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SYNCHRONIZATION IN MULTILAYER NETWORKS: WHEN GOOD
LINKS GO BAD *

IGOR BELYKH!, DOUGLAS CARTER}, AND RUSSELL JETER?

Abstract. Many complex biological and technological systems can be represented by multilayer
networks where the nodes are coupled via several independent networks. Despite its significance
from both the theoretical and application perspectives, synchronization in multilayer networks and
its dependence on the network topology remain poorly understood. In this paper, we develop a
universal connection graph-based method which opens up the possibility of explicitly assessing critical
multilayer-induced interactions which can hamper network synchronization. The method reveals
striking, counterintuitive effects caused by multilayer coupling. It demonstrates that a coupling
which is favorable to synchronization in single-layer networks can reverse its role and destabilize
synchronization when used in a multilayer network. This property is controlled by the traffic load on
a given edge when the replacement of a lightly loaded edge in one layer with a coupling from another
layer can promote synchronization, but a similar replacement of a highly loaded edge can break
synchronization, forcing a “good” link to go “bad.” This method can be transformative in the highly
active research field of synchronization in multilayer engineering and social networks, especially in
regard to hidden effects not seen in single-layer networks.
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1. Introduction. Complex networks are common models for many systems in
physics, biology, engineering, and the social sciences [59, 2, 46]. Significant attention
has been devoted to algebraic, statistical, and graph theoretical properties of networks
and their relationship to network dynamics (see a review [21] and references therein).
The strongest form of network cooperative dynamics is synchronization which plays
a significant role in the functioning of a wide spectrum of technological and biological
networks [22, 25, 32, 35, 63, 50, 45, 24, 30, 43], including adaptive and evolving
networks [4, 53, 52, 58, 56, 37, 8, 31, 51].

Despite the vast existence of literature on network dynamics and synchronization,
the majority of research activities have been focused on oscillators connected through
single-layer network (one type of coupling) [49, 33, 67, 20, 3, 65, 64, 16, 5, 66, 40, 11,
14, 61,47, 44, 1, 68, 48]. However, in many realistic biological and engineering systems
the units can be coupled via multiple, independent systems and networks. Neurons are
typically connected through different types of couplings such as excitatory, inhibitory,
and electrical synapses, each corresponding to a different circuitry whose interplay
affects network function [39, 13]. Pedestrians on a lively bridge are coupled via several
layers of communication, including people-to-people interactions and feedback from
the bridge that can lead to complex pedestrian-bridge dynamics [60, 29, 15, 12]. In
engineering systems, examples of independent networks include coupled grids of power
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stations and communication servers where the failure of nodes in one network can
lead to the failure of dependent nodes in another network [23]. Such interconnected
networks can be represented by multiplex or multilayer networks [38, 19, 62, 18] which
include multiple systems and layers of connectivity. Multilayer-induced correlations
can have significant ramifications for the dynamical processes on networks, including
the effects on the speed of disease transmission in social networks [26] and the role of
redundant interdependencies on the robustness of multiplex networks to failure [54].

Typically, in single-layer networks of continuous time oscillators, synchronization
becomes stable when the coupling strength between the oscillators exceeds a threshold
value [49, 16]. This threshold depends on the individual oscillator dynamics and the
network topology. In this context, a central problem is to determine the critical
coupling strength necessary to guarantee the stability of synchronization. The master
stability function [49] or the connection graph method [16, 5] are usually used to solve
this problem in single-layer networks. Both methods reduce the dimensionality of the
problem such that synchronization in a large, complex network can be predicted from
the dynamics of the individual node and the network structure.

Synchronization in multilayer networks has been studied in [57, 36, 27, 69]; how-
ever, its critical properties and explicit dependence on intralayer and interlayer net-
work structures remain poorly understood. This is in particular due to the inability
of the existing eigenvalue methods, including the master stability function [49] to give
detailed insight into the stability condition of synchronization as the eigenvalues, cor-
responding to connection graphs composing a multilayer network, must be calculated
via simultaneous diagonalization of two or more connectivity matrices. Simultaneous
diagonalization of two or more matrices is impossible in general, unless the matrices
commute [57, 36]. A nice approach based on simultaneous block diagonalization of
two connectivity matrices was proposed in [36]. This application of the eigenvalue-
based approach allows one to reduce the dimensionality of a large network to a smaller
network whose synchronization condition can be used to evaluate the stability of syn-
chronization in the large network. For some network topologies, this technique yields a
substantial reduction of the dimensionality; however, this reduction is less significant,
in general. The reduced network typically contains weighted positive and negative
connections, including self loops such that the role of multilayer network topologies
and the location of critical edges that control synchronization remain difficult to eval-
uate.

In this paper, we report significant progress towards removing this obstacle to
studying synchronization in multilayer networks. We develop a new general stability
approach, called the Multilayer Connection Graph method, which does not depend
on explicit knowledge of the spectrum of the connectivity matrices and can handle
multilayer networks with arbitrary network topologies, which are out of reach for the
existing approaches. An example of a multilayer network in this study is a network
of Lorenz systems where some of the oscillators are coupled through the x variable
(first layer), some through the y variable (second layer), and some through both (in-
terlayer connections). Our Multilayer Connection Graph method originates from the
connection graph method [16, 5] for single-layer networks; however, this extension is
highly non-trivial and requires overcoming a number of technically challenging issues.
This includes the fact that the oscillators from two x and y layers in the networks of
Lorenz systems are connected through the intrinsic, nonlinear equations of the Lorenz
system. As a result, multilayer networks can have drastically different synchroniza-
tion properties from those of single-layer networks. In particular, our method shows
that an interlayer traffic load on an edge (in the sense of paths utilizing this edge)

2
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is the crucial quantity which can be used to foster or hamper synchronization in a
nonlinear fashion. For example, it demonstrates that replacing a link with a light
interlayer traffic load by a stronger pairwise converging coupling (a “good” link) via
another layer may lower the synchronization threshold and improve synchronizability.
At the same time, such a replacement of a highly loaded link can make the network
unsynchronizable, forcing the pairwise stabilizing “good” link to go “bad.”

The layout of this paper is as follows. First, in Sec. 2, we present and discuss the
network model. In Sec. 3, we start with a motivating example of how the replacement
of some links in a multilayer network can improve or break network synchronization.
In Sec. 4, we formulate the Multilayer Connection Graph method for predicting
synchronization in multilayer networks. In Secs. 5-7, we show how to apply the
general method to specific network topologies. In Sec. 8, a brief discussion of the
obtained results is given. Finally, the Appendix contains the complete derivation of
the general method. MATLAB code for algorithms used for calculating network traffic
loads is given in the Supplement.

2. Network model and problem statement. We start with a network of n
oscillators with three connectivity layers:

d ; n n n ‘
(21) ; = F(XZ) + ZC”‘PX]' + ZdijLXj + ZgijMXja 1= ]., ey

Jj=1 Jj=1 Jj=1

1 s
i ey Ly

where x; = (x ?) is the s state vector containing the coordinates of the i-th
oscillator, F : R®* — R® describes the oscillators’ individual dynamics, C' = (¢;;),
D = (d;;), and G = (gij), are n x n Laplacian connectivity matrices with zero-
row sums and nonnegative off-diagonal elements c¢;; = cji, dij = dj;, and gi; = gji,
respectively [16]. These connectivity matrices C, D, and G define three different
connection layers (also denoted by C, D, and G with m, [, and ¢ edges, respectively).
The inner matrices P, L, and M determine which variables couple the oscillators
within the C, D, and G layers, respectively. Without loss of generality, we will be
considering oscillators of dimension s = 3 with x; = (x;, y;, z;). Therefore, the C' graph
with the inner matrix P = diag(1,0,0) will correspond to the first-layer connections
via x, the D graph with the inner matrix L = diag(0,1,0 ) will indicate the second-
layer connections via y, and the graph G with the matrix M = diag(0,0,1) will
represent the third-layer connections via z. Overall, the oscillators of the network are
connected through a combination of the three layers. The graphs are assumed to be
undirected [16]. Oscillators, comprising the network (2.1), can be periodic or chaotic.
As chaotic oscillators are difficult to synchronize, they are usually used as test bed
examples for probing the effectiveness of a given stability approach. Although, we
will show that the chaoticity of the oscillators is not important for the non-intuitive
effects of multilayer synchronization. The oscillators used in the numerical verification
of our stability method are chaotic Lorenz [41], chaotic double scroll oscillators [42],
and periodic Hindmarsh-Rose oscillator models [34].

In this paper, we are interested in the stability of complete synchronization de-
fined by the synchronization manifold S = {x1(t) = xa2(t) = ... = x,(t) = s(t)},
where the synchronous solution s(t) = (z(t), y(t), 2(t)) is governed by the uncoupled
individual oscillator. Our main objective is to determine a threshold value for the
coupling strengths required for the stability of the synchronization manifold S. We
seek to predict this threshold or the absence thereof in the general network (2.1)
from synchronization in the simplest two-node network and graph properties of the
multilayer network structures.
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Based on their synchronization properties and a way they are coupled, oscillators
can be divided into three main types [21]. Type I oscillators are capable of synchro-
nizing globally and retaining synchronization for any coupling strengths exceeding
the synchronization threshold. Most known oscillators, including the Lorenz, double
scroll, and Hindmarsh-Rose oscillators belong to Type I systems. A much narrower
Type II class of oscillators contains z-coupled Rossler systems [49] in which synchro-
nization becomes stable but eventually looses its stability with an increase of coupling
[33]. Type III oscillators cannot be synchronized by a given choice of coupling. In
this work, we limit our consideration to the large class of Type I networks; however,
an extension of our method to Type II networks could be performed with moderate
effort and remains a subject of future study.

3. A motivating example and a puzzle. To illustrate the complexity of as-
sessing multilayer connections and their controversial role in fostering or hindering
synchronization, we begin with simple two-layer networks of chaotic Lorenz oscilla-
tors, depicted in Fig. 1(a-c). The two-layer networks are chosen as a minimum model
which can exhibit counterintuitive effects due to the multilayer structure. For the
two-layer networks of Lorenz oscillators, the vector equation (2.1) can be written in
a more reader-friendly scalar form:

n
&y = oy — ;) + Y cijxj,
j=1

1 . =
(8:1) Vi =71 — Y — @iz + ) dijyy,
=1

zi=—bzi+xy, 1=1,...,n,

where the connectivity matrix C' = (¢;;) describes the topology of & connections (black
edges in Fig. 1(a-c)), and matrix D = (d;;) describes the location of one y edge (blue
or red edge). Notice the absence of the z coupling and, therefore, of the third layer G.
The parameters of the individual Lorenz oscillator are standard: ¢ = 10, r = 28, and
b = 8/3. The strengths of the x and y coupling are homogeneous (¢;; = ¢, d;; = d)
and varied uniformly (¢ = d).

