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Network Synchronization Through
Stochastic Broadcasting

Russell Jeter, Maurizio Porfiri , and Igor Belykh

Abstract—Synchronization is often observed in inter-
acting dynamical systems, comprising natural, and tech-
nological networks; however, seldom do we have precise
knowledge and control over the synchronous trajectory. In
this letter, we investigate the possibility of controlling the
synchronization of a network by broadcasting from a sin-
gle reference node. We consider the general case in which
broadcasting is not static, but stochastically switches in
time. Through an analytical treatment of the Lyapunov
exponents of the error dynamics between the network and
the reference node, we obtain an explicit dependence of
synchronization on the strength of the broadcasting sig-
nal, the eigenvalues of the network Laplacian matrix, and
the switching probabilities of broadcasting. For coupled
chaotic tent maps, we demonstrate that: 1) time averaging
fails to predict the onset of controlled synchronization and
2) the success of broadcasting depends on the network
topology, where the more heterogeneous the network is,
the more difficult it is to control.

Index Terms—Lyapunov exponents, random network,
scale-free network, switching control, tent map.

I. INTRODUCTION

COLLECTIVE behavior within networks has received a
considerable amount of attention in the literature, from

animal grouping to robotic motion [1], [2]. One type of col-
lective behavior, synchronization, is particularly important in
how prevalent it is in real-world systems [3]. Synchronization
occurs when all of the nodes act in unison.

Synchronization typically emerges from local interactions
within a network and is determined by the interplay between
the node dynamics and the network structure [3]. A variety of
mathematical tools have been proposed to assess the synchro-
nizability of a network by studying local and global stability
of the synchronous solution. The master stability function has
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been proposed as a powerful approach to predict the role of the
individual node dynamics and the network structure in terms
of a single master equation [4].

In many applications, there is a need for controlling the syn-
chronous solution toward a designed common trajectory [5].
For example, schooling fish may align their swimming direc-
tions toward a group leader to improve foraging success or
escape from a predator [6]. Similarly, teams of mobile robots
are often tasked with the goal of coordinating their motion
to maintain a given formation while sampling environmental
variables and identifying potential targets [2].

In this letter, we study the feasibility of broadcasting from
a common reference node to control synchronization of a net-
work of coupled dynamical systems. Within this approach,
every node in the network has access to the same information
from the reference node at a given time, but we allow this
information to stochastically change in time. For example, the
reference node could share information with the network only
sporadically in time or could alternate between several con-
flicting messages. With respect to schooling fish, for example,
leaders may use sudden changes in swimming direction as a
visual cue to elicit followership of the group [7].

The problem of controlled synchronization through broad-
casting shares similarities with the literature on pinning con-
trol, where a control action is applied to a small selected
subset of nodes to tame the dynamics of the entire network
to the trajectory of a reference node [8], [9]. Building on the
standard approach developed a decade ago [10]–[12], most
of the literature considers the case in which pinning control
is statically applied to the network, such that control gains
are held constant in time. This is in contrast with the broad-
casting approach, in which all nodes are controlled but for
a limited fraction of time and with a varying gain. Only a
few studies have explored the possibility of time-varying pin-
ning control, but we still have limited analytical insight into
the interplay between the internal nonlinear dynamics of the
nodes, the evolution of the control gains, and the network
structure [8].

Here, we seek to close this gap in the context of stochas-
tic broadcasting. Toward this aim, we extend our recent
work [13], [14], where we established a rigorous method-
ology for assessing the mean square stability of the syn-
chronous solution in a pair of coupled discrete-time oscillators.
Specifically, we derive a master equation for the mean square
stability of the error dynamics, parametrized in terms of the
eigenvalues of the graph Laplacian of the network. We apply
ergodic theory [15] to study the Lyapunov exponent of the
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Fig. 1. Illustration of the problem: the reference oscillator, x ,
(black) stochastically broadcasts to a network of N oscillators,
y1, . . . ,yN (white).

master equation, which we specialize to chaotic tent maps.
In an effort to compare our analysis with the state of the
art on switching networks [16], we also challenge the prac-
tical use of time-averaging to predict the onset of stochastic
synchronization of discrete-time oscillators.

