. Notably, the synchrony break occurs at the same637

edge as in the network of Lorenz oscillators, suggesting that critical edges whose638

replacement hampers synchronization are mainly controlled by the network multilayer639

topology rather than the individual properties of the intrinsic oscillators, provided that640

the oscillators possess similar synchronization properties as the Lorenz and double641

scroll oscillators.642

The solid curve in Fig. 5 displays the synchronization thresholds, calculated via643

the stability criterion (5.5) with ax = 5.94 × 2 = 11.88, ωy = 1.0, β = 0.0095,644

γ = 0.282, and the approximating function αx = 1.556 exp(3.711βωyb
int
k ) with the645

same traffic loads bintk shown in Fig. 4. This approximating function is obtained from646

a stability diagram for coupled double scroll-oscillators which is computed similarly to647

Fig. 3 and displays a similar threshold effect as in Fig. 3 [not shown]. As in the Lorenz648

oscillator case, the auxiliary stability system (4.5) for αx is much more sensitive to649

increasing bintk than the stability system (4.6) for αy, therefore one can only evaluate650

the stability condition (5.5) for the x coupling c to identify a bottle-neck for the651

synchronization threshold in the entire network.652

Going back to the puzzle example, we have also performed a similar analysis of653

the six-node network of Fig. 1 where the Lorenz oscillators are replaced with the654

double-scroll oscillators [not shown]. Remarkably, this analysis indicates the same655

qualitative phenomena when the replacement of the lightly loaded edge 5-6 slightly656

lowers the synchronization threshold from c = 13.57 in the original x-coupled single-657

layer network of Fig. 1(a) to c = 13.36, and predicts the breakdown of synchrony658

when edge 2-3 is replaced as in the Lorenz network.659

We have also simulated series of other 20-node networks (3.1) and then networks660

(6.1) where all oscillators were connected via x layer graphs, whereas the y coupling661
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only connected some of the oscillators. In contrast to the networks of Fig. 1 and Fig. 4662

where the critical highly-loaded links separate the network into disjoint x and y graph663

components, these networks do not show the effect of synchrony breaking as any pair664

of nodes is coupled directly or indirectly via the x graph such that the coupling665

strengths c can be made strong enough to stabilize synchronization. However, the666

synchronization thresholds in such networks depend on the location of added y edges667

in a nonlinear fashion. In support of this claim, we draw the reader’s attention to668

the six-node example of Fig. 1(b) where the x graph connects all six nodes and the669

replacement of edge 5-6 with an y edge lowers the synchronization threshold. On the670

contrary, the replacement of the x edge 3-5 with an edge y, which still preserves the671

connectedness of the x graph, increases the synchronization threshold, as predicted672

by the method (see Fig. 1(c)). The 20-node networks with connected x graphs yield673

similar effects. To avoid repetition, these results are not shown.674

6.3. Networks of Hindmarsh-Rose oscillators. To convince the reader that675

the counterintuitive effects of synchrony breaking do not originate from the chaotic-676

ity of the oscillators, we have considered a network of limit-cycle Hindmarsh-Rose677

oscillators [7]:678

(6.2)

ẋi = ax2i − yi − zi +
n∑

j=1

cijxj ,

ẏi = (a+ α)xi − yi +
n∑

j=1

dijyj ,

żi = µ(bxi + c− zi), i = 1, ..., n.

679

The individual Hindmarsh-Rose model represents a class of spiking and bursting neu-680

rons where x describes the membrane potential, and the variables y and z take into681

account the transport of ions across the membrane through fast and slow ion chan-682

nels, respectively. The Hindmarsh-Rose model exhibits periodic square-wave bursting683

across a wide range of parameters, including the chosen parameters a = 2.8, α = 1.6,684

c = 5, b = 9, µ = 0.001 [9].685

While coupling through the y variables does not make physiological sense, we686

use this network as a phenomenological example of a multilayer network of periodic687

oscillators which exhibits the same effect of synchrony breaking observed in the net-688

works of chaotic Lorenz and double scroll oscillators. The analysis of the six-node689

network of Fig. 1 where the chaotic Lorenz oscillators are replaced with the perodic690

Hindmarsh-Rose oscillators yields a similar dependence of the synchronization thresh-691

olds as a function of the edge replacement [not shown]. In particular, the threshold692

coupling for the network of Fig. 1(b) where the lightly loaded x edge 5-6 is replaced693

with a y edge is c = 1.66. However, the replacement of the highly loaded x edge 2-3694

(see Fig. 1(c)) yields an infinitely large synchronization threshold as in the examples695

of the Lorenz and double scroll oscillators. This suggests that the synchronization696

breakdown effect is not rooted in the particular properties of the chosen limit-cycle697

or chaotic oscillators but rather defined by the structure of a multilayer network and698

the location of highly loaded links.699

7. Predicting synchrony in large random networks. Our numerically-700

assisted Multilayer Connection Graph Method is also applicable to large, possibly701

random networks for which the intralayer and interlayer traffic loads can be calcu-702

lated similarly to the 20-node networks through the MATLAB algebraic algorithm703

given in the Supplement. The algebraic algorithm is rooted in the Dijkstra algorithm704
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and sorting the shortest paths and therefore has a comparable complexity. This com-705

plexity along with the required computer power are limitations on the (very large)706

network size that can be handled by the method. In this regard, predicting synchro-707

nization in reasonably large networks of 100-1000 nodes via the stability criterion (5.5)708

based on the calculations of traffic loads bxk, b
y
k, and bintk is a simple, computationally709

inexpensive task, comparable to the application of the connection graph method or710

master stability function to predicting synchronization in single-layer networks.711