We are interested in the question of how the replacement of an = edge in the
network of Fig. 1(a) with a y edge can affect synchronization. To address this ques-
tion, we first need to understand synchronization properties of two-node single-layer
networks of z-coupled and y-coupled Lorenz systems. It is well-known that if the
coupling in a single-layer network (3.1) with either all  or all y connections exceeds
a critical threshold, then synchronization becomes stable and persists for any ¢ > cx
and d > d*, respectively [16].

Calculated numerically', these coupling thresholds are c* ~ 3.81 for the two-node
z-coupled network and d* = 1.42 for the y-coupled network. As the synchronization
threshold d* is significantly lower, one could expect that replacing an x edge with
a presumably better converging y coupling improves synchronization. This is true
for the network in Fig. 1(b) when z edge 5-6 is replaced with a y edge, yielding a
minor reduction in the synchronization threshold from ¢* &~ 17.94 in the single-layer
x-coupled network in Fig. 1(a) to ¢* ~ 17.74 in the multilayer network in Fig. 1(b).
The network of Fig. 1(c) replaces an x edge with a y edge, and naturally we would

INumerical calculations of coupling thresholds ¢* and d* throughout this paper were performed
using an eighth-order Runge-Kutta method with step size h = 0.001. Initial conditions for (z;,y;, 2;)
are chosen uniformly at random within the unit hypersphere. Synchronization has been defined as
the sum of all difference variables less than 0.00001.

4
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Fic. 1. The puzzle: why do “good” links go “bad”? Synchronization in siz-node networks
of Lorenz systems (3.1). (a) Single-layer network, with all x edges (black). (b) The replacement
of x edge 5-6 with a presumably better converging y coupling (blue) improves synchronization, as
expected (see (d)). (c) A similar replacement of x edge 2-3 with a y edge (red) makes synchronization
impossible by pushing the threshold to infinity (see (d)). (d). Systematic study of the coupling
threshold c¢* as a function of the y edge location that replaces an x edge in the original x-coupled
network (a). The blue solid line indicates numerically calculated thresholds. The black solid line
depicts the interlayer traffic bt for the respective y edge. Note a significant increase of b*"t that
causes the network to become unsynchronizable as predicted by the method. The predicted coupling
thresholds (blue dotted line) are computed from (4.12) using the exponential fit in Fig. 3 and scaling
factors 8 =0.3517 and v = 0.7180.

expect this to improve synchronization. Surprisingly, the contrary is true — this action
makes the network unsynchronizable (see the coupling threshold jumping to infinity
in Fig. 1(d)).

What is the origin of this counterintuitive effect? Why do edges in a multilayer
network reverse their stabilizing roles depending on the edge location whereas they
are well behaved in single-layer networks? The connectivity matrices for  and y cou-
pling in the networks in Fig. 1(b) and Fig. 1(c¢) do not commute and, therefore, the
predictive power of the master stability function based methods [57, 36, 27] is severely
impaired. This puzzle calls for an explanation and utlimately motivates the develop-
ment of an effective, general method for assessing the stability of synchronization in

5
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multilayer networks.

In the following, we will develop such a method that identifies the location of
critical interlayer links which control stable synchronization and reveals its explicit
dependence on an interlayer traffic load on a given edge.

4. Multilayer Connection Graph Method. In this section, we present the
analytical method and then derive its practical numerically-assisted version which rep-
resents an effective approach to assessing the role of critical links from the knowledge
of two-node networks and graph characteristics of the underlying network topology.
We then demonstrate how to apply the method to specific network configurations.

4.1. Analytical method: conservative bounds. To formulate the main the-
orem, we first need to make several assumptions and introduce important quantities.
Towards assessing the role of the individual oscillator and type of pairwise coupling
within each layer, we should consider three types of the two-node networks (2.1) which
are only coupled through one variable. These are x-coupled, y-coupled, and z-coupled
networks. For each of these two-node networks with coupling strengths c15 = ¢c21 = ¢,
dio = doy = d, and g15 = g21 = g, respectively, we assume that there exists a threshold
value, ¢* for the x-coupled, d* for the y-coupled, and g* for the z-coupled network,
which guarantees the global stability of synchronization for any coupling strength ex-
ceeding the threshold values. This assumption implies that each x, y, and z coupling
belongs to the Type I class of coupled oscillators. For mathematical convenience, we
introduce the corresponding constants a, = 2c*, a, = 2d*, and a, = 2g* which are
the double coupling strengths that are sufficient for the synchronization in the z-, y-,
and z-coupled two-node networks, respectively. Rigorous upper bounds on the dou-
ble coupling strength a, explicit in parameters of the individual oscillator have been
previously derived for coupled Lorenz oscillators [16], double-scroll Chua oscillators
[17], driven nonlinear pendulums [10], and Hindmarsh-Rose neuron models [11].

We also consider the two-node network with all z, y, and z coupling and introduce
the triple (wg,wy,w,) as a combination of the double coupling strengths ¢, d, and
g that guarantee the synchronization in the zyz-coupled two-node network. These
constants are such that w, < ag, wy < ay, and w, < a,, where equality relates to
the previous case of the two-node network coupled through one variable. Obviously,
there are different possible combinations of w;, wy, and w, to choose from; however,
one should pick a combination that balances out the stability conditions. This point
will be discussed in the next subsection in more detail.

Similarly to the connection graph method for single-layer networks [16], we also
need to introduce graph theoretical quantities that characterize the total length of
the chosen paths that go through each edge of the three-layer network (2.1). This is
done by choosing a set of paths {|P;;| i,j =1,...,n, j > i}, one for each pair of nodes
i,7 and then determining their lengths |P;;|, the number of edges in each P;;. We
then partition the chosen paths into two categories such as (i) the paths within one
layer that only contain edges of one coupling type, for example, = edges and (ii) the
paths that are composed of two or three types of edges, for example, z and y edges.
Starting from the first  layer C, we calculate the following quantity for each = edge
k=1,...m

n
j>i; kePj;€C
Here, b7, is the sum of the lengths of all chosen paths F;; between any pair of nodes
6
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i and j which belong to the = layer C' and go through a given x edge k. These paths
are entirely composed of = edges. Similarly, we introduce

n n
(4.2) b= > Pyl k=11, bi= > [Pl k=1,..q
j>i; kePi;€D j>i; kePi; G

as the sums of all chosen paths P;; between any pair of nodes 7 and j which entirely
belong to the y (z) layer and go through a given y (z) edge k. Finally, we introduce
the quantity

bint — P
(4.3) g 3> kePij%,j)QC,D,G| il
as the sum of the lengths of all chosen paths P;; which pass through a given edge k
and are composed from more than one type of edges. These are the paths between
pairs of nodes i and j which belong to two different layers. For example, a path
between two nodes from x and y layers is typically composed of z and y edges but
may also contain z edges as the path from a node from the z layer may have to pass
through the z layer to reach the y layer.

In terms of traffic networks, the graph theoretical quantities by, by, b7, and bi™
represent the total lengths of the chosen roads that go through a given edge k& which
can be loosely analogized as a busy street. Therefore, we refer to them as “traffic”
loads. In this view, the quantity bi" is a traffic load on edge k, caused by interlayer
travelers.

Having introduced the main constants a,, ay, a., ws, wy, w, related to the two-
node network (2.1) and the traffic loads b7, by, b7, and b};”t, we can formulate the Mul-
tilayer Connection Graph Method. For convenience, we use the notations ¢ = ¢;, j,
dy, = di, j,, and g = gs,, j,, which indicate the coupling strengths of the corresponding
edges k on the z, y, and z layer graphs, respectively.

THEOREM 4.1 (sufficient conditions). Complete synchronization in the three-
layer network (2.1) is globally stable if for each edge k

ar > t{ag b +w, - bM 4ok} k=1, m,
(4.4) dp > = {ay-bZ—i—wy-b};”t—i—ag L k=1,..,1,
Gk >%{a2obi+wz~bf€"t+a2}, k=1,..4q,

where the constants o, ag, and of are chosen large enough such that they can glob-

ally stabilize the auxiliary stability systems written for the difference variables that
correspond to an edge k : X = X5 = X; — X; ¢

. [ 1 T
(4.5) foraf: X, = |[DF(vx;+ (1—v)x;)dv| Xp+
: Lo , |
wy b LX), + w bt M Xy, — (a, + of) PXy,
. i 1 T
(4.6) foral: X = |[DF(ux;+ (1 —0v)x;)dv| X+
: Lo , |
Wb PXy 4 w b M Xy, — (ay + a’;)LXk,
. [ 1 T
(@) fora?: Xy = |[DF(vx;+ (1—v)x;)dv| X+

lo ‘ |
Wb PX ), + wy bi" LX), — (a, + of ) M X,
7
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1
where DF is the s x s Jacobian matriz of F and the notation [ DF (vx;+ (1 —v)x;)dv
0

represents the mean value theorem applied to the difference of vector functions F(x;)—
F(Xl)

Proof. The proof closely follows the notations and steps in the derivation of the
connection graph method [16] for single-layer networks up to a point where the sta-
bility argument becomes drastically different and yields the new terms wmb};”t, wyb};"t,
and w,b{" which play a pivotal role in synchronization of multilayer networks. The
complete proof is given in the Appendix. ]

Remark 1. It is important to notice that positive terms 4w, b{" LX}, and +w,bi" M X,
in the equation (4.5), +w,bi" PXy and +w,bi"* M Xy, in (4.6), and +w,bi"* PX;, and
+wyb§'€”tLXk in (4.7) play a destabilizing role such that a heavily loaded edge with a
high b{"* can represent a potential problem for making the systems (4.5)-(4.7) stable
at all. This observation has dramatic consequences for synchronization in specific
multilayer networks described in the following sections and also is a key to solving
the puzzle of Fig. 1.

Remark 2. If all x, y, and z connection graphs are connected such that all oscilla-
tors are coupled via all three graphs, the stability of synchronization can be simply
assessed by applying the connection graph method [16] for each of the z, y, and z
connected graphs and combining the three conditions as follows: ¢, + di + gx >
L {agbf + ayby + a.bi} (cf. the condition (9.25) in the Appendix). As a result, one
should not expect the effects due to the multilayer coupling discussed in the motivat-
ing example.