II. PROBLEM FORMULATION

We study the synchronization of a network of N coupled
discrete-time oscillators (yi ∈ R, where i = 1, 2, . . . , N), inter-
acting with a reference oscillator (x ∈ R) that broadcasts to
the entire network, as shown in Fig. 1. The network nodes
are interconnected by an arbitrary, undirected and unweighted,
topology, which is represented by the graph G = (V, E), where
V is the vertex set and E is the edge set. The evolution of all the
oscillators (network and reference nodes) is governed by the
same nonlinear function F : R → R. That is, in the absence
of coupling, yi(k + 1) = F(yi(k)) and x(k + 1) = F(x(k)).
The broadcasting process is independent and identically dis-
tributed (i.i.d.) in time, such that, at each time step k, the
control gain of the reference node, ε(k), is randomly drawn
from a set {ε1, ε2, . . . , εm} with probabilities p1, p2, . . . , pm,
respectively (with

∑m
i=1 pi = 1). As broadcasting is global,

the value of the switching gain is common to all nodes. We
say that the reference node and the network are synchronized
if y1(k) = y2(k) = · · · = yN(k) = x(k) for k ∈ Z

+.
To summarize the setup of the problem, the system of

equations governing the discrete-time evolution is

x(k + 1) = F(x(k)),

yi(k + 1) = F(yi(k)) + ε(k)(x(k) − yi(k))

+
N∑

j=1,ij∈E
μ

(
yj(k) − yi(k)

)
, (1)

for i = 1, 2, . . . N, where μ is a network coupling used
to scale the node-to-node interactions versus the strength of
the broadcasting signal. System (1) is a stochastic dynami-
cal system whose study requires tools from both stability and
ergodic theories [15]. More specifically, system (1) describes
a switched nonlinear linear system, with an underlying mem-
oryless switching.

In general, the network dynamics can be written in the
following vector form

y(k + 1) = F(y(k)) − μLy(k) − ε(k)IN(y(k) − x(k)1N), (2)

where y(k) is the vector comprised of all the network states,
F(y) is the vector-valued extension of the mapping function

F(y), 1N is the vector of ones of length N, and L is the
Laplacian matrix of G [17], that is,

L =
⎧
⎨

⎩

Lij = −1 ij ∈ E
Lii = ∑

j
1 i = 1, 2, . . . , N ,

with eigenvalues γ1 = 0 ≤ γ2 ≤ · · · ≤ γN .
To understand the role of broadcasting in inducing synchro-

nization with the reference trajectory x(k), we look at the
evolution of the error dynamics ξ(k) = x(k)1N − y(k). To
study the stability of synchronization, we linearize the system
about the reference trajectory:

ξ(k + 1) = [DF(x(k)) IN − μL − ε(k) IN]ξ(k), (3)

where IN is the N × N identity matrix and DF(x(k)) is the
Jacobian of F at x(k). In (3), we have assumed infinitesimal
perturbations ξ(k) in the directions transversal to the syn-
chronous solution thereby, allowing for the linearization and
application of the Jacobian DF. The linearized discrete-time
system in (3) is a first order Markov chain, due to the presence
of the switching gain ε(k). Although ε(k) is drawn from i.i.d.
distribution, (3) describes a linear time-varying switching sys-
tem, since the reference trajectory x(k) generally varies in time.
Stochasticity and time-dependence, however, only appear as a
compound multiplier of the identity matrix, thereby afford-
ing the possibility of diagonalizing the system in terms of the
eigenspaces of the Laplacian matrix. In other words, to a first
linear approximation, the error dynamics on the eigenspaces
of the Laplacian evolve independently of each other, allowing
for the use of a single stochastic master equation.