Figure 6 demonstrates the actual and predicted synchronization thresholds in 100-712

node two-layer Erdős-Rényi networks of Lorenz oscillators (3.1). The procedure for713

constructing these two-layer random networks is as follows. We begin with a single-714

layer x-coupled Erdős-Rényi network whose edges are generated with probability p =715

0.05. Then, we generate five two-layer networks obtained from the 100 random Erdős-716

Rényi network by replacing 25% of randomly chosen x edges with y edges. These717

five networks have the same fraction of x and y edges but the structures of their x718

and y layers are different (the adjacency lists of their two-layer network topologies are719

given in the Supplement). Figure 6(b) shows that these highly connected networks720

do not exhibit the synchronization breakdown effect due to the absence of bottle neck721

edges that would separate the layers and correspond to high interlayer traffic load722

bintk . Indeed, the maximum traffic load bintk for the most loaded edge in each of the723

five networks is nearly the same such that the synchronization thresholds do not vary724

significantly.725

8. Conclusions. While the study of synchronization in multilayer dynamical726

networks has gained significant momentum, the general problem of assessing the sta-727

bility of synchronization as a function of multilayer network topology remained practi-728

cally untouched due to the absence of general predictive methods. The existing eigen-729

value methods, including the master stability function [49], which effectively predict730

synchronization thresholds in single-layer networks cannot be applied to multilayer731

networks in general. This is due to the fact that the connectivity matrices correspond-732

ing to two or more connection layers do not commute in general, and therefore, the733

eigenvalues of the connectivity matrices cannot be used. Therefore, synchronization734

in multilayer networks is usually studied on a case by case basis either via (i) full-scale735

simulations of all transversal Lyapunov exponents of the (n−1)× s-dimensional sys-736

tem of variational equations [27], where n is the network size and s is the dimension of737

the intrinsic node dynamics, or more effectively via (ii) simultaneous block diagonal-738

ization of the connectivity matrices [36] which in some cases can reduce the problem739

of assessing synchronization in a large network to a smaller network which, however,740

contains positive and negative connections, including self loops such that the exact741

role of multilayer network topology and the addition or exchange of edges remains742

unclear.743

In this paper, we have made significant progress in understanding synchroniza-744

tion properties of multilayer networks by developing a predictive method, called the745

Multilayer Connection Graph method, which does not rely on calculations of eigen-746

values of the connectivity matrices, and therefore can handle multilayer networks.747

Originated from the connection graph method for synchronization in single-layer net-748

works [16], our method combines stability theory with graph theoretical reasoning.749

Two key ingredients of the method are (i) the calculation of stability diagrams for750

the auxiliary s-dimensional system which indicate how the dynamics of the given os-751

cillator comprising the network can be stabilized via one variable corresponding to752

one connection layer when an instability is introduced via the other variable from753
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(a)

(b)

Fig. 6. Synchronization in two-layer random Erdős-Rényi networks of 100 Lorenz oscillators
(3.1). (a) Original x-coupled Erdős-Rényi network generated with probability p = 0.005 for the
presence of an x edge. (b). Actual (blue solid line) and predicted (blue dotted line) synchronization
thresholds in five two-layer network configurations obtained from the 100 random Erdős-Rényi net-
work by replacing 25% of randomly chosen x edges with y edges. The black solid line depicts the
interlayer traffic bint for an edge with the highest traffic load. Notice only minor changes in bint

and, therefore, in the synchronization thresholds in the five two-layer network configurations with
the same fraction of x and y edges. Similarly to Fig. 4, the predicted thresholds are computed from
(5.5) using the exponential fit in Fig. 3 and scaling factors β = 0.012365 and γ = 0.365.

another connection layer and (ii) the calculation of traffic loads via a given edge on754

the multilayer connection graph. All together, these quantities allow for predicting755

the synchronization threshold and identify critical links that control synchronization756

in the original, potentially large, multilayer network.757

Using the method, we have discovered striking, highly unexpected phenomena758

not seen in single-layer networks. In particular, we have shown that replacing a link759

with a light interlayer traffic load by a stronger pairwise converging coupling via760

another layer may improve synchronizability, as one would expect. At the same time,761

such a replacement of a highly loaded link may essentially worsen synchronizability762

and make the network unsynchronizable, turning the pairwise stabilizing “good” link763

into a destabilizing connection (a “bad” link). The critical links whose replacement764

can lead to synchrony break are typically the ones that connect the layers such the765
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oscillators from two layers become coupled through the intrinsic, nonlinear equations766

of the individual oscillator that correspond to a “relay” node passed by the only path767

from one layer to the other. As a result, the intrinsic dynamics of the individual768

node oscillator plays a pivotal role in the stability of synchronization. In this paper,769

we have limited our attention to Type I limit-cycle and chaotic oscillators such as770

the Lorenz, double scroll, and Hindmarsh-Rose oscillators that yield synchronization771

that remains stable in a single-layer network once the coupling exceeds a critical772

threshold. Remarkably, when used in a multilayer network, these oscillators have773

indicated similar synchronization properties, suggesting that the location of critical774

edges in the considered network may remain unchanged for other Type I oscillators.775