Remark 3. The stability criterion (4.4) can be directly extended to oscillators of
higher dimensions and/or multiple connection layers. For example, in the case of a
four-layer network of five-dimensional oscillators with variables x,y, z,u,w coupled
through the first four variables x,y, z, u, the stability criterion (4.4) should be simply
extended by adding a similar inequality for the coupling strength corresponding to
edges from the fourth additional layer with a,, bY, w,, and af defined similarly to
the constants corresponding to the x, y, and z variables. The remaining uncoupled
variable w does not play an explicit role in the stability criterion; however, it affects
(i) the choice of values for wy, wy, w., w, required for synchronization in the two
node zyzu-coupled network and (ii) the values of a};,a’;,a’;,aﬁ via the increased
dimensionality of the four auxiliary systems similar to (4.5)-(4.7).

While the stability criterion (4.4) is completely rigorous, the theoretical bounds
derived by using Lyapunov functions may give large overestimates on the threshold
coupling strength. As a result, bounds of the constants o, ozzlj, and o that are
required to stabilize the auxiliary systems (4.5)-(4.7) may be too conservative or not
exist.

In the following subsection, we take a more practical route towards developing
a semi-analytical approach which evaluates local stability of synchronization. This
computer-assisted version of the method combines numerically calculated constants
associated with the individual oscillator dynamics with graph theoretical quantities
such as traffic loads. In this way, this method combines the best of both worlds —
the master stability function and the developed connection graph-based method — and
becomes an effective, predictive tool for the general multilayer network (2.1) where the
synchronization threshold or the absence thereof can be deduced from the properties
of the individual oscillators and the network topologies of the connection layers.

8
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4.2. Numerically-assisted multilayer connection graph method. For the
sake of clarity, we consider the general network (2.1) with only two connection layers
C and D. Its general vector equation (2.1) can be re-written in the scalar form:

Ti = F(xzayuzz) + Z CijTj,
J_

Ui = Q(xi,yi, 2i) + Z dijy;,
j=1

2}1' - R(xiyy’hzi)u 1= 1u cey 1T,

(4.8)

with x; = (24, y:, 2;) and F = (F(x4, v, 2:), Q(xi, Y4, 2i), B(Ti, i, 21))-

The stability conditions (4.4) can be directly adapted to the two-layer network
(4.8) by only considering the two first inequalities for ¢, and dj with of and af
calculated via the auxiliary systems (4.5) and (4.6) without the terms containing the
projection matrix M. Computer-assisted derivation of the stability conditions (4.4)
for the network (4.8) is a four-step process which can be summarized as follows.
Step 1: Synchronization thresholds in a two-node network.

Calculate a stability diagram for synchronization in the simplest two-node zy-coupled
network with c12 = co1 = ¢ and dy2 = do; = d, using the variational equations for
infinitesimal transverse perturbations £ = xo — 21, n =y2 —y1, and { = 29 — 27 :

§ = Fo()¢ + Fy(s)n + F=(s)¢ — 2c§
(4.9) 77 = Qm(s)§ + Qy(s)n + Q.(s)¢ — 2dn
Ry (s) + Ry(s)n + R.(s)¢.

Here, the partial derivatives form the Jacobian DF as in (4.5) and are evaluated at
the synchronous solution s(t) = (z(t), y(t), z(t)).

Use the stability diagram to determine threshold coupling strengths that guar-
antee stable synchronization in (i) the two-node z-coupled network with ¢* = a,/2
and d = 0; (ii) the two-node y-coupled network with d* = a,/2 and ¢ = 0; and (iii)
the two-node xy network with ¢* = w, and d* = wy (see Fig. 2). The new constants
a; and a, are double coupling strengths required for synchronization in the two -
coupled and y-coupled oscillators (4.8), respectively. Note that different combinations
of ¢ = w; and d = w, in the zy-coupled network can yield stable synchronization.
The choice of the pair (wg, wy) is somewhat arbitrary; however, it dictates the choice
of constants in the stability diagrams in Step 3. It is often a good idea to choose w,
and wy, such that both are non-zero and lie somewhere in the middle range of (w;, wy)
to balance out the stability conditions in Step 4.

Step 2: Graph theoretical quantities and traffic loads.
This calculation is similar to that of the connection graph method for single-layer
networks [16], except that the traffic load should be partitioned into three groups:
intralayer traffic loads b} and b} within the 2 and y layer, respectively, and inter-
layer traffic load b};”t between the layers. To do so, we first choose a set of paths
{|P;| 4,5 = 1,..,m, j > i}, one for each pair of vertices i, j, and determine their
1engths [(P;], the number of edges in each P;;. Then, for each edge k of the z (y)
layer graph, we calculate the sum b7 (b) of the lengths of all P;; that are composed of
only = (y) edges and pass through k. We repeat the same procedure to calculate the
sum bi"* of the lengths of all P;; that contain both z and y edges and pass through .
These constants depend on the choice of the paths P;;. Usually, one uses the shortest
path from vertex ¢ to vertex j. Sometimes, however, a different choice of paths can
lead to lower bounds [11]. In the following section, we will walk the reader through a

9
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Fic. 2. Stability of synchronization in a two-node network of xy-coupled Lorenz systems (3.1)
as a function of the x coupling, wy and the y coupling, wy. Yellow depicts instability (non-zero
synchronization error) and purple depicts stability (zero synchronization error). The white dot
indicates the pair (wz, wy) used in the predictions shown in Fig. 1(d) and Fig. 4(c).

detailed calculation of traffic loads b}, b}, and interlayer b};"t in the six-node networks
of Fig. 1.

Note that Steps 1 and 2 are quite similar to those one takes when applying the
master stability function or the connection graph method to single-layer networks.
That is, one identifies the role of the single node (via the calculation of the Lya-
punov exponents in Step 1) and the role of the underlying network topology (via the
calculation of the traffic loads in Step 2).

The next step is a new component of the method which does not follow from
the connection graph method for single-layer networks and allows one to reveal and
explain the surprising phenomena, including the previously described puzzle due to
the multilayer network structure.

Step 3: Auziliary stability diagrams to determine o and a’;.
The auxiliary global stability systems (4.5) and (4.6) for each edge k can be written
for the local stability in terms of the variational system (4.9) as follows:

§ = Fo(s)E + Fy(s)n + Fu(s)¢ — (ax +af)
(4.10) i = Qu(S)E +Qy(8)1+ Q2 (5)C + A
¢ = R.(s) + Ry(s)n + R.(s)C,
€= Fu(s)E + Fy(s)n + Fo(s)¢ + BE
(4.11) 77 Qz(s)ﬁ + Qy(S)ﬂ +Q=(8)¢ — (ay + af)n
Ra(

s)é + Ry (s)n+ R.(s)C.

where A = Bw, bi™ and B = Bw,bi™" with a scaling parameter 3 to be determined.

As in (4.4), the auxiliary stability system (4.10) corresponds to the differences
between the nodes connected by an x edge, and (4.11) corresponds to the differences
between nodes coupled via a y edge. If the connection layers overlap and the same
nodes are connected through both x and y edges, then the auxiliary systems (4.10)
and (4.11) should be applied to the corresponding = and y edges independently. Their
contributions will then appear in the general stability conditions (see Step 4) for ¢
and dj, for the same edge k.

10
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Notice that o [a}] must be large enough to stabilize (4.10) [(4.11)] in the presence
of the destabilizing term +An [+B¢]. While a, = 2¢*, a, = 2d*, wy, and w, are
chosen and fixed in Step 1 (cf. Fig. 2), the traffic load b{"* on a given edge k (which
is determined in Step 2) controls the choice of a* and a’;. Thus, if the edge is highly
loaded with a large b};”t making A large, then the contribution of the destabilizing term
+An in the n-equation of system (4.10) cannot always be compensated by increasing
ak¢ in the é-equation. Therefore, the auxiliary system (4.10) can become unstable,
independently of how large the stabilization coefficient o is. The same argument
relates to the destabilization of the auxiliary system (4.11) via the positive term
+BE¢.

It is important to emphasize that diagrams for the local stability of the two
three-dimensional auxiliary systems (4.10) and (4.11) can be calculated once and
then be used to identify threshold values for constants a® and al’j for each edge k
with a given traffic load b};"t. To do so, one should calculate the stability diagram
for the threshold value of o [af] necessary to stabilize the systems (4.10) [(4.11)] as
a function of parameter A [B]. When generating the diagrams, A and B should be
used as free parameters, thereby treating Suw,bi"™ and Buw,bi™ as single, aggregated
control parameters. As a result, the threshold value for o [O‘]zj] required to stabilize
the auxiliary system (4.10) [(4.11)] for a given edge k with b can simply be taken
from the diagram much in the vein of the master stability function [49] (see Fig. 3).

Because of the Cauchy-Schwarz inequality used in the derivation of the analytical
method (see the Appendix), bi”t provides an overestimate for the terms added to the
auxiliary system, we have added the scaling factor 0 < 8 < 1 to b{"* in A and B to
compensate for this overestimate. To choose the scaling factor, one can use one point
on the threshold value curve for af or af (see Fig. 3).

Step 4: Putting pieces together. Using the constants identified in Steps 1-3, we can
predict synchronization coupling thresholds for the local stability of synchronization
in the multilayer network (4.8) via the numerically assisted modification of (4.4):

(4.12) o > vlam-b§+6wz~b}_€"i+a% ,
di > 7 |Y2ay - by + Bwy - b + oy |

Notice the presence of additional scaling factors v, and ~» which are chosen to com-
pensate for the conservative nature of b7 and b} as in the connection graph stability
method for single-layer networks [16, 5]. ~; (72) scales down the term %= [22] to
match the coupling needed to synchronize the network (4.8) which contains only z
edges (y edges) with bi"* = 0.

In the case of two-layer networks (4.8) with uniform coupling within each layer
¢ = c and d = d, the stability criterion (4.12) should be satisfied for ¢ > m;;:mx Ck

and d > max dy.. The auxiliary systems (4.10) and (4.11) are typically quite sensitive

to changes in A and B, resulting in large o or 045 that dominate the other two
terms in the stability condition (4.12). Therefore, it is often sufficient to check the
stability condition (4.12) for only two edges (one from each z and y layers) which
have maximum interlayer traffic loads among the edges of the corresponding layers.
These maximum traffic loads max bi"* yield the maximum values of o or o} that in

turn maximize the threshold values ¢ and d.

Note that the principal new component of our method is the use of the auxiliary
stability diagrams which indicate how the dynamics of the given oscillator comprising
the network can be stabilized via one variable corresponding to one connection layer

11
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when an instability is introduced via the other variable from another connection layer.
These stability diagrams are calculated for the three-dimensional variational systems
(4.10) and (4.11) and allow for predicting the synchronization threshold in a large
multilayer network by using purely graph theoretical quantities such as traffic loads.
In this sense, these diagrams can be viewed as a hybrid of the master stability function
and the connection graph method, applied to multilayer networks.

In the following section, we will walk the reader through the implementation
of the stability conditions (4.12) for specific two-layer networks and illustrate their
implications for the stability of synchronization.