Specifically, diagonalizing (3), we obtain the following
scalar equation for each transversal mode

ζ(k + 1) = [
DF(x(k)) − μγ − ε(k)

]
ζ(k), (4)

where γ ∈ {γ1, . . . , γN} encapsulates the role of the net-
work topology on the evolution of the error dynamics along
the eigenvectors of L, identified by ζ(k). Master equation (4)
can be parametrically studied as a function of μγ to illumi-
nate the influence of the strength of the broadcasting signal
and the switching probabilities of broadcasting on the sta-
bility of synchronization along each eigenvector of L. This
equation reduces to the traditional, deterministic master sta-
bility equation in [4] in the absence of stochastic broadcasting
(ε(k) = 0).

III. MASTER STABILITY FUNCTION

While there are many criteria that one can contemplate
when examining stochastic stability of a network about a syn-
chronous solution, we use the lens of mean square stability for
its practicality of implementation and inclusiveness with other
criteria [18], [19]. For example, as shown in [20], mean square
asymptotic stability of switching linear systems with an under-
lying time-homogenous finite-state Markov chain is equivalent
to exponential second moment stability and implies almost
sure stability. Several studies have demonstrated the feasibility
of using mean square stability in the study of synchronization
of discrete-time systems, and we build on this literature toward
an analytical treatment of broadcasting [21], [22]. Through
this lens, the error dynamics is controlled by both the mean
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and the variance of the switching signal, different from fast-
switching approaches in continuous-time systems that only
rely on the mean [23], [24].

Definition 1: The synchronous solution y1(k) = y2(k) =
· · · = yN(k) = x(k) in the stochastic system (1) is locally
asymptotically mean-square stable, if lim

k→∞ E[ξ2(k)] = 0 for

any initial condition ξ(0) of (3), where E[ · ] denotes expecta-
tion with respect to the σ -algebra generated by the stochastic
process of switching.

Analyzing mean square stability of the stochastic system (3),
and therefore of the master equation (4), corresponds to study-
ing the deterministic evolution of the second moment of ζ(k)
toward the derivation of a rigorous convergence criterion. To
this end, we take the expectation of the square of both sides
in (4), to obtain

E[ζ 2(k + 1)] =
[
(DF(x(k)) − μγ )2 + 2(μγ − DF(x(k)))

× E[ε(k)] + E
[
ε2(k)

]]
E[ζ 2(k)]. (5)

The stability of the deterministic system in (5) can be
inferred through the study of its Lyapunov exponent [25]. If
the limit exists, the Lyapunov exponent is computed from the
error dynamics for a non-zero initial condition ζ(0) as

λ = lim
k→∞

1

k
ln

[
E
[
ζ 2(k)

]

ζ 2(0)

]

= lim
j→∞

1

j

j∑

k=1

ln E
[
ζ 2(j)

]
. (6)

The study of the stochastic stability of the N-dimensional error
dynamics in (3) reduces to monitoring the sign of λ as a
function of γ .

Lemma 1: The synchronous solution x(k) of the nonlinear
stochastic system (1) is locally asymptotically mean-square
stable if the Lyapunov exponent λ in (6) is negative for every
γ ∈ {γ1, . . . , γN}.

Proof: The proof is trivial. The negativenesses of the
Lyapunov exponent implies the convergence of E[ζ 2(k)] to
zero, and therefore guarantees local asymptotical mean-square
stability, according to Definition 1.

Given the strength of the node-to-node interaction μ, the
mean and variance of the broadcasting signal E[ε(k)] and
E[ε2(k)], and the individual dynamics F, one can numeri-
cally compute λ for a range of values of γ to generate a
so-called master stability function. From the master stabil-
ity function, one can then infer which network topology will
support synchronization to the reference trajectory.