While our method for assessing synchronization is only applicable to Type I oscillators,776

it could be modified to handle Type II networks, including multilayer networks of777

Rössler systems [49]. This modification is a subject of future study.778

To gain insight into the determining factors for the emergence of synchrony break-779

ing, without potential confounds associated with the interplay between multiple layers780

and direction of links, we have considered examples of two-layer undirected networks781

of identical oscillators. However, the extension of our general method, which was782

developed for three-layer networks and applied to two-layer networks in this paper, to783

multiple layers, directed networks and non-identical oscillators is fairly straightforward784

and will be reported elsewhere. In particular, the extension of our method to directed785

networks can be performed by adapting the generalized connection graph method [5, 6]786

for single-layer directed networks, where directed edges are symmetrized and assigned787

additional weights according to the mean node unbalance. In the case of slightly788

non-identical oscillators, perfect synchronization cannot exist, but approximate syn-789

chronization in multilayer networks is still possible. Our Multilayer Connection Graph790

method can be easily extended to such non-identical oscillators by assessing the sta-791

bility of a δ-neighborhood of the generating synchronization manifold, similarly to the792

single layer connection graph method (see Appendix B in [16]).793

Our method can also be modified to handle multilayer neuronal networks con-794

nected via electrical, excitatory, and inhibitory synapses which exhibit a number of795

counterintuitive synergistic effects: when (i) the addition of pairwise repulsive inhi-796

bition to single-layer excitatory networks can promote synchronization [13] and (ii)797

combined electrical and inhibitory coupling can induce synchronization even though798

each coupling alone promotes an anti-phase rhythm [55]. Our method promises to al-799

low an analytical treatment of these effects in large neuronal networks which has been800

impaired by the absence of predictive methods that can handle excitatory, inhibitory,801

and electrical neuronal circuitries simultaneously. A key to addressing this issue is the802

construction of auxiliary stability diagrams that incorporate the variational equations803

for the stability of the synchronous bursting solution in such networks [13, 55] with804

the traffic loads on critical links. This study will be reported elsewhere.805

9. Appendix. In this appendix we derive the Multilayer Connection Graph806

method and prove Theorem 4.1. Our goal is to derive the conditions of global asymp-807

totic stability of the synchronization manifold S in the system (2.1). To achieve this808

goal and develop the stability method, we follow the steps of the proof of the con-809

nection graph method [16]. The concept is similar, up to a certain step where a new810

stability argument is used.811

In the network model (2.1) we introduce the difference variable812

(9.1) Xij = xj − xi, i, j = 1, ..., n,813
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whose convergence to zero will imply the transversal stability of the synchronization814

manifold S.815

Subtracting the i-th equation from the j-th equation in system (2.1), we obtain816

the equations for the transversal stability of S817

(9.2)
Ẋij = F(xj)− F(xi) +

n∑
k=1

{cjkPXjk − cikPXik+

djkLXjk − dikLXik + gjkMXjk − gikMXik}, i, j = 1, ..., n.
818

To obtain the explicit dependence of F(xj) − F(xi) on Xij , we introduce the
following vector notation

F(xj)− F(xi) =

 1∫
0

DF(vxj + (1− v)xi)dv

Xij ,

where DF is the 3×3 Jacobian matrix of F. This notation is simply a compact form of819

the mean value theorem, f(B)−f(A) = f ′(C)(B−A), applied to the vector functions820

F(xj) and F(xi), where the Jacobian DF is evaluated at some point C ∈ [xi,xj ].821

Therefore, the difference system (9.2) can be rewritten in the form822

(9.3)
Ẋij =

[
1∫
0

DF(vxj + (1− v)xi)dv

]
Xij +

n∑
k=1

{cjkPXjk − cikPXik+

djkLXjk − dikLXik + gjkMXjk − gikMXik}, i, j = 1, ..., n.

823

The first term in the brackets yields instability via the divergence of trajectories824

within the individual, possibly chaotic oscillators. The second (summation) term,825

which represents the contribution of the network connections, may overcome the un-826

stable term, provided that the coupling is strong enough.827

Notice that the stability of system (9.3) is redundant as it contains all possible828

(n−1)n/2 non-zero differences Xij along with n zero differences Xii = 0 which can be829

disregarded. At the same time, there are only n− 1 linearly independent differences830

required to show the convergence between n variables Xij . However, this redundancy831

property and the consideration of all non-zero Xij are a key ingredient of our approach832

which allows for separating the difference variables later in the stability description,833

without diagonalizing the connectivity matrices.834

We strive to find conditions under which the trivial fixed point {Xij = 0, i, j =835