5. Application of the method: solving the puzzle. Armed with the pre-
dictive method, we first return to the puzzle to better understand synchronization
properties of the six-node networks of Lorenz oscillators (3.1) from Fig. 1. Below we
follow the four steps of how our numerically-assisted method can be applied to these
networks.

Step 1: Calculate ay, ay, wg, and wy.

Consider the simplest two-node network (3.1) with both 2 and y coupling: ¢15 = ¢21 =
¢ and dy3 = do1 = d. Use the variational equations (4.9) to determine threshold cou-
pling strengths that guarantee stable synchronization in (i) the two-node z-coupled
network with ¢* = a,/2 and d = 0; (ii) the two-node y-coupled network with d* = a, /2
and ¢ = 0; and (iii) the two-node zy network with ¢* = w, and d* = w,.

The numerically calculated thresholds for the x-coupled and y-coupled two-node
network (3.1) reported in Sec. 3 are ¢* ~ 7.62/2 and d* ~ 2.84/2, respectively. This
yields the double coupling strength constants a, = 7.62 and a, = 2.84 to be used in
(4.12).

Note that different combinations of ¢ = w, and d = w, in the xy-coupled network
yield stable synchronization (see Fig. 2). Without loss of generality, we choose ¢ =
wy = 5 and d = wy = 0.5 as a point on the stability boundary in Fig. 2 and keep these
values fixed for the prediction of the synchronization threshold in larger two-layer
networks (3.1) with arbitrary topologies.

Step 2: Calculate traffic loads bf, by, and bint.

We use the six-node multilayer network of Fig. 1(b) as an example for calculating
intralayer traffic loads b7 and b} within the z and y layer, respectively, and interlayer
traffic load b{"* between the layers. To compute all of the paths that pass through a
given edge, it is recommended that the reader algorithmically finds the shortest path
between every pair of oscillators, and take note of the paths that go through edge &
and differentiate the paths that entirely belong to only the x or y layers and the ones
that contain a combination of x and y edges. As a result, we can find each edge’s
traffic loads as follows

bYy = |Pra| + | Pis| + |Pia| + |Pis| + | Pig| =
1+2+3+3+4=13,

b33 = |Pis| + |Pia| + |Pis| + [Prs| + [ Pos|+
| Pas| + | Pas| + | Pas| = 20,

(5.1) b3y = |P14| + | Pig| + | Pasa| + | Pag| + | P34 = 15

b5 = |Prs| + |Pas| + | Pss| = 6, big = |Pre| + [Pas| = 5,

bis = |Pss| = 1, 05" =0, by3t =0, b&i* =0,

3 = | Pag| = 2, by = |Pus| =2,

bist = |Pag| + | Pas| = 4.

Note that the maximum interlayer traffic load on this network is fairly low and due
12
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to our choice of paths is bt = 4 although it could have also been minimized to zero,
provided that all paths to node 6 bypass edge 56.

At the same time, the interlayer traffic load in the network of Fig. 1(c) is sig-
nificantly higher since there are no alternatives to go around the “bottle neck” edge
2-3 when traveling from nodes 1 and 2 to nodes 4,5, and 6. For the same choice of
shortest paths, we get b53" = 19. The remaining b}, by for the network of Fig. 1(c)
can be calculated similarly to (5.1).

Step 3: Determine o and a’;.

The auxiliary systems (4.10) and (4.11) which play the role of a master stability
function for synchronization in two-layer networks of Lorenz systems (3.1) take the
form:

E=o0(n—¢) —(a. +ab)g,
(5.2) 7? =(r—zt)E—n—z(t)+ Bwybmt
¢=yt)§+x(t)n — bC,

§=0(n— &)+ Pugbie
(5.3) = (r—20t)&—n—zt)¢ — (ay +ap)n,
C=y)&+x(t)n —b¢,

where z(t),y(t), and z(t) correspond to the synchronous solution and are defined by
the uncoupled Lorenz system.

As in the auxiliary systems (4.10) and (4.11), the subscripts k in &, n, and ¢ are
omitted to indicate that the 3D auxiliary systems (5.2) and (5.3) should be calculated
only once and the desired values of a* and o/y“ for an edge k can simply be read off
from the stability diagrams (see Fig. 3). Notice that if the edge is loaded with a high
bi™ | then the contribution of the positive term 43w, bi"n in the n-equation of system
(5.2) cannot always be compensated by increasing —a*¢ in the é-equation. Typically,
this happens when the positive term exceeds the proper negative linear terms such as
—n (technically, through a combination of terms in the Routh-Hurwitz criterion).

(a) (b)

150
100

100

5 >
. 3

50

50

o, = 0.4645exp(2.408[3wyb{<nt)
. 0
0 2 4 ° i N )
int int
ﬁwybk 6wxbk

Fic. 3. Stability of the auxiliary systems (5.2) and (5.3) for coupled Lorenz oscillators. Yellow
depicts instability of the origin while purple indicates its stability. The dependence of the stabilizing
term oz on ,Bwybi"t is estimated by the exponential function o, = 0.4645 exp (2.408,6’wyb};"t) (dashed
curve), and is used to predict synchronization thresholds in networks of Fig. 1 and Fig. 4.
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The complex relationship between these terms in regard to stabilizing (5.2) and
(5.3) is shown in Fig. 3. Notice the coefficient 8 on the Sw,bi™ and Bw,bi"" axes. The
diagrams of Fig. 3 confirm the existence of threshold values for Bw,bi" and Bw,bi"t
such that even infinitely large values of a, and ¥ cannot compensate for the caused
instability and stabilize systems (5.2) and (5.3).

To better quantify this dependence to be used in predicting synchronization
thresholds in networks of Lorenz oscillators, we approximate the stability boundary
in Fig. 3(a) by the exponential function

(5.4) = 0.4645 exp (2.4088w,bi™) .

The stability diagrams of Fig. 3 along with Fig. 2 account for the role of the indi-
vidual oscillators composing the networks and the way these oscillators are coupled
(through 2 and y coupling) in the stability of synchronization. These diagrams repre-
sent an analog of the master stability function in single-layer networks [49] and help
in solving, once and for all, the question of stability for synchronization in two-layer
networks involving the Lorenz oscillator through the criterion (4.12), where the role of
multilayer network topologies is assessed via the calculation of pure graph theoretical
quantities as shown in the next step.

Step 4: Putting pieces together to solve the puzzle. Given the stability diagram of
Fig. 3 with abrupt threshold dependences of o and a’y“ on increasing interlayer traffic
load bi™, the effect of synchrony breaking when a highly loaded z edge is replaced with
a better pairwise stabilizing y (see Sec. 3 ) is no longer a puzzle and directly follows
from the application of our stability method. Actually, in a historical retrospective, we
first developed the general method that revealed this and other highly counterintuitive
effects due to the multilayer structure and then constructed the network examples.
To make the presentation more appealing before it becomes too technical, we have
decided to put forward the motivating example. As our exhaustive study of various
network configurations suggests, we hypothesize that six-node networks of Fig. 1 are
minimum size networks of Lorenz oscillators that exhibit the synchrony breaking
phenomenon.

To test the predictive power of our approach with the constants identified in
Steps 1-3, we perform a systematic study of how one edge replacement, in which we
replace only one x edge in the single-layer, z-coupled network of Fig. 1(a) with a
y edge, affects synchronization. The edge replacement is performed in the order of
the increasing interlayer traffic load on this edge, bi"*. After computing the coupling
threshold required to synchronize the new network, this edge reverts back to being
an x edge. This results in multiple networks of five x edges and one y edge. The two
multilayer networks of Fig. 1(b) and Fig. 1(c) with the drastically different synchro-
nization properties are two instances of this replacement process. Fig. 1(d) presents
the actual synchronization threshold values (blue solid line), the interlayer traffic loads
b"t (black line) calculated similarly to (5.1), and the threshold values predicted by
the numerically-assisted criterion (4.4) with constants a, = 7.20, a, = 2.63, w, = 5.00
and w, = 0.50 chosen above. The constants af and a’; are taken from the diagrams
of Fig. 3(a) and Fig. 3(b), respectively. As the stability system (5.2) is much more
sensitive to the changes in b{"* than (5.3) (cf. the onset of instability in Figs. 3(a-b)),
the threshold values for ¢;; in the criterion (4.12) for the z layer largely dominate
over d;;. Thus, since the synchronization threshold for the entire network (3.1) with
uniform coupling ¢ = d is defined by the maximum of the thresholds ¢;; or d;; for
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each edge of the multilayer graph, the maximum threshold values predicted by the
method and depicted in Fig. 1(d) are the ones corresponding to = edges with coupling
c. These threshold values are calculated using (4.12) as follows

1 .
(5.5) ¢ > max {ck = [Yaz - b + Bwg - b + aﬁ]} )

where o is defined by the stability diagram of Fig. 3(a) via the approximating func-
tion (5.4) for each edge k, and a,, w,, and b}‘c”t are determined in Steps 1-3. The
scaling factor v which is chosen to scale down the term %= to match the coupling
needed to synchronize the six-node network of Fig. 1(a) with only x edges. The scal-
ing factor 3 is then chosen for the network of Fig. 1(b) with the lowest b = 4 to
match the actual synchronization threshold and then kept constant for predicting the
thresholds in the other six-node networks with one replaced x edge. Figure 1(d) shows
that the predicted thresholds are fairly close to the actual ones, and the criterion (5.5)
correctly predicts an increase or decrease of the coupling threshold for each six-node
network and ultimately predicts synchrony break for the network with the replaced x
edge 2-3.

As Fig. 1(d) indicates that when lightly loaded edges (edges with fewer chosen
paths passing through them) are replaced, the effect on the synchronization stability
is fairly small. As discussed in the description of the motivating example, the replace-
ment of x edge 5-6 with a y edge improves synchronization by slightly lowering the
synchronization threshold. According to our stability criterion (4.4), this happens due
to a slight decrease in the traffic load on the bottleneck edge b35 (see (5.1)), compared
to the original network of Fig. 1(a) with all z edges where one additional path Pig
goes through edge 2-3. As a result, it decreases the contribution of the dominating
term a,bf in (4.4). At the same time, the contribution of the other factors w,b{"* and
ok remain insignificant, especially due to the fact that o still lies on a flat part of the
approximating curve (5.4) before this exponential curve takes off at larger values of
bZ”t. On the other hand, such a replacement of the bottleneck node 2-3 in the network
of Fig. 1(c) significantly increases the intralayer traffic load bi"*, requiring infinitely
large a34 to stabilize the stability system (5.2) and causing synchronization to break.