Remark 1: For a linear system, F(x) = αx, where α ∈ R,
the Lyapunov exponents can be easily computed from the limit
in (6), such that

λ = ln
[
(α − μγ )2 + 2(μγ − α)E[ε(k)] + E

[
ε2(k)

]]
. (7)

Remark 2: For nonlinear discrete-time systems, numerical
computation of Lyapunov exponents may be a challenging
task, potentially leading to false predictions on stochastic
synchronization. For example, stable dynamics may lead to
E[ζ 2(k)] attaining values below numerical precision in a few
steps, thereby hampering the evaluation of the Lyapunov expo-
nent; and similarly, unstable dynamics may lead to sudden
numerical overflow.

Toward overcoming potential confounds associated with
numerical computation of (6), we adopt Birkoff’s ergodic

theorem [15] to derive the main general statement of this
letter.

Proposition 1: The synchronous solution x(k) of the stochas-
tic system (1) with the invariant density ρ(x) of F is locally
mean square stable if

λ =
∫

B

ln
[
(DF(z) − μγi)

2 + 2(μγ − DF(z))E[ε(k)]

+ E
[
ε2(k)

]]
ρ(z)dz, (8)

where B ⊆ R is where the invariant density ρ(x) is defined.
Proof: The key step in the proof lies in the introduction of

the invariant density function of F, which measures the prob-
ability that a typical trajectory will visit a neighborhood of
the state x – for example, for a periodic trajectory of period
two, such that x(k) = x(k + 2), the invariant density ρ(x)
will correspond to two Delta distributions of equal intensity
at x(0) and x(1) and for more complex, possibly chaotic, sys-
tems the invariant density may become a continuous function.
By virtue of Birkoff’s ergodic theorem [15], using ρ(x), one
can replace the summation over time in (6) with the integra-
tion over the probability space in (8), following the line of
argument in [13] and [14].

Remark 3: With knowledge of the invariant density, (8) can
be analytically or numerically evaluated to establish a mas-
ter stability function for controlled stochastic synchronization
through broadcasting, without incurring in the computational
challenges indicated in Remark 2.

For non-switching broadcasting, such that the switching
gain ε is constant in time and equal to ε̄, (8) reduces to

λ = 2
∫

B

ln|DF(t) − μγ − ε̄]|ρ(z)dz. (9)

Notice that the dependence of the argument of the logarithm
on γ is linear, different from (8), where we find linear and
quadratic dependencies. Equation (9) will be used to elucidate
the predictive power, or lack thereof, of the averaged system
on stochastic synchronization. Specifically, we will examine
the sign of the Lyapunov exponent in (9) with ε̄ = E[ε(k)]
and compare with (8).

Remark 4: Since 0 is necessarily an eigenvalue of
the Laplacian matrix (due to the zero row-sum prop-
erty), one of the Lyapunov exponents is always given by
λ1 = ∫

B ln [DF(z)2 − 2DF(z)E[ε(k)] + E[ε2(k)]]ρ(z)dz. This
Lyapunov exponent indicates that the stability of synchroniza-
tion of an individual oscillator to the reference oscillator is
necessary for the stability of synchronization of the entire
network to broadcasting. Therefore, the network can not facili-
tate synchronization as it introduces further constraints on the
switching gain beyond those implied by a direct one-to-one
coupling between an isolated node and the reference node.

IV. APPLICATION TO TENT MAPS

To illustrate the implications of (8), we consider the case of
the chaotic tent map [26] with parameter equal to 2, which has
a known density function ρ(x) = 1 on the interval B = [0, 1].
We limit the analysis to two control gains for the broadcast-
ing signal, εi ∈ {ε1, ε2}. These gains could exemplify a single
broadcasting message (if ε2 = 0), or two conflicting messages
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Fig. 2. (Color online) Master stability function for stochastic synchro-
nization of chaotic tent maps, for ε2 = 2.2 and p1 = p2 = 0.5. For
synchronization to be stable, each eigenvalue of the Laplacian matrix
must correspond to a negative Lyapunov exponent (indicated by the yel-
low color, isolated by the black dashed curve). For example, the black
vertical line shows the range of admissible values of μγ that would
guarantee stability at ε1 = 2.