1, ..., n} of system (9.3) is globally stable. This amounts to finding conditions for836

global stability of synchronization in the network (2.1).837
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We introduce the following terms AijXij , where Aij is a 3× 3 matrix, such that2838

(9.4) Aij =



axP = diag(ax, 0, 0) if oscillators i and j
belong to x layer C

ayL = diag(0, ay, 0) if oscillators i and j
belong to y layer D

azM = diag(0, 0, az) if oscillators i and j
belong to z layer G

K = diag(ωx, ωy, ωz) if oscillators i and j
belong to different layers,

839

where constants ax, ay, az, ωx, ωy, ωz are to be determined.840

We add and subtract additional terms AijXij with matrix Aij defined in (9.4)841

from the stability system (9.3) and obtain842

(9.5)

Ẋij =

[
1∫
0

DF(vxj + (1− v)xi)dv −Aij

]
Xij +AijXij+

n∑
k=1

{cjkPXjk − cikPXik + djkLXjk − dikLXik + gjkMXjk − gikMXik}.
843

The introduction of the terms AijXij allows for obtaining stability conditions of the844

trivial fixed point Xij = 0, i, j = 1, .., n in two steps. Note that the matrix −Aij845

contributes to the stability of the fixed point and can compensate for instabilities846

induced by eigenvalues with nonnegative real parts of the Jacobian DF. This can be847

achieved by increasing parameters ax, ay, az, ωx, ωy, and ωz. At the same time, the848

instability originated from its positively definite counterpart, matrix +Aij , can be849

damped by the coupling terms through cij , dij , and gij .850

Step I. We make the first step by introducing the following auxiliary systems for851

i, j = 1, ..., n852

(9.6) Ẋij =

 1∫
0

DF(vxj + (1− v)xi) dv −Aij

Xij .853

This system is identical to system (9.5) where the coupling terms are removed.854

Aij can take four different forms, depending on whether oscillators i and j both855

belong to the x or y or z graphs, or belong to different graphs, for example, if i belongs856

to the x graph, and j belongs to the y graph (see (9.4)). Therefore, we have four types857

2A different choice of matrix K which takes the values: (i) diag(ωx, ωy , 0) if the path between
oscillators i and j is only composed of x and y edges, (ii) diag(0, ωy , ωz) if the path between oscillators
i and j is only composed of y and z edges, (iii) diag(ωx, 0, ωz) if the path between oscillators i and j
is only composed of x and z edges, and (iv) diag(ωx, ωy , ωz) if the path between oscillators i and j
contains x, y, and z edges, may yield lower bounds on the coupling thresholds ck, dk, and gk in the
stability criterion (9.31). This is due to the fact that splitting the matrix K into the four matrices
may lower the interlayer traffic load on edge k, bint

k . However, this makes practical applications of the

method less convenient as the more conservative bounds on bint
k can be balanced out by the choice

of the scaling parameter β. Furthermore, one would have to impose additional constraints on ωx,
ωy , and ωz that must be large enough to guarantee that every pair (ωx, ωy), (ωy , ωz), and (ωx, ωz)
must yield global synchronization in the corresponding two-node network, as opposed to lower values
guaranteed by the triple (ωx, ωy , ωz) used in the matrix K in (9.4).
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of the auxiliary systems858

(9.7)
Ẋij =

[
1∫
0

DF(vxj + (1− v)xi) dv − axP
]
Xij

if i and j both belong to x layer,

859

860

(9.8)
Ẋij =

[
1∫
0

DF(vxj + (1− v)xi) dv − ayL
]
Xij

if i and j both belong to y layer,

861

862

(9.9)
Ẋij =

[
1∫
0

DF(vxj + (1− v)xi) dv − azM
]
Xij

if i and j both belong to z layer,

863

864

(9.10)
Ẋij =

[
1∫
0

DF(vxj + (1− v)xi) dv −K
]
Xij

if i and j belong to different layers.

865

Remarkably, the auxiliary system (9.7) coincides with the difference system for the866

global stability of synchronization in a two-oscillator network (2.1) with only x cou-867

pling, where ax plays the role of the double coupling strength that guarantees the868

stability (see [16] for a detailed discussion on this relation).869

Similarly, the stability of auxiliary system (9.8) [(9.9)] implies global stability of870

synchronization in the two-node network (2.1) with only y (z) coupling, where ay871

(az) is the double coupling strength of the y (z) connection. Lastly, the stability of872

auxiliary system (9.10) guarantees globally stable synchronization in the two-node873

network with all x, y, and z coupling, where a combination of constants ωx, ωy, and874

ωz, present in K, is a combination of the double coupling strengths of x, y and z875

connections that is sufficient to induce stable synchronization in the xyz-coupled two-876

node network.877

Therefore, our immediate goal is to find upper bounds on the values of ax, ay, az,878