6. Synchrony breakdown in larger networks. To demonstrate that similar
synchrony breakdown phenomena occur in larger networks and can be effectively
predicted by our method, we consider a 20-node network of Lorenz (and then double-
scroll) oscillators described in Fig. 4(a). The network is initially coupled entirely
through the x variable. To test our prediction that replacing edges with a high traffic
load can make the network unsynchronizable, we index the edges according to their
by. Edges similar to edge 10-12 have very few paths that pass through them, and
subsequently have a low b7 (and in turn, bi"*, shown as the black curve in Fig. 4(c)).
We successively replace z edges (denoted by black edges in Fig. 4(a)) with y edges
(denoted by gray edges in Fig. 4(b)), according to this ordering until the network is
completely connected through y edges. The values of b};”t range from 0 (for edge 10-12
with edge ranking index 1 (see Fig. 4(c)), bypassed by all chosen interlayer paths) to
100 — 400 for highly loaded edges (for example, for edge 3-5 for which every path from
node 3 of the z layer graph to any other node in the y-layer must pass through it).

6.1. Twenty-node networks of Lorenz oscillators. The coupling necessary
to synchronize the z-coupled Lorenz network (3.1) described in Fig. 4(a) is ¢ = 86.95.
As outlying, low traffic edges are replaced with y edges, there is almost no effect on the
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Fi1G. 4. Effect of successively replacing x coupling edges with y coupling edges on synchro-
nization in a 20-node network of Lorenz oscillators (3.1). (a) Original z-coupled network before
replacing edges according to their traffic load. (b) Snapshot of the multilayer network before the
edge 3-5, labeled as the 13-th edge according to the traffic load ranking, is replaced. The replacement
of this critical edge (red) yields the breakdown of synchronization in the network. Further successive
replacement of remaining x edges (gray) with higher traffic load preserves the instability of syn-
chronization, until all 25 edges have been replaced with a y edge, yielding a single-layer y-coupled
network with bt = 0 that is able to synchronize again. (c) Actual (blue solid line) and predicted
(blue dotted line) threshold for the coupling strength required to synchronize the network after the
i-th x edge has been successively replaced with a y edge. The black solid line depicts the interlayer
traffic b for the respective edge. The predicted coupling thresholds are computed from (5.5) using
the exponential fit in Fig. 3 and scaling factors f = 0.031 and v = 0.5993.

threshold for the coupling strength required to synchronize the network, evidenced by
the lack of change in the actual coupling threshold for the first eight edges replaced in
Fig. 4(c). As successively more loaded edges are replaced in the network (indicated
by the dramatic increase in b'*!), the network becomes more difficult to synchronize,
until edge 13 (edge 3-5 which is depicted in red in Fig. 4(b)) is replaced. After
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which, synchronization is no longer feasible for the network for any additional edge
replacement, until edge 25 (edge 14-15 in Fig. 4). Replacing edge 25, shown in Fig.
4(b) corresponds to finishing the successive edge replacement process, and results in a
graph identical to the one in Fig. 4(a), but in which all of the edges represent y coupling
(gray) instead of x coupling (black). This reinforces our traffic load predictions for
the breakdown of synchrony in two ways: (i) after enough highly loaded edges are
replaced (even with a normally favorable coupling type), the network can no longer
synchronize for any coupling strength, (ii) replacing only one edge that is very highly
loaded can make the network unsynchronizable, evidenced by the network having no
synchronizing coupling value even when all but one edge has been replaced (see edge
index 24 in Fig. 4(c)).

As in the six-node example of Fig. 1(a), we have obtained a good fit in Fig. 4(c)
which only focuses on placing the stability conditions on = edges in (4.4), because the
stability term «,, required to stabilize the  stability system (5.2) must be significantly
higher than «, in the y stability system (5.2) (compare Figs. 3(a-b)). We use the same
criterion (5.5) with the same constants a., w,, and a* to predict the synchronization
threshold and only need to identify the traffic loads b" and the scaling factors y
and S for a better fit, once and for all variations of the multilayer network topologies
used in Fig. 4(c). In contrast to the six-node network example where traffic load
b};”t can be easily calculated by hand as in (5.1), computing b};"t for the 20-node or
larger networks is a laborious task which was performed by an algebraic algorithm,
implemented as MATLAB code and given in the Supplement. While the values of
bi™* heavily depend on the choice of paths from one node to another, our algorithm
uses the natural choice of the shortest paths, computed via Dijkstra’s algorithm [28].
Optimizing the choices of not necessarily shortest paths that distribute traffic loads
on edges more equally may yield even better predictions and fits.

6.2. Networks of double scroll oscillators. To illustrate the generality of
synchrony break phenomenon when “good” but highly-loaded links go “bad”, we apply
our numerically-assisted method to networks (2.1), comprised by chaotic double-scroll
oscillators [42]

n
& = Ky — xi — h(@)) + X2 ez,
j=1
6.1 . n
(6.1) Vi =mi — Y+ 2+ ) dijy;,
j=1
Zi = _)‘yl — MZzi, 1=1,..,n,
with

mi(x + 1) —myg r< —1
h(z) =< mox -1<z<1
mi(x — 1) +mg z>1

and standard parameters x = 10, mg = —1.27, m; = —0.68, A = 15, and p = 0.038.

Similarly to networks of Lorenz oscillators (3.1), a pair of double-scroll oscil-
lators (6.1) can be synchronized through either the x or y variable, and the min-
imum coupling strength required for synchronization in a two-node y-coupled net-
work, d* = 1.16 is much lower than the coupling threshold in the two-node z-coupled
network, ¢* = 5.94.

In Fig. 5, we apply our method to predict the synchronization thresholds in the 20-
node network of Fig. 4 as in the same network of Lorenz oscillators. When successively
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Fi1G. 5. Effect of successively replacing x edges with y edges on the synchronization threshold
in a 20 node network of double-scroll oscillators. The network topology, edge replacement process,
and notations are identical to those in Fig. 4(a-b). Notice the same location of critical links (edges
13 to 24) whose replacement leads to synchrony breaks as in the network of Lorenz oscillators (cf.

Fig. 4(c)).

replacing x edges in the network, there is initially a decrease in the coupling threshold
for synchronization, when peripheral edges or edges in highly connected regions of the
graph with low traffic loads bi"" are replaced with more favorable y edges that provide
better pairwise convergence to synchronization. Then, as with the network of Lorenz
oscillators, when edge 13 (edge 3-5) is replaced with a y edge, synchronization is no
longer attainable. Synchronization then returns when the entire z-coupled network
has been replaced with y edges. Notably, the synchrony break occurs at the same
edge as in the network of Lorenz oscillators, suggesting that critical edges whose
replacement hampers synchronization are mainly controlled by the network multilayer
topology rather than the individual properties of the intrinsic oscillators, provided that
the oscillators possess similar synchronization properties as the Lorenz and double
scroll oscillators.

The solid curve in Fig. 5 displays the synchronization thresholds, calculated via
the stability criterion (5.5) with a, = 5.94 x 2 = 11.88, w, = 1.0, 8 = 0.0095,
v = 0.282, and the approximating function o, = 1.556 exp(3.7118w,bi") with the
same traffic loads b};”t shown in Fig. 4. This approximating function is obtained from
a stability diagram for coupled double scroll-oscillators which is computed similarly to
Fig. 3 and displays a similar threshold effect as in Fig. 3 [not shown]. As in the Lorenz
oscillator case, the auxiliary stability system (4.5) for «, is much more sensitive to
increasing by than the stability system (4.6) for ay, therefore one can only evaluate
the stability condition (5.5) for the = coupling c¢ to identify a bottle-neck for the
synchronization threshold in the entire network.

Going back to the puzzle example, we have also performed a similar analysis of
the six-node network of Fig. 1 where the Lorenz oscillators are replaced with the
double-scroll oscillators [not shown]. Remarkably, this analysis indicates the same
qualitative phenomena when the replacement of the lightly loaded edge 5-6 slightly
lowers the synchronization threshold from ¢ = 13.57 in the original z-coupled single-
layer network of Fig. 1(a) to ¢ = 13.36, and predicts the breakdown of synchrony
when edge 2-3 is replaced as in the Lorenz network.

We have also simulated series of other 20-node networks (3.1) and then networks
(6.1) where all oscillators were connected via x layer graphs, whereas the y coupling
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only connected some of the oscillators. In contrast to the networks of Fig. 1 and Fig. 4
where the critical highly-loaded links separate the network into disjoint  and y graph
components, these networks do not show the effect of synchrony breaking as any pair
of nodes is coupled directly or indirectly via the x graph such that the coupling
strengths ¢ can be made strong enough to stabilize synchronization. However, the
synchronization thresholds in such networks depend on the location of added y edges
in a nonlinear fashion. In support of this claim, we draw the reader’s attention to
the six-node example of Fig. 1(b) where the = graph connects all six nodes and the
replacement of edge 5-6 with an y edge lowers the synchronization threshold. On the
contrary, the replacement of the x edge 3-5 with an edge y, which still preserves the
connectedness of the x graph, increases the synchronization threshold, as predicted
by the method (see Fig. 1(c)). The 20-node networks with connected z graphs yield
similar effects. To avoid repetition, these results are not shown.

6.3. Networks of Hindmarsh-Rose oscillators. To convince the reader that
the counterintuitive effects of synchrony breaking do not originate from the chaotic-
ity of the oscillators, we have considered a network of limit-cycle Hindmarsh-Rose
oscillators [7]:

n
2
Ty =ax; —yi — 2z + Y Cijxj,
i=1

6.2 . n
(6.2) Yi = (a+a)w; —y; + Zldijyj’
=

Zi = pulbr, +c—z;), i=1,...,n.

The individual Hindmarsh-Rose model represents a class of spiking and bursting neu-
rons where x describes the membrane potential, and the variables y and z take into
account the transport of ions across the membrane through fast and slow ion chan-
nels, respectively. The Hindmarsh-Rose model exhibits periodic square-wave bursting
across a wide range of parameters, including the chosen parameters a = 2.8, a = 1.6,
c=5,b=9, n=0.001 [9].

While coupling through the y variables does not make physiological sense, we
use this network as a phenomenological example of a multilayer network of periodic
oscillators which exhibits the same effect of synchrony breaking observed in the net-
works of chaotic Lorenz and double scroll oscillators. The analysis of the six-node
network of Fig. 1 where the chaotic Lorenz oscillators are replaced with the perodic
Hindmarsh-Rose oscillators yields a similar dependence of the synchronization thresh-
olds as a function of the edge replacement [not shown]. In particular, the threshold
coupling for the network of Fig. 1(b) where the lightly loaded x edge 5-6 is replaced
with a y edge is ¢ = 1.66. However, the replacement of the highly loaded x edge 2-3
(see Fig. 1(c)) yields an infinitely large synchronization threshold as in the examples
of the Lorenz and double scroll oscillators. This suggests that the synchronization
breakdown effect is not rooted in the particular properties of the chosen limit-cycle
or chaotic oscillators but rather defined by the structure of a multilayer network and
the location of highly loaded links.