(if ε1 �= ε2). In our numerical demonstrations, we parametri-
cally vary ε1 and μ, with ε2 = 2.2 and p1 = p2 = 0.5. The
value of ε2 is chosen such that a single, isolated map would
synchronize to a non-switching broadcasting signal [26]. At
the same time, ε1 may take a value such that it would destabi-
lize synchronization in the non-switching case. Therefore, ε1
and ε2 can be assimilated to conflicting messages broadcasted
by the reference node to the network.

A. Master Stability Function

Substituting the invariant density function into the integral
in (8), we can compute the Lyapunov exponent in closed form
for the mean square stability of the error dynamics, thereby
arriving at the following application of Proposition 1 to the
chaotic tent maps.

Corollary 1: The Lyapunov exponent for the mean square
stability of the synchronous solution in the system (1) of
chaotic tent maps is

λ = ln
[
(2 − μγ )2 + 2(μγ − 2)E[ε(k)] + E

[
ε2(k)

]]

×
[
(−2 − μγ )2 + 2(μγ + 2)E[ε(k)] + E

[
ε2(k)

]]
.

(10)

where E[ε(k)] = p1ε1 + p2ε2 and E[ε2(k)] = p1ε
2
1 + p2ε

2
2.

This Lyapunov exponent demonstrates the explicit depen-
dence of the stability of stochastic synchronization on
the node-to-node coupling strength, the eigenvalues of the
Laplacian matrix, and the stochastically switching coupling
strengths along with their respective probabilities.

Figure 2 illustrates the dependence of λ on ε1 and μγ . The
dashed curve in Fig. 2 indicates the boundary between pos-
itive and negative Lyapunov exponents, identifying the onset
of mean square stability of the error dynamics. In order for
the network to synchronize to the reference node, the point
(ε1, μγ ) must fall within the dashed curve for every eigen-
value in the spectrum of the Laplacian matrix. In agreement
with our predictions, we find that as μγ increases the range
of values of ε1 which affords stable synchronization becomes

Fig. 3. (Color online) Verification of predictions from the averaged sys-
tem on the stochastic synchronization of a ring of 100 chaotic tent maps,
for ε2 = 2.2 and p1 = p2 = 0.5. The red (dark gray) region indicates
when averaged system correctly identifies the stability of synchroniza-
tion, the yellow (light gray) region indicates when the averaged system
predicts stability of synchronization against the master stability function
that posits unstable synchronization, and the blue (large gray) region
indicates when the averaged system correctly anticipates unstable syn-
chronization. The regions enclosed by the dashed vertical lines identify
the values of ε1 that could support stable synchronization of an isolated
node, that is, μ = 0.

smaller and smaller. This suggests that the resilience of the
network to synchronize improves with μγ .

Remark 5: While the nonlinear dependence of the stability
boundary on ε1 and μγ is modulated by the nonlinearity in
the individual dynamics, it should not be deemed as a pre-
rogative of nonlinear systems. As shown in Remark 1, the
stochastic stability of synchronization in the simplest case of
a linear system is also nonlinearly related to the spectrum of
the Laplacian matrix and to the expectation and variance of
the broadcasting signal – even for classical consensus with
α = 1 [8].

Remark 6: In this example of a chaotic tent map, the stabil-
ity boundary is a single curve, defining a connected stability
region. To ensure stable synchronization of a generic network,
it is thus sufficient to monitor the largest eigenvalue of the
Laplacian matrix, γN , such that (ε1, μγ ) will fall within the
stability region. This is in contrast with the master stability
function for uncontrolled, spontaneous synchronization [4],
which would typically require the consideration of the sec-
ond smallest eigenvalue, often referred to as the algebraic
connectivity [17]. However, similar to master stability func-
tions for uncontrolled, spontaneous synchronization [27], we
would expect that for different maps, one may find several
disjoint regions in the (ε1, μγ )-plane where stable stochastic
synchronization can be attained.