ωx, ωy, and ωz that make the origin of the auxiliary systems (9.7)-(9.10) stable. This879

amounts to proving global synchronization in the four x-, y-, z-, and xyz-coupled net-880

works that are composed of two oscillators. As only Type I oscillators [21] are capable881

of synchronizing globally and retaining synchronization for any coupling strength ex-882

ceeding some critical threshold, our approach based on the calculation of ax, ay, and883

az is thus limited to this class of oscillators.884

The proof of global stability in (9.7)-(9.10) and derivation of bounds ax, ay,885

az and ωx, ωy, ωz involves the construction of a Lyapunov function along with the886

assumption of the eventual dissipativeness of the coupled system. Therefore, before887

advancing with the study of larger networks (2.1), one has to prove that globally stable888

synchronization in the simplest x-, y-, z-, and xyz-coupled two-oscillator networks is889

achievable. The bound ax for x-coupled Lorenz oscillators was given in [16]. Upper890

bounds for ay, az, ωx, ωy, ωz can be derived similarly.891

Having obtained the bounds ax, ay, az, and ωx, ωy, ωz, and therefore proving892

the stability of the auxiliary systems (9.7)- (9.10), we can take the second step in893

analyzing the full stability system (9.5).894
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Step II. The bounds ax, ay, az and ωx, ωy, ωz that stabilize the auxiliary systems895

(9.7)-(9.10) reduce the stability analysis of system (9.5) to the following equations by896

excluding the term in brackets897

(9.11)
Ẋij = AijXij +

n∑
k=1

{cjkPXjk − cikPXik + djkLXjk − dikLXik+

gjkMXjk − gikMXik}, i, j = 1, ..., n.
898

Note that the positive term AijXij , which contains the upper bounds ax, ay, az and899

ωx, ωy, ωz, is destabilizing and must be compensated for by the coupling terms. To900

study the stability of (9.11) we introduce a Lyapunov function of the form901

(9.12) V =
1

4

n∑
i=1

n∑
j=1

XT
ij · I ·Xij ,902

where I is a 3× 3 identity matrix.903

Its time derivative with respect to system (9.11) becomes904

(9.13)

V̇ = 1
2

n∑
i=1

n∑
j=1

XT
ijAijXij−

1
2

n∑
i=1

n∑
j=1

n∑
k=1

{cjkXT
jiPXjk + cikX

T
ikPXij}−

1
2

n∑
i=1

n∑
j=1

n∑
k=1

{djkXT
jiLXjk + dikX

T
ikLXij}−

1
2

n∑
i=1

n∑
j=1

n∑
k=1

{gjkXT
jiMXjk + gikX

T
ikMXij}.

905

We need to demonstrate the negative semi-definiteness of the quadratic form V̇ .906

As (X2
ii = 0, X2

ij = X2
ji), the first sum simplifies to907

(9.14) S1 =

n−1∑
i=1

n∑
j>i

AijX
2
ij .908

This sum is always positive definite and its contribution must be compensated for by909

the second, third, and fourth sums910

(9.15)

S2 = − 1
2

n∑
i=1

n∑
j=1

n∑
k=1

{cjkXT
jiPXjk + cikX

T
ikPXij},

S3 = − 1
2

n∑
i=1

n∑
j=1

n∑
k=1

{djkXT
jiLXjk + dikX

T
ikLXij}

S4 = − 1
2

n∑
i=1

n∑
j=1

n∑
k=1

{gjkXT
jiMXjk + gikX

T
ikMXij}.

911

Due to the coupling symmetry, the two terms in S2, S3, and S4 can be made912

identical by exchanging the indices i with j in the second terms such that913

(9.16)

S2 = −
n∑

i=1

n∑
j=1

n∑
k=1

cjkX
T
jiPXjk,

S3 = −
n∑

i=1

n∑
j=1

n∑
k=1

djkX
T
jiLXjk,

S4 = −
n∑

i=1

n∑
j=1

n∑
k=1

gjkX
T
jiMXjk.

914
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Taking into account that Xjj = 0, we obtain915

(9.17)

S2 = −
n∑

i=1

n−1∑
k=1

n∑
j>k

cjkX
T
jiPXjk −

n∑
i=1

n−1∑
k=1

n∑
j<k

cjkX
T
jiPXjk,

S3 = −
n∑

i=1

n−1∑
k=1

n∑
j>k

djkX
T
jiLXjk −

n∑
i=1

n−1∑
k=1

n∑
j<k

djkX
T
jiLXjk,

S4 = −
n∑

i=1

n−1∑
k=1

n∑
j>k

gjkX
T
jiMXjk −

n∑
i=1

n−1∑
k=1

n∑
j<k

gjkX
T
jiMXjk.

916

Again, exchanging j and k in the second terms of S2, S3 and S4 and implying the917

symmetries of coupling cjk = ckj , djk = dkj , and gjk = gkj , we obtain918

(9.18)

S2 = −
n∑

i=1

n−1∑
k=1

n∑
j>k

cjk(XT
ji + XT

ik)PXjk,

S3 = −
n∑

i=1

n−1∑
k=1

n∑
j>k

djk(XT
ji + XT

ik)LXjk,

S4 = −
n∑

i=1

n−1∑
k=1

n∑
j>k

gjk(XT
ji + XT

ik)MXjk.