7. Predicting synchrony in large random networks. Our numerically-
assisted Multilayer Connection Graph Method is also applicable to large, possibly
random networks for which the intralayer and interlayer traffic loads can be calcu-
lated similarly to the 20-node networks through the MATLAB algebraic algorithm
given in the Supplement. The algebraic algorithm is rooted in the Dijkstra algorithm
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and sorting the shortest paths and therefore has a comparable complexity. This com-
plexity along with the required computer power are limitations on the (very large)
network size that can be handled by the method. In this regard, predicting synchro-
nization in reasonably large networks of 100-1000 nodes via the stability criterion (5.5)
based on the calculations of traffic loads b, b¥, and b{"* is a simple, computationally
inexpensive task, comparable to the application of the connection graph method or
master stability function to predicting synchronization in single-layer networks.

Figure 6 demonstrates the actual and predicted synchronization thresholds in 100-
node two-layer Erdés-Rényi networks of Lorenz oscillators (3.1). The procedure for
constructing these two-layer random networks is as follows. We begin with a single-
layer z-coupled Erdds-Rényi network whose edges are generated with probability p =
0.05. Then, we generate five two-layer networks obtained from the 100 random Erd&s-
Rényi network by replacing 25% of randomly chosen z edges with y edges. These
five networks have the same fraction of x and y edges but the structures of their x
and y layers are different (the adjacency lists of their two-layer network topologies are
given in the Supplement). Figure 6(b) shows that these highly connected networks
do not exhibit the synchronization breakdown effect due to the absence of bottle neck
edges that would separate the layers and correspond to high interlayer traffic load
bi"t. Indeed, the maximum traffic load bi" for the most loaded edge in each of the
five networks is nearly the same such that the synchronization thresholds do not vary
significantly.

8. Conclusions. While the study of synchronization in multilayer dynamical
networks has gained significant momentum, the general problem of assessing the sta-
bility of synchronization as a function of multilayer network topology remained practi-
cally untouched due to the absence of general predictive methods. The existing eigen-
value methods, including the master stability function [49], which effectively predict
synchronization thresholds in single-layer networks cannot be applied to multilayer
networks in general. This is due to the fact that the connectivity matrices correspond-
ing to two or more connection layers do not commute in general, and therefore, the
eigenvalues of the connectivity matrices cannot be used. Therefore, synchronization
in multilayer networks is usually studied on a case by case basis either via (i) full-scale
simulations of all transversal Lyapunov exponents of the (n — 1) x s-dimensional sys-
tem of variational equations [27], where n is the network size and s is the dimension of
the intrinsic node dynamics, or more effectively via (ii) simultaneous block diagonal-
ization of the connectivity matrices [36] which in some cases can reduce the problem
of assessing synchronization in a large network to a smaller network which, however,
contains positive and negative connections, including self loops such that the exact
role of multilayer network topology and the addition or exchange of edges remains
unclear.

In this paper, we have made significant progress in understanding synchroniza-
tion properties of multilayer networks by developing a predictive method, called the
Multilayer Connection Graph method, which does not rely on calculations of eigen-
values of the connectivity matrices, and therefore can handle multilayer networks.
Originated from the connection graph method for synchronization in single-layer net-
works [16], our method combines stability theory with graph theoretical reasoning.
Two key ingredients of the method are (i) the calculation of stability diagrams for
the auxiliary s-dimensional system which indicate how the dynamics of the given os-
cillator comprising the network can be stabilized via one variable corresponding to
one connection layer when an instability is introduced via the other variable from
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Fi1G. 6. Synchronization in two-layer random Erdds-Rényi networks of 100 Lorenz oscillators
(3.1). (a) Original xz-coupled Erdds-Rényi network generated with probability p = 0.005 for the
presence of an x edge. (b). Actual (blue solid line) and predicted (blue dotted line) synchronization
thresholds in five two-layer network configurations obtained from the 100 random Erdds-Rényi net-
work by replacing 25% of randomly chosen x edges with y edges. The black solid line depicts the
interlayer traffic bt for an edge with the highest traffic load. Notice only minor changes in bt
and, therefore, in the synchronization thresholds in the five two-layer network configurations with
the same fraction of © and y edges. Similarly to Fig. 4, the predicted thresholds are computed from
(5.5) using the exponential fit in Fig. 3 and scaling factors B = 0.012365 and v = 0.365.

another connection layer and (ii) the calculation of traffic loads via a given edge on
the multilayer connection graph. All together, these quantities allow for predicting
the synchronization threshold and identify critical links that control synchronization
in the original, potentially large, multilayer network.

Using the method, we have discovered striking, highly unexpected phenomena
not seen in single-layer networks. In particular, we have shown that replacing a link
with a light interlayer traffic load by a stronger pairwise converging coupling via
another layer may improve synchronizability, as one would expect. At the same time,
such a replacement of a highly loaded link may essentially worsen synchronizability
and make the network unsynchronizable, turning the pairwise stabilizing “good” link
into a destabilizing connection (a “bad” link). The critical links whose replacement
can lead to synchrony break are typically the ones that connect the layers such the
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oscillators from two layers become coupled through the intrinsic, nonlinear equations
of the individual oscillator that correspond to a “relay” node passed by the only path
from one layer to the other. As a result, the intrinsic dynamics of the individual
node oscillator plays a pivotal role in the stability of synchronization. In this paper,
we have limited our attention to Type I limit-cycle and chaotic oscillators such as
the Lorenz, double scroll, and Hindmarsh-Rose oscillators that yield synchronization
that remains stable in a single-layer network once the coupling exceeds a critical
threshold. Remarkably, when used in a multilayer network, these oscillators have
indicated similar synchronization properties, suggesting that the location of critical
edges in the considered network may remain unchanged for other Type I oscillators.
While our method for assessing synchronization is only applicable to Type I oscillators,
it could be modified to handle Type II networks, including multilayer networks of
Rossler systems [49]. This modification is a subject of future study.

To gain insight into the determining factors for the emergence of synchrony break-
ing, without potential confounds associated with the interplay between multiple layers
and direction of links, we have considered examples of two-layer undirected networks
of identical oscillators. However, the extension of our general method, which was
developed for three-layer networks and applied to two-layer networks in this paper, to
multiple layers, directed networks and non-identical oscillators is fairly straightforward
and will be reported elsewhere. In particular, the extension of our method to directed
networks can be performed by adapting the generalized connection graph method [5, 6]
for single-layer directed networks, where directed edges are symmetrized and assigned
additional weights according to the mean node unbalance. In the case of slightly
non-identical oscillators, perfect synchronization cannot exist, but approximate syn-
chronization in multilayer networks is still possible. Our Multilayer Connection Graph
method can be easily extended to such non-identical oscillators by assessing the sta-
bility of a d-neighborhood of the generating synchronization manifold, similarly to the
single layer connection graph method (see Appendix B in [16]).

Our method can also be modified to handle multilayer neuronal networks con-
nected via electrical, excitatory, and inhibitory synapses which exhibit a number of
counterintuitive synergistic effects: when (i) the addition of pairwise repulsive inhi-
bition to single-layer excitatory networks can promote synchronization [13] and (ii)
combined electrical and inhibitory coupling can induce synchronization even though
each coupling alone promotes an anti-phase rhythm [55]. Our method promises to al-
low an analytical treatment of these effects in large neuronal networks which has been
impaired by the absence of predictive methods that can handle excitatory, inhibitory,
and electrical neuronal circuitries simultaneously. A key to addressing this issue is the
construction of auxiliary stability diagrams that incorporate the variational equations
for the stability of the synchronous bursting solution in such networks [13, 55] with
the traffic loads on critical links. This study will be reported elsewhere.

9. Appendix. In this appendix we derive the Multilayer Connection Graph
method and prove Theorem 4.1. Our goal is to derive the conditions of global asymp-
totic stability of the synchronization manifold S in the system (2.1). To achieve this
goal and develop the stability method, we follow the steps of the proof of the con-
nection graph method [16]. The concept is similar, up to a certain step where a new
stability argument is used.

In the network model (2.1) we introduce the difference variable

(91) Xij =X; — X, Z,j = 1, e n,
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whose convergence to zero will imply the transversal stability of the synchronization
manifold S.

Subtracting the i-th equation from the j-th equation in system (2.1), we obtain
the equations for the transversal stability of S

Xz'j = F(x;) —F(x;) + > {cjuPXjp — cin PXip+
k=1

(9.2) =
din LXj — dip LX i1 + gjp MXjp — g MXi}, 0,5 =1,...,n.

To obtain the explicit dependence of F(x;) — F(x;) on X;;, we introduce the
following vector notation

1
F(x;) —F(x;) = /DF(’UXj + (1 —v)x;)dv | X5,
0

where DF is the 3 x 3 Jacobian matrix of F. This notation is simply a compact form of

the mean value theorem, f(B)— f(A) = f/(C)(B—A), applied to the vector functions

F(x;) and F(x;), where the Jacobian DF is evaluated at some point C € [x;, X;].
Therefore, the difference system (9.2) can be rewritten in the form

1 n
fDF(’UXj + (1 — v)xi)dv Xij + Z {CjkPXjk — i PXip+
0 k=1

dip LXjr — dip LX ik + g M X1, — g MXar}, 4,5 =1,...,n.

The first term in the brackets yields instability via the divergence of trajectories
within the individual, possibly chaotic oscillators. The second (summation) term,
which represents the contribution of the network connections, may overcome the un-
stable term, provided that the coupling is strong enough.

Notice that the stability of system (9.3) is redundant as it contains all possible
(n—1)n/2 non-zero differences X,;; along with n zero differences X;; = 0 which can be
disregarded. At the same time, there are only n — 1 linearly independent differences
required to show the convergence between n variables X;;. However, this redundancy
property and the consideration of all non-zero X;; are a key ingredient of our approach
which allows for separating the difference variables later in the stability description,
without diagonalizing the connectivity matrices.

We strive to find conditions under which the trivial fixed point {X;; =0, 4,5 =
1,...,n} of system (9.3) is globally stable. This amounts to finding conditions for
global stability of synchronization in the network (2.1).
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We introduce the following terms A;;X;;, where A;; is a 3 x 3 matrix, such that?

a; P = diag(a.,0,0) if oscillators ¢ and j
belong to x layer C'
a,L = diag(0,a,,0) if oscillators ¢ and j
(9.4) A — belong to y layer D
’ I a, M = diag(0,0,a,) if oscillators i and j
belong to z layer G
K = diag(wy,wy,w,) if oscillators ¢ and j
belong to different layers,

where constants a., ay, a,ws,wy,w, are to be determined.

