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a b s t r a c t

In this paper, we examine the role of the switching period on the stochastic stability of jump linear
systems. More specifically, we consider a jump linear system in which the state matrix switches every
m time steps randomly within a finite set of realizations, without a memory of past switching instances.
Through the computation of the Lyapunov exponents, we study δ-moment and almost sure stability of
the system. For scalar systems, we demonstrate that almost sure stability is independent of m, while δ-
moment stability can bemodulated through the selection of the switching period. For higher-dimensional
problems, we discover a richer influence of m on stochastic stability, quantified in an almost sure and a
δ-moment sense. Through the detailed analysis of an archetypical two-dimensional problem,we illustrate
the existence of disconnectedwindows of opportunitywhere the system is asymptotically stable. Outside
of these windows, the system is unstable, even though it switches between two Schur-stable state
matrices.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Assessing stochastic stability is a critical problem in the study
of jump linear systems, with important applications in modeling
biological systems, formulating hybrid control algorithms, and
designing power electronics, see, for example, Sun (2006). An
excellent review of the history of research on stochastic stability of
jump linear systems can be found in the work of Fang, Loparo, and
Feng (1994). Rosembloom (1954) was the first to study moment
stability of jump linear systems and Bellman (1960) was the first
to tacklemoment stability throughKronecker algebra. Bertramand
Sarachik (1959) andKats andKrasovskii (1960) put forward criteria
based on Lyapunov’s second method to investigate moment and
almost sure stability. Building on these seminal papers from over
sixty years ago, several breakthroughs have been made in the
study of stochastic stability of jump linear systems, summarized
in a number of comprehensive books, doctoral dissertations, and
review papers (Costa, Fragoso, and Marques, 2006; Fang, 1994;
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Kozin, 1969; Kushner, 1971;Mariton, 1988).While there is no gen-
eral consensus on the most desirable stability property for a jump
linear system, almost sure stability seems to be the most useful
criterion for practical applications and mean-square stability the
simplest criterion to implement.

Here,we examinemoment and almost sure stability of a specific
class of jump linear systems in which the state matrix switches
every m ∈ Z+ time steps, following an independent and identi-
cally distributed (i.i.d.) random process. As a result, in each time
interval of lengthm, the state matrix is constant and the dynamics
progresses analogously to a time-invariant system. Increasing m
will simultaneously amplify the ability of Schur-stable matrices to
steer the dynamics toward the origin and of unstable matrices to
push the dynamics away from it, leading to a rich dependence of
the stochastic stability of the jump linear system on m. As made
clear in what follows, counterintuitive scenarios may emerge even
in this seemingly trivial linear setting. For example, it is easy to
predict that slow switching (large m) between two Schur-stable
matrices will induce stable dynamics, but inferring stability for
finite values of m is elusive. Stable dynamics may occur for fast
switching (m = 1), and, surprisingly, disappear for intermediate
switching.

Studying the stability of this class of systems bears several ram-
ifications on our understanding of stochastic stability of dynamical
systems. For example, the dynamics of the classical Kapitza’s pen-
dulum (Kapitza, 1951) can be associated with the stabilization of
an unstable system via the cogent design of a stochastic, vibratory
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input. Similarly, the stability of high flapping frequency of hovering
insects and flapping wing micro-air vehicles has been shown to be
triggered by non-fast, higher order harmonics (Taha, Tahmasian,
Woolsey, Nayfeh, & Hajj, 2015). In the context of synchronization
of coupled systems, our previous work has unveiled a rich and
often counterintuitive dependence of the stochastic stability of the
synchronous solution on the switching period for scalar chaotic
maps (Golovneva, Jeter, Belykh, & Porfiri, 2017; Jeter, Porfiri, &
Belykh, 2018) and continuous-time oscillators (Jeter & Belykh,
2015).

More specifically, we have previously demonstrated the exis-
tence of multiple, disconnected intervals of the switching period
where the synchronous solution is stable, termed ‘‘windows of
opportunity.’’ The characterization of windows of opportunity for
jump linear systems is themain objective of this paper. By focusing
on linear stochastic systems, we seek to gain insight into the
determining factors for the occurrence of windows of opportunity,
without potential confounds associated with nonlinearities. We
focus on both moment and almost sure stability, bringing to light
key differences between them for scalar and higher-dimensional
systems.