919

Since XT
ji + XT

ik =
[
xT
i − xT

j + xT
k − xT

i

]
= XT

jk, we obtain920

(9.19)

S2 = −
n−1∑
k=1

n∑
j>k

ncjkX
T
jkPXjk,

S3 = −
n−1∑
k=1

n∑
j>k

ndjkX
T
jkLXjk,

S4 = −
n−1∑
k=1

n∑
j>k

ngjkX
T
jkMXjk.

921

Returning to the derivation of the Lyapunov function (9.13) and combining the sums922

S1, S2, S3, S4 yields the condition which guarantees that V̇ ≤ 0 :923

(9.20) S1 + S2 + S3 + S4 =

n−1∑
i=1

n∑
j>i

XT
ij [Aij − ncijP − ndijL− ngijM ]Xij < 0.924

The most remarkable property of this condition is that we are able to eliminate the925

cross terms and formulate the condition in terms of Xij . This is because we chose926

to consider the redundant system with all possible differences Xij , including linearly927

dependent ones.928

The condition (9.20) finally transforms into929

(9.21) n
n−1∑
i=1

n∑
j>i

[cijX
T
ijPXij + dijX

T
ijLXij + gijX

T
ijMXij ] >

n−1∑
i=1

n∑
j>i

XT
ijAijXij .930

Notice that the left-hand side (LHS) of this inequality contains only the differences931

Xij between the oscillators that belong to the edges on the connection graphs C, D,932

and G: the first term on the LHS corresponds to the x layer, the second term is933

defined by the edges of the y layer, and the third term corresponds to the z layer. At934

the same time, the variables on the right-hand side (RHS) of (9.21) correspond to all935

possible differences between pairs of oscillators that might or might not be defined by936
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edges of the connection graphs. Hence, to get rid of the presence of the differences937

Xij and therefore find the conditions explicit in the parameters of the network model938

(2.1), we express the differences on the RHS via the differences on the LHS such that939

we will be able to cancel them.940

So far, we have closely followed the steps in the derivation of the connection graph941

method [16] for single-layer networks. The inequality (9.21) is similar to that of the942

connection graph method, except for the presence of the second and third terms on943

the LHS and a modified matrix Aij . A new non-trivial observation, however, is that944

the total number of oscillators, n, in the network (2.1), composed of three connectivity945

layers, appears as a factor in all three sums on the LHS, corresponding to the x, y946

and z layers, even though each layer itself may contain fewer oscillators. The stability947

argument which follows drastically differs from that of the connection graph method.948

Denote on the LHS of (9.21): (i) the differences Xij corresponding to edges of949

the x graph by X̃k, k = 1, ...,m, (ii) the differences Xij corresponding to edges of the950

y graph by Ỹk, k = 1, ..., l, and (iii) the differences Xij corresponding to edges of the951

z graph by Z̃k, k = 1, ..., q. Recall that m, l, and q are the number of edges on the952

x, y, and z graphs, respectively. In addition, let Xk be a scalar from the vector X̃k953

which indicates the scalar difference between xi and xj , corresponding to an edge on954

the x graph. Similarly, let Yk (Zk) be a scalar from the vector Ỹk (Z̃k) defined by the955

corresponding yi and yj (zi and zj). Using this notation, the differences Xij on the956

RHS will now define the scalars Xij = xj −xi, Yij = yj − yi, and Zij = zj − zi. Recall957

that (xi, yi, zi) are the scalar coordinates of the individual oscillator, composing the958

network (2.1).959

Using this notation, we can rewrite (9.21) as follows960

(9.22)

n

[
m∑

k=1

ckX
2
k +

l∑
k=1

dkY
2
k +

q∑
k=1

gkZ
2
k

]
>

> ax
n−1∑
i=1

n∑
j>i,(i,j)∈C

X2
ij + ay

n−1∑
i=1

n∑
j>i,(i,j)∈D

Y 2
ij + az

n−1∑
i=1

n∑
j>i,(i,j)∈G

Z2
ij+

+
n−1∑
i=1

n∑
j>i,(i,j)/∈C,D,G

[ωxX
2
ij + ωyY

2
ij + ωzZ

2
ij ],

961

where ck = cikjk , dk = dikjk , and gk = gikjk . Here, the RHS of (9.22) has four962

terms obtained by splitting the difference variables into four groups, according to the963

coefficients of Aij (cf. (9.21) and (9.7)-(9.10)). The first sum on the RHS is composed964

of the differences that belong to the x graph C, the second sum corresponds to the y965

graph D, the third sum is defined by the z graph G, whereas the fourth sum identifies966

the differences between the oscillators which belong to different graphs such that, for967

example, i ∈ C and j ∈ D.968

To recalculate the difference variables of the RHS via the variables Xk, Yk, and Zk,969

we should first choose a path from oscillator i to oscillator j for any pair of oscillators970

(i, j). We denote this path by Pij . Its path length |Pij | is the number of edges971

comprising the path. The important property of the path Pij is that if, for example, it972

passes through oscillators with indices 1, 2, 3, and 4, then the corresponding difference973

X14 = x4 − x1 = (x4 − x3) + (x3 − x2) + (x2 − x1) = X12 + X23 + X34, where the974

differences X12, X23, and X34 correspond to the edges and the path length |P14| = 3.975

The choice of paths is not unique. We typically choose a shortest path between976

any pair of i and j; however, a different choice of paths can yield closer estimates, as977

discussed in [11] for single-layer networks.978

28

This manuscript is for review purposes only.