B. Comparing the Static and Stochastic Systems

Next, we wish to gain insight into the ability of the aver-
aged system to predict the onset of synchronization on the
broadcasting trajectory. From (9), we obtain the following
closed-form for the Lyapunov exponent:

λ = ln|(2 − μγ − E[ε(k)])(−2 − μγ − E[ε(k)])|. (11)

In Fig. 3, we summarize predictions on the stability of
stochastic synchronization for a ring of 100 nodes, gathered
through the master stability function depicted in Fig. 2 and
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Fig. 4. (Color online) Largest eigenvalue γN of the Laplacian matrix as
a function of the number of edges for three different types of networks
of 100 nodes: a 2K -regular network (black curve with square mark-
ers), scale-free (red curve with circle markers), and random Erdös-Renyi
(blue curve) networks. Scale-free and random networks are run 10000
times to compute means and standard deviations, reported herein –
note that error bars are only vertical for scale-free networks since the
number of edges is fully determined by q, while for random networks
additional horizontal error bars can be seen due to the process of
network assembly.

the averaged system described through (11). Figure 3 identi-
fies distinct regions of the parameter space spanned by μ and
ε1, where predictions from the averaged system with respect
to the exact result from the master stability function should be
considered valid or invalid.

Remark 7: Our results suggest the presence of a wide
region of the parameter space in which the averaged sys-
tem fails to predict the stability of synchronization, while
we find no evidence of invalid predictions on the instabil-
ity of synchronization by the averaged system. Hence, in this
particular example, the averaged system seems to provide a
necessary condition. Care should be placed in extending this
claim to other settings, whereby, as shown in [13] and [14],
one can construct examples for N = 1 in which unstable syn-
chronization in the averaged system does not imply unstable
synchronization for stochastically coupled systems.

C. Role of Network Topology

The master stability function in Fig. 2 shows that both μ

and γ contribute to the resilience of the network to synchro-
nization induced by stochastic broadcasting. For a given value
of the node-to-node coupling strength μ, different networks
will exhibit different residences based on their topology. Based
on the lower bound by Grone and Merris [28] and the upper
bound by Anderson and Morley [29], for a graph with at
least one edge, we can write max{di, i = 1, . . . , N} + 1 ≤
γN ≤ max{di + dj, ij ∈ E}, where di is the degree of node
i = 1, . . . , N. While these bounds are not tight, they sug-
gest that the degree distribution has a key role on γN . For a
given number of edges, one may expect that networks with
highly heterogeneous degree distribution, such as scale-free
networks [30], could lead to stronger resilience to broadcast-
ing as compared to regular or random networks, with more
homogenous degree distributions [30].

In Fig. 4, we illustrate this proposition by numerically com-
puting the largest eigenvalue of the graph Laplacian for three
different network types:

(i) A 2K-regular network, in which each node is con-
nected to 2K nearest neighbors, such that the degree

is equal to 2K. As K increases, the network approaches
a complete graph.

(ii) A scale-free network which is grown from a small
network of q nodes. At each iteration of the graph gen-
eration algorithm, a node is added with q edges to nodes
already in the network. The probability that an edge will
be connected to a specific node is given by the ratio of
its degree to the total number of edges in the network.
Nodes are added until there are N nodes in the network.
When q is small, there are a few hub nodes that have
a large degree and many secondary nodes with small
degree, whereas when q is large, the scale-free network
is highly connected and similar to a complete graph.

(iii) A random Erdös-Renyi network which takes as input the
probability, p, of an edge between any two nodes. When
p is small, the network is almost surely disconnected,
and when p approaches 1, it is a complete graph.

We fix N to 100 and vary K, q, and p in (i), (ii), and (iii),
respectively, to explore the role of the number of edges.