We add and subtract additional terms A;;X;; with matrix A;; defined in (9.4)
from the stability system (9.3) and obtain
(9.5)

. 1
Xij = fDF(UXj + (1 — U)Xi)d’U — Az_} XU + AUXU+
0

n
Z {CjkPXjk — i PX, + djkLXjk —di LX + gjkMXjk — gikMXik}~
k=1

The introduction of the terms A;;X;; allows for obtaining stability conditions of the
trivial fixed point X;; = 0, 7,7 = 1,..,n in two steps. Note that the matrix —A;;
contributes to the stability of the fixed point and can compensate for instabilities
induced by eigenvalues with nonnegative real parts of the Jacobian DF. This can be
achieved by increasing parameters ag, ay, a.,wy,wy, and w,. At the same time, the
instability originated from its positively definite counterpart, matrix +A4;;, can be
damped by the coupling terms through c;;, d;;, and g;;.

Step I. We make the first step by introducing the following auxiliary systems for
,j=1,...,n

1
(96) ng = /DF(’UX]‘ + (]. — ’U)Xi) dv — Aij X”
0

This system is identical to system (9.5) where the coupling terms are removed.

A;; can take four different forms, depending on whether oscillators ¢ and j both
belong to the x or y or z graphs, or belong to different graphs, for example, if 7 belongs
to the x graph, and j belongs to the y graph (see (9.4)). Therefore, we have four types

2A different choice of matrix K which takes the values: (i) diag(ws,wy,0) if the path between
oscillators ¢ and j is only composed of z and y edges, (ii) diag(0, wy, w-) if the path between oscillators
¢ and j is only composed of y and z edges, (iii) diag(ws,0,w:) if the path between oscillators ¢ and j
is only composed of z and z edges, and (iv) diag(wz, wy,w:) if the path between oscillators ¢ and j
contains z, y, and z edges, may yield lower bounds on the coupling thresholds cg, di, and g in the
stability criterion (9.31). This is due to the fact that splitting the matrix K into the four matrices
may lower the interlayer traffic load on edge k, b}'c"t. However, this makes practical applications of the
method less convenient as the more conservative bounds on b;'v"t can be balanced out by the choice
of the scaling parameter 5. Furthermore, one would have to impose additional constraints on wg,
wy, and w, that must be large enough to guarantee that every pair (wz,wy), (Wy,w:), and (wz,w:)
must yield global synchronization in the corresponding two-node network, as opposed to lower values
guaranteed by the triple (wz,wy,w.) used in the matrix K in (9.4).
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of the auxiliary systems

. 1
Xij = |:f DF(UXj + (1 — ’U)Xi) dv — (LIP:| Xij
0

(9.7)
if ¢ and j both belong to z layer,
. 1
9.8) X = {f DF(vx; + (1 —v)x;) dv — ayL} Xi;
: 0
if ¢ and j both belong to y layer,
i 1
(9.9) X = {f DF(vx; + (1 —v)x;) dv — azM} Xi;
: 0
if 7 and j both belong to z layer,
;= |f
X = { DF (vx; + (1 — v)x;) dv—K} Xij
(9.10) J o J J

if 7 and j belong to different layers.

Remarkably, the auxiliary system (9.7) coincides with the difference system for the
global stability of synchronization in a two-oscillator network (2.1) with only = cou-
pling, where a, plays the role of the double coupling strength that guarantees the
stability (see [16] for a detailed discussion on this relation).

Similarly, the stability of auxiliary system (9.8) [(9.9)] implies global stability of
synchronization in the two-node network (2.1) with only y (z) coupling, where a,
(a) is the double coupling strength of the y (z) connection. Lastly, the stability of
auxiliary system (9.10) guarantees globally stable synchronization in the two-node
network with all z,y, and z coupling, where a combination of constants w;,w,, and
w,, present in K, is a combination of the double coupling strengths of x,y and =z
connections that is sufficient to induce stable synchronization in the xyz-coupled two-
node network.

Therefore, our immediate goal is to find upper bounds on the values of a,, ay, a.,
Wz, Wy, and w, that make the origin of the auxiliary systems (9.7)-(9.10) stable. This
amounts to proving global synchronization in the four x-, y-, z-, and xyz-coupled net-
works that are composed of two oscillators. As only Type I oscillators [21] are capable
of synchronizing globally and retaining synchronization for any coupling strength ex-
ceeding some critical threshold, our approach based on the calculation of a,, a,, and
a, is thus limited to this class of oscillators.

The proof of global stability in (9.7)-(9.10) and derivation of bounds ag, ay,
a, and w,,w,,w, involves the construction of a Lyapunov function along with the
assumption of the eventual dissipativeness of the coupled system. Therefore, before
advancing with the study of larger networks (2.1), one has to prove that globally stable
synchronization in the simplest x-, y-, z-, and xyz-coupled two-oscillator networks is
achievable. The bound a, for a-coupled Lorenz oscillators was given in [16]. Upper
bounds for ay, a,, ws,wy,w, can be derived similarly.

Having obtained the bounds a;, ay, a., and wg,w,,w., and therefore proving
the stability of the auxiliary systems (9.7)- (9.10), we can take the second step in
analyzing the full stability system (9.5).
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Step II. The bounds ag, ay, a, and w;,wy,w, that stabilize the auxiliary systems
(9.7)-(9.10) reduce the stability analysis of system (9.5) to the following equations by

excluding the term in brackets

Xij = Ainij + Z {CjkPXjk — CikPXik + djkLXjk — dszXZk—‘r
k=1
gieMXjk — g MXii}, 4,5 =1,...,n

(9.11)

Note that the positive term A;;X;;, which contains the upper bounds a,, a,, a. and

Wz, Wy, W, is destabilizing and must be compensated for by the coupling terms.

study the stability of (9.11) we introduce a Lyapunov function of the form

(9.12) ZXE} T-Xy5,

pM>—~
HM:

where I is a 3 x 3 identity matrix.
Its time derivative with respect to system (9.11) becomes

<
I
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NgE
>~
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M=
M=
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Il
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{CijJTiPXjk —+ CiszTkPXij}f
(9.13)

NE!

dip XELX )y, + dip XL LX) —

-
3
—
<.
I
—

M3
HM:HM:

{
{ngX MX]k + gzkxlkMXm}

s
Il
-

<.
Il

To

We need to demonstrate the negative semi-definiteness of the quadratic form V.

As (X3, =0, X3, = X3,), the first sum simplifies to

n—1 n

(9.14) Sp=> Y Ai,X}

i=1 j>i

This sum is always positive definite and its contribution must be compensated for by

the second, third, and fourth sums

So=-32 3 Y AenXLPXp + cuXEPXy),
=1 j=1 k=1
9.15) Sy =33 3 S {dpXLLX ) + diy X5 LX)
1=1 j=1 k=1
n n n
Si=-3> Z Z {gij MK + g X MX 5}

N
Il

-

<.

II

Due to the coupling symmetry, the two terms in Sy, S3, and Sy can be made

identical by exchanging the indices ¢ with 7 in the second terms such that

So=—3 3 ¥ XL PXjy,
i=1 j=1 k=1

(9.16) Sy=—3> > > djkijiLXjk,
i=1 j=1 k=1

54 = — Z Z E gij]TiMXjk.
i=1 j=1 k=1
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[«
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Taking into account that X,;; = 0, we obtain

n n—1 n n n—1 n
SQ = — Z E C]kX PX]k E Z CJkX PX];C,
i=1 k=1 j>k i=1 k=1 j<k
n n—1 n n n—1 n
(9.17) Sy o= =3 3 Y dpXLLX - > dp XL,
i=1 k=1 j>k i=1 k=1 j<k
n n—1 n n n—1 n
Sy = =% S g XEMX - > S Y ginXEMX
i=1 k=1 j>k =1 k=1 j<k

Again, exchanging j and k in the second terms of Ss, S5 and S4 and implying the
symmetries of coupling c; = ckj, djr, = dij, and gjr = gi;, we obtain

7
.

NE

So = — Cjk(XjTi + Xg];)PXjk,

ol

«
Il
-
3 x>
[l

R

|

\
M=
]
NE!

=
<.
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(9.18) dj(XJ; + X3 LX i,

<
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<
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>
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>

Since X7, + X[, = [x] —x] +x[ — x| = XJ,, we obtain

n—1 n
52 = — Z Z TLCij]TkPXjk,
k=1 j>k
n—1 n
(9.19) Sg = — Z Z ndij?kLXjk,
k=1 j>k
n—1 n

S = — Z Z ng]kX kMX]k'
k=1 j>k

Returning to the derivation of the Lyapunov function (9.13) and combining the sums
S1, S2, S3,54 yields the condition which guarantees that V <0 :

n—1 n
(920) Sl + S2 + Sg + S4 == Z ZX;I;[A” - ncijP - nde - TLgZJM}XU < 0.

i=1 j>i

The most remarkable property of this condition is that we are able to eliminate the
cross terms and formulate the condition in terms of X;;. This is because we chose
to consider the redundant system with all possible differences X;;, including linearly
dependent ones.

The condition (9.20) finally transforms into

n—1 n—1 n
9.21) n Y Z[C”X PXij+di XELX 5 + g5 XEMX,5) > S S XA X5

i=1 j>i i=1 j>i

Notice that the left-hand side (LHS) of this inequality contains only the differences
X;; between the oscillators that belong to the edges on the connection graphs C, D,
and G: the first term on the LHS corresponds to the x layer, the second term is
defined by the edges of the y layer, and the third term corresponds to the z layer. At
the same time, the variables on the right-hand side (RHS) of (9.21) correspond to all
possible differences between pairs of oscillators that might or might not be defined by
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edges of the connection graphs. Hence, to get rid of the presence of the differences
X,; and therefore find the conditions explicit in the parameters of the network model
(2.1), we express the differences on the RHS via the differences on the LHS such that
we will be able to cancel them.

So far, we have closely followed the steps in the derivation of the connection graph
method [16] for single-layer networks. The inequality (9.21) is similar to that of the
connection graph method, except for the presence of the second and third terms on
the LHS and a modified matrix A;;. A new non-trivial observation, however, is that
the total number of oscillators, n, in the network (2.1), composed of three connectivity
layers, appears as a factor in all three sums on the LHS, corresponding to the x,y
and z layers, even though each layer itself may contain fewer oscillators. The stability
argument which follows drastically differs from that of the connection graph method.