Once the choice of paths is made, we stick with it and begin recalculating the979

difference variables on the RHS of (9.22) via Xk, Yk, and Zk. A potential problem is980

that we have to deal not with the variables Xij , but with their squares X2
ij , coming981

from the calculations of the derivative of the Lyapunov function (9.13). To mitigate982

this issue, we apply the Cauchy-Schwartz inequality; applied to the above example,983

it yields X2
14 = (X12 +X23 +X34)2 ≤ 3(X2

12 +X2
23 +X2

34). Notice the appearance of984

the factor 3, indicating the number of edges comprising the path. Similarly, for any985

difference Xij , Yij , and Zij , we have986

(9.23)

X2
ij =

( ∑
k∈Pij

Xk

)2

≤ |Pij |
∑

k∈Pij

X2
k ,

Y 2
ij =

( ∑
k∈Pij

Yk

)2

≤ |Pij |
∑

k∈Pij

Y 2
k ,

Z2
ij =

( ∑
k∈Pij

Zk

)2

≤ |Pij |
∑

k∈Pij

Z2
k ,

987

where once again |Pij | indicates the length of the chosen path from oscillator i to988

oscillator j along the connection graph, combined of the x and y graphs. At this989

point, we do not differentiate between paths containing only x, y or z edges, but we990

have to consider interlayer paths when necessary.991

Applying this idea to each difference variable on the RHS of (9.22), we obtain the992

following condition993

(9.24)

n

[
m∑

k=1

ckX
2
k +

l∑
k=1

dkY
2
k +

q∑
k=1

gkZ
2
k

]
>

m∑
k=1

[axb
x
k + ωxb

int
k ]X2

k+

+
l∑

k=1

[ayb
y
k + ωyb

int
k ]Y 2

k +
q∑

k=1

[azb
z
k + ωzb

int
k ]Z2

k+

+
∑

k∈D∪G
[ωxb

int
k ]X2

k +
∑

k∈C∪G
[ωyb

int
k ]Y 2

k +
∑

k∈C∪D
[ωzb

int
k ]Z2

k ,

994

where bxk =
n∑

j>i; k∈Pij∈C
|Pij | is the sum of the lengths of all chosen paths which belong995

to the x graph C and go through a given x edge k. Similarly, byk =
n∑

j>i; k∈Pij∈D
|Pij |996

(bzk =
n∑

j>i; k∈Pij∈G
|Pij |) is the sum of the lengths of all chosen paths which belong997

to the y graph D (z graph G) and go through a given y (z) edge k. Finally, bintk =998 ∑
j>i; k∈Pij :(i,j)/∈C,D,G

|Pij | is the sum of the lengths of all chosen paths between pairs999

of nodes i and j which belong to two different graphs and are composed from more1000

than one type of edge and go through a given edge k which may be an x, y or z edge.1001

Note that the three sums on the LHS of (9.24) correspond to the first three sums1002

on the RHS. In the simplest case where all three C, D, and G graphs are connected1003

such that each graph couples all n oscillators, bintk can always be set to 0, since there1004

are always paths between any two nodes that entirely belong to either of the three1005

x, y, and z graphs. As a result, the last three sums on the RHS disappear, and we1006

immediately obtain the stability conditions by dropping the summation signs and the1007

difference variables1008

(9.25) ck + dk + gk >
1

n
{axbxk + ayb

y
k + azb

z
k} .1009
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In the case of disconnected graphs C, D, and G where all oscillators are coupled1010

through a combination of two or three graphs and bintk is non-zero, at least two of the1011

last three sums are always present on the RHS. This makes the argument much more1012

complicated but yields a number of surprising implications of the stability method to1013

specific networks discussed in Sections 5 and 6.1014

A major stability problem, associated with the last three terms is rooted in the fact1015

that, for example, the fourth sum
∑

k∈D∪G
[ωxb

int
k ]X2

k contains the difference variables1016

Xk that correspond to the edges of the y or z graph. As a result, the first sum1017

n
m∑

k=1

ckX
2
k on the LHS which contains the variables Xk that correspond to x edges,1018

cannot compensate the fourth sum on the RHS as they belong to different graphs and1019

therefore cannot be compared. At the same time, the second (third) sum n
l∑

k=1

dkY
2
k1020 (

n
q∑

k=1

gkZ
2
k

)
on the LHS does belong to the y (z) graph but contains the variables1021

Yk (Zk) and not Xk needed to handle the fourth sum on the RHS. The same problem1022

relates to the last two sums
∑

k∈C∪G
[ωyb

int
k ]Y 2

k and
∑

k∈C∪D
[ωzb

int
k ]Z2

k which contain Yk1023

and Zk variables, respectively and correspond to the “wrong” graphs.1024

How can we get around this problem as we simply do not have means on the1025

LHS to compensate for the troublesome sums on the RHS? A solution comes from1026

economics: if you do not have means, borrow them! [But act responsibly]. This1027

remark is added to entertain the reader that might be tired of following the proof up1028

to this point.1029

In fact, the only place to “borrow” these terms from is the auxiliary stability1030

systems (9.7), (9.8), and (9.9) as they do contain the desired variables Xk, Yk, and Zk,1031

corresponding to the “right” graphs (the x, y, and z graphs, respectively). Therefore,1032

we need to go back and modify the auxiliary systems (9.7), (9.8), and (9.9) as follows1033