As expected from the bounds in [28] and [29], for a given
number of edges, the scale-free network tends to exhibit larger
values of γN . This is particularly noticeable for networks of
intermediate size, whereby growing the number of edges will
cause the three network types to collapse on a complete graph
of N nodes. As the largest eigenvalue of the Laplacian matrix
fully controls the resilience of the network to broadcasting-
induced synchronization (in the case of linear and chaotic tent
maps), we may argue that, given a fixed number of edges, the
network can be configured such that it is either more conducive
(regular graph) or resistant (scale-free graph) to synchroniza-
tion. The increased resilience of scale-free networks should be
attributed to the process of broadcasting-induced synchroniza-
tion, which globally acts on all nodes simultaneously, without
targeting critical nodes (low or high degree) like in pinning
control [8], [9].

V. CONCLUSION

Much attention recently has been placed on controlling the
synchronization of networks, though the vast majority of the
literature considers cases in which the control is continuously
applied on selected network sites. Here, we have taken a
different approach, by addressing the problem of broadcasting-
induced synchronization of a network of oscillators, using a
single, external, reference node. The reference node is stochas-
tically coupled with the network, such that control actions
are intermittently applied over time, switching over a set of
potentially conflicting messages.

In the context of mean square convergence, we have exam-
ined the stochastic stability of the error dynamics of the
network oscillators with respect to the reference trajectory.
By decomposing the error dynamics on independent compo-
nents along the eigenvectors of the Laplacian matrix, we have
established a master stability equation to predict the onset of
stable synchronization. From the Lyapunov exponent of the
master stability equation, we posit a master stability function,
which can be used to systematically study the role of the mean
and variance of the broadcasting control gain on synchro-
nization. In a principled manner, we have applied elements
of ergodic theory to cast the computation of the Lyapunov
exponent in terms of an integration in a probability space,
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which is amenable to analytical and numerical treatments. We
have illustrated the approach for chaotic tent maps, for which
we have clarified the predictive power of time-averaging and
systematically analyzed the role of network topology.

Our general approach is not limited to one-dimensional
maps but directly applicable to higher dimensional node
dynamics, provided that the invariant ergodic measure of the
given map can be calculated. In rare cases which include
Anosov maps (two-dimensional diffeomorphisms on tori) [31],
invariant density functions can be assessed analytically. In
some examples of two- and higher-dimensional chaotic maps,
the invariant density can be calculated numerically and
approximated by an explicit continuous function. Known
examples of such numerically-assisted approximations include
volume-preserving two-dimensional standard maps and the
four-dimensional Froeschlé map [32].

In contrast to classical master stability functions for uncon-
trolled, spontaneous synchronization, where both the algebraic
connectivity and the largest eigenvalue of the Laplacian
matrix determine the onset of synchronization, we report
that the algebraic connectivity has no role on broadcasting-
induced synchronization of linear maps and chaotic tent
maps. Specifically, the resilience of the network to broad-
casting synchronization increases with the value of the largest
eigenvalue of the Laplacian matrix. Heterogenous topologies
with hubs of large degree should be preferred over homoge-
nous topologies, when designing networks that should be
resilient to influence from a broadcasting oscillator. On the
contrary, homogenous topologies, such as regular or ran-
dom topologies, should be preferred when seeking networks
that could be easily tamed through an external broadcasting
oscillator. Interestingly, these predictions would be hindered
by a simplified analysis based on averaging, which could
lead to false claims regarding the stability of synchronous
solutions.

Two of the key assumptions of the current setup are the
lack of a memory in switching and the need for switch-
ing at every time step. Both these assumptions could be
relaxed by building on our recent work on synchronization
of two coupled maps [13], [14], where we have demonstrated
potential advantages of memory and non-fast switching. The
analysis presented therein corresponds to broadcasting-induced
synchronization for N = 1. We anticipate that combin-
ing those findings with the methodology proposed in this
letter could lay the foundation for a general theory of
non-fast broadcasting with memory, which could translate
into control strategies with improved energy efficiency and
performance.
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