Denote on the LHS of (9.21): (i) the differences X;; corresponding to edges of
the x graph by Xy, k = 1,...,m, (ii) the differences X, corresponding to edges of the
y graph by Y., k=1,..,1, and (iii) the differences X;; corresponding to edges of the
z graph by Zy, k = 1,...,q. Recall that m, [, and ¢ are the number of edges on the
x, y, and z graphs, respectively. In addition, let X be a scalar from the vector X
which indicates the scalar difference between x; and x;, corresponding to an edge on
the z graph. Similarly, let Y (Z;) be a scalar from the vector Y, (Zk) defined by the
corresponding y; and y; (z; and z;). Using this notation, the differences X,;; on the
RHS will now define the scalars X;; = x; — 3, Yi; = y; — v, and Z;; = z; — 2;. Recall
that (x;,y;,2;) are the scalar coordinates of the individual oscillator, composing the
network (2.1).

Using this notation, we can rewrite (9.21) as follows

m l q
n Z CkX]%-i- Z dkykz-i- Z ng]% >

k=1 k=1 k=1

n—1 n 5 n—1 n 5 n—1 n 5
(9.22) >ag ) > Xijtay ) > Yita. ) > Zit
i=1 j>i,(i,5)€C i=1 j>i,(i,j)€D i=1 j>i,(i,7)€G
n—1 n
+ 3 Y e XG WY w2,

i=1 j>i,(4,§)¢C,D,G

where ¢y = ¢, dk = dij,, and gx = gi,j,. Here, the RHS of (9.22) has four
terms obtained by splitting the difference variables into four groups, according to the
coefficients of A;; (cf. (9.21) and (9.7)-(9.10)). The first sum on the RHS is composed
of the differences that belong to the = graph C', the second sum corresponds to the y
graph D, the third sum is defined by the z graph G, whereas the fourth sum identifies
the differences between the oscillators which belong to different graphs such that, for
example, i € C and j € D.

To recalculate the difference variables of the RHS via the variables X, Y, and Zj,
we should first choose a path from oscillator 7 to oscillator j for any pair of oscillators
(7,7). We denote this path by P;;. Its path length |P;;| is the number of edges
comprising the path. The important property of the path F;; is that if, for example, it
passes through oscillators with indices 1, 2, 3, and 4, then the corresponding difference
X14 = T4 — L1 = (£C4 - 1’3) + (.’Eg — .%'2) + ((EQ — .’El) = X12 + X23 + X34, where the
differences X9, Xo3, and X34 correspond to the edges and the path length |P4| = 3.

The choice of paths is not unique. We typically choose a shortest path between
any pair of ¢ and j; however, a different choice of paths can yield closer estimates, as
discussed in [11] for single-layer networks.
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Once the choice of paths is made, we stick with it and begin recalculating the
difference variables on the RHS of (9.22) via Xy, Yi, and Zx. A potential problem is
that we have to deal not with the variables X;;, but with their squares Xizj, coming
from the calculations of the derivative of the Lyapunov function (9.13). To mitigate
this issue, we apply the Cauchy-Schwartz inequality; applied to the above example,
it yields X2, = (X12 + Xo3 + X34)? < 3(X%, + X353 + X3,). Notice the appearance of
the factor 3, indicating the number of edges comprising the path. Similarly, for any
difference X;j, Y35, and Z;;, we have

2
X%Z(Z Xk) <|Pjl ¥ Xi

keP;; kEP;;

2
(9.23) Yi= ( > Yk) <|P;| ¥ Y2,

kEP;; keP;;

keEP;; keP;j;

2
VAR ( > Zk) <|Pyl ¥ Z,

where once again |P;;| indicates the length of the chosen path from oscillator i to
oscillator j along the connection graph, combined of the x and y graphs. At this
point, we do not differentiate between paths containing only x, y or z edges, but we
have to consider interlayer paths when necessary.

Applying this idea to each difference variable on the RHS of (9.22), we obtain the
following condition

m l q m .
n| 3 aXP+ 3 A YE 4 Y gk ZR| > Y [aabi + webMXE+
k=1 k=1 k=1 k=1
9.24) : Y int]y2 | int] 72
(©. 3y WVE + 3 [asb o+ b 20+
+ 3 wbMXE 2w bV Y (Wb 2,
ke DUG keCUG keCuD
where b7 = > |P;;| is the sum of the lengths of all chosen paths which belong

j>i; keP; eC
n
to the 2 graph C and go through a given x edge k. Similarly, b} = > | P;;]
j>i; keP;€D
n

(b7 = > |P;;]) is the sum of the lengths of all chosen paths which belong
j>i; kEP; G
to the y graph D (z graph G) and go through a given y (2) edge k. Finally, bi"t =
|P;;| is the sum of the lengths of all chosen paths between pairs
j>i; k€P;;:(4,5)¢C,D,G
of nodes ¢ and j which belong to two different graphs and are composed from more
than one type of edge and go through a given edge k& which may be an z, y or z edge.
Note that the three sums on the LHS of (9.24) correspond to the first three sums
on the RHS. In the simplest case where all three C, D, and G graphs are connected
such that each graph couples all n oscillators, bi"* can always be set to 0, since there
are always paths between any two nodes that entirely belong to either of the three
x, y, and z graphs. As a result, the last three sums on the RHS disappear, and we
immediately obtain the stability conditions by dropping the summation signs and the
difference variables

1
(9.25) cr +dg + g > ﬁ{ax i+aybz+az Z}
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In the case of disconnected graphs C, D, and G where all oscillators are coupled
through a combination of two or three graphs and bf;"t is non-zero, at least two of the
last three sums are always present on the RHS. This makes the argument much more
complicated but yields a number of surprising implications of the stability method to
specific networks discussed in Sections 5 and 6.

A major stability problem, associated with the last three terms is rooted in the fact

that, for example, the fourth sum Y [w,bi"|X? contains the difference variables
ke DUG
X, that correspond to the edges of the y or z graph. As a result, the first sum
m

n Y. cxX? on the LHS which contains the variables X} that correspond to = edges,
k=1
cannot compensate the fourth sum on the RHS as they belong to different graphs and
1

therefore cannot be compared. At the same time, the second (third) sum n > dY}?
k=1

a
(n > ng,f> on the LHS does belong to the y (z) graph but contains the variables
k=1

Y. (Ek) and not X needed to handle the fourth sum on the RHS. The same problem

relates to the last two sums Y. [w,bi"]Y? and > [w.bi"*]Z} which contain Y}
keCUG keCUD
and Zj variables, respectively and correspond to the “wrong” graphs.

How can we get around this problem as we simply do not have means on the
LHS to compensate for the troublesome sums on the RHS? A solution comes from
economics: if you do not have means, borrow them! [But act responsibly]. This
remark is added to entertain the reader that might be tired of following the proof up
to this point.

In fact, the only place to “borrow” these terms from is the auxiliary stability
systems (9.7), (9.8), and (9.9) as they do contain the desired variables Xy, Yy, and Z,
corresponding to the “right” graphs (the z, y, and z graphs, respectively). Therefore,
we need to go back and modify the auxiliary systems (9.7), (9.8), and (9.9) as follows

_ 1
(9.26) X, = [f DF (vx; + (1 —v)x;) dv — [az + af]P +
. o _
Fwybi™ L+ w.bi" M| X;; if i,j € z-edge k,
. [ 1 k
(9.27) Xi; = {DF(vxj + (1 = v)x;) dv — (ay + o) L+
wabi™ P 4 w.bi" M| X5 if i,j € y-edge k.
. 1
(9.28) Xi; = |[DF(vx;+ (1—v)x;) dv— (a, +ab)G+

o _
wabi™P + wy bi" L] X;; if i, j € z-edge k.

The addition of positive terms w,b{"* LX;; and w,bi"* MX;; to the auxiliary system
(9.26) worsens its stability, therefore we have to introduce an additional parameter
o and make sure that it is sufficiently large to stabilize the new auxiliary system. A
very important property is that, in (9.26), we have to add the positive, destabilizing
term wybi" LX;; to the second equation for the (y; — y;) difference and the positive,
destabilizing term w, b} M X;; to the third equation for the (z; — z;) difference but try
to stabilize the system via increasing the additional parameter ¥ in the first equation
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for the (z; — x;) equation (note the different inner matrices: P versus L and M in
(9.26)). Depending on the individual oscillator, chosen as the individual unit, this
might not be possible, especially when traffic load b};"t on the edge k is high. This
property is discussed in detail for the Lorenz and double scroll oscillator examples in
Sections 5 and 6. A similar argument carries over to the auxiliary systems (9.27) and
(9.28) where, for example in (9.27), we add the destabilizing terms w,b{"* PX;; and
w,bi" MX;; to the (z; —x;) and (z; — z;) equations, respectively, but seek to stabilize
the system via the additional parameter a’; in the (y; — y;) equation.
Notice that we only modify the auxiliary systems for the existing x, y, and z edges.
All the other auxiliary systems for X;;, that do not correspond to edges of either of
the x, y and z graphs, remain intact and defined via the original systems (9.7)-(9.10).
Thus, the modifications of (9.26), (9.27), and (9.28) make the troublesome sums
o webMXE Y [wybiMY2, and Y. [w,bi]ZE in (9.24) disappear at the
k€DUG keCUG keCUD
expense of worsened stability conditions of the corresponding auxiliary systems, which

is reflected by the appearance of additional terms with o, a’;, and of. Therefore,
(9.24) turns into

(9.29)
m 1 q m .
n | Y aXi4+ Y deY24+ Y g Zi| > Y [acbf + webi™ + ok X2+
k=1 k=1 k=1 k=1

l . q .
2 laybl Wb+ aglVE 4 3 abf +wubi + ] ZE.

Notice the new stabilizing constants o, a’;, and of. Depending on the individual

oscillator dynamics and traffic load on edge k, these constants might have to be very
large or even infinite.

Comparing the terms containing Xy, Yx, and Z; on the LHS and RHS of (9.29)
and omitting the summation signs, we obtain the following conditions

nepXE > [agh? + webi™ + b X2, k=1,...m,
(9.30) ndpY;2 > [ayby + w,bi™t + ag}YkQ, k=1,..1,
ngpZi > la.bi + w.bi" +af|Z2 k=1,..,q.

z

Finally, we omit the difference variables to obtain the bounds on coupling strengths,
¢ for = edges, d for y edges, and gi for z edges, sufficient to make the derivative
of the Lyapunov function (9.13) negative semi-definite, and therefore, ensure global
stability of synchronization in the network (2.1). It follows from (9.30) that these
upper bounds are

cr > Lagh? +w bt + k], k=1,..,m,
(9.31) di, > ~layby + wybi + a’;;], k=1,..1,
ge > abi + wbi" +af], k=1,..,q.

This completes the proof of Theorem 4.1. [J
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