(9.26)
Ẋij =

[
1∫
0

DF(vxj + (1− v)xi) dv − [ax + αk
x]P +

+ωyb
int
k L+ ωzb

int
k M

]
Xij if i, j ∈ x-edge k,

1034

1035

(9.27)
Ẋij =

[
1∫
0

DF(vxj + (1− v)xi) dv − (ay + αk
y)L+

ωxb
int
k P + ωzb

int
k M

]
Xij if i, j ∈ y-edge k.

1036

1037

(9.28)
Ẋij =

[
1∫
0

DF(vxj + (1− v)xi) dv − (az + αk
z)G+

ωxb
int
k P + ωyb

int
k L

]
Xij if i, j ∈ z-edge k.

1038

The addition of positive terms ωyb
int
k LXij and ωzb

int
k MXij to the auxiliary system1039

(9.26) worsens its stability, therefore we have to introduce an additional parameter1040

αk
x and make sure that it is sufficiently large to stabilize the new auxiliary system. A1041

very important property is that, in (9.26), we have to add the positive, destabilizing1042

term ωyb
int
k LXij to the second equation for the (yj − yi) difference and the positive,1043

destabilizing term ωzb
int
k MXij to the third equation for the (zj−zi) difference but try1044

to stabilize the system via increasing the additional parameter αk
x in the first equation1045
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for the (xj − xi) equation (note the different inner matrices: P versus L and M in1046

(9.26)). Depending on the individual oscillator, chosen as the individual unit, this1047

might not be possible, especially when traffic load bintk on the edge k is high. This1048

property is discussed in detail for the Lorenz and double scroll oscillator examples in1049

Sections 5 and 6. A similar argument carries over to the auxiliary systems (9.27) and1050

(9.28) where, for example in (9.27), we add the destabilizing terms ωxb
int
k PXij and1051

ωzb
int
k MXij to the (xj−xi) and (zj−zi) equations, respectively, but seek to stabilize1052

the system via the additional parameter αk
y in the (yj − yi) equation.1053

Notice that we only modify the auxiliary systems for the existing x, y, and z edges.1054

All the other auxiliary systems for Xij , that do not correspond to edges of either of1055

the x, y and z graphs, remain intact and defined via the original systems (9.7)-(9.10).1056

Thus, the modifications of (9.26), (9.27), and (9.28) make the troublesome sums1057 ∑
k∈D∪G

[ωxb
int
k ]X2

k ,
∑

k∈C∪G
[ωyb

int
k ]Y 2

k , and
∑

k∈C∪D
[ωzb

int
k ]Z2

k in (9.24) disappear at the1058

expense of worsened stability conditions of the corresponding auxiliary systems, which1059

is reflected by the appearance of additional terms with αk
x, α

k
y , and αk

z . Therefore,1060

(9.24) turns into1061

(9.29)

n

[
m∑

k=1

ckX
2
k +

l∑
k=1

dkY
2
k +

q∑
k=1

gkZ
2
k

]
>

m∑
k=1

[axb
x
k + ωxb

int
k + αk

x]X2
k+

+
l∑

k=1

[ayb
y
k + ωyb

int
k + αk

y ]Y 2
k +

q∑
k=1

[azb
z
k + ωzb

int
k + αk

z ]Z2
k .

1062

Notice the new stabilizing constants αk
x, α

k
y , and αk

z . Depending on the individual1063

oscillator dynamics and traffic load on edge k, these constants might have to be very1064

large or even infinite.1065

Comparing the terms containing Xk, Yk, and Zk on the LHS and RHS of (9.29)1066

and omitting the summation signs, we obtain the following conditions1067

(9.30)
nckX

2
k > [axb

x
k + ωxb

int
k + αk

x]X2
k , k = 1, ...,m,

ndkY
2
k > [ayb

y
k + ωyb

int
k + αk

y ]Y 2
k , k = 1, ..., l,

ngkZ
2
k > [azb

z
k + ωzb

int
k + αk

z ]Z2
k , k = 1, ..., q.

1068

Finally, we omit the difference variables to obtain the bounds on coupling strengths,1069

ck for x edges, dk for y edges, and gk for z edges, sufficient to make the derivative1070

of the Lyapunov function (9.13) negative semi-definite, and therefore, ensure global1071

stability of synchronization in the network (2.1). It follows from (9.30) that these1072

upper bounds are1073

(9.31)
ck >

1
n [axb

x
k + ωxb

int
k + αk

x], k = 1, ...,m,
dk >

1
n [ayb

y
k + ωyb

int
k + αk

y ], k = 1, ..., l,
gk >

1
n [azb

z
k + ωzb

int
k + αk

z ], k = 1, ..., q.
1074

This completes the proof of Theorem 4.1. �1075
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