The key technical contributions of our study entail the formu-
lation of a mathematical framework to explain the emergence of
windows of opportunity in the context of stochastic stability the-
ory and the purposeful design of an exemplary two-dimensional
problem that is amenable to analytical treatment. The mathe-
matical framework includes the synergy between new analytical
results, especially in the context of moment stability, and claims
from the technical literature that are revisited toward an improved
understanding of windows of opportunity. The two-dimensional
example constitutes a transparent testbed to demonstrate the
complexity of the phenomenon of windows of opportunity, shed-
ding light on the interplay between the switching period and the
internal system dynamics.

Themain claims of ourwork are: (i) for scalar systems,windows
of opportunity do not exist in an almost sure sense, but only in
moment stability; (ii) for systems of higher dimension, windows of
opportunity emerge from both moment and almost sure stability,
although they may have different extent; and (iii) the topology of
windows of opportunity for higher dimensional systems may be
considerably richer than for scalar systems.

2. Mathematical preliminaries

Here, we briefly review key concepts on the stability of jump
linear systems from the classical work of Fang, Loparo, and Feng
(1995). Consider the linear discrete-time system

xk+1 = H(σk)xk, (1)

where k ∈ N is the discrete time variable, xk ∈ Rn is the state
variable with n being a positive integer defining the dimension
of the system, H is a real valued matrix function in Rn×n, and σk
is a finite-state i.i.d. random process taking values in {1, . . . ,N}

with N being the number of state matrices and p1 . . . , pN their
respective probability to occur. For simplicity, we assume that the
initial condition x0 is a constant, nonrandom, vector. This setup is
a specialization of the general framework considered by Fang et
al. (1995), where σk could be a finite state, homogeneous Markov
process.

Definition 2.1 from Fang et al. (1995) can be restated as follows:

Definition 1. Let Pr(·) and E(·) indicate, respectively, probability
and expectation with regard to the sigma-algebra induced by the
i.i.d. process, and let ∥·∥be anorm inRn (for example, the Euclidean
norm). The jump linear system in (1) is said to be

1. asymptotically δ-moment stable, if for any x0 ∈ Rn

lim
k→∞

E
(
∥xk∥δ

)
= 0; (2)

2. exponentially δ-moment stable (δ > 0), if for any x0 ∈ Rn,
there exist α, β > 0 such that

E
(
∥xk∥δ

)
< α∥x0∥δe−βk, k ∈ N; or (3)

3. almost sure asymptotically stable, if for any xo ∈ Rn,

P

(
lim
k→∞

∥xk∥ = 0
)

= 1. (4)

In the context of moment stability, we refer to δ = 2 as mean-
square stability.

By adapting the claims in Theorem 4.1, Proposition 4.3, and
Lemma 4.8 from Fang et al. (1995),1 we formulate the following
set of relationships between these notions of stability.

Proposition 1. Given the jump linear system in (1) and the stability
notions in Definition 1, the following relationships hold.

1. (Theorem 4.1) Asymptotic and exponential δ-moment stability
are equivalent.

2. (Proposition 4.3) Exponential δ-moment stability implies almost
sure stability.

3. (Lemma 4.8) For any 0 < δ1 ≤ δ2, asymptotic δ2-moment
stability implies δ1-moment stability.2

This Proposition supports our intuition that exponential and
asymptotic moment stabilities are equivalent for jump linear sys-
tems, similar to classical time-invariant systems. Also, it clari-
fies that almost sure stability is the least conservative notion of
stability and that the higher the value of δ is chosen, the more
conservative the stability criterion is. Thus, almost sure stability
should be regarded as the most reliable means to analyze and/or
design jump linear systems, although it is generally difficult to
tackle.

To assess the stability of (1), we may examine the sign of the
top Lyapunov exponent associatedwith the δ-moment, sometimes
referred to as the generalized Lyapunov exponent, or sample-path
evolution. More specifically, if the limits exist (Fang & Loparo,
2002), we define the following quantities.

Definition 2. The top (or largest) sample-path Lyapunov exponent,
λ, and the top δ-moment Lyapunov exponent, g(δ), of (1) are
defined, respectively, as3

λ = max
x0 ̸=0

lim
k→∞

1
k
log ∥xk∥ = lim

k→∞

1
k
log ∥H(σk−1) · · ·H(σ0)∥, (5a)

g(δ) = max
x0 ̸=0

lim
k→∞

1
k
log E∥xk∥δ

= lim
k→∞

1
k
log E∥H(σk−1) · · ·H(σ0)∥δ,

(5b)

where the computation is independent of the norms used for
vectors or matrices.

Remark. If λ (g(δ)) is negative, the system is almost sure
(δ-moment) asymptotically stable and it is unstable otherwise.4

1 Some of these claims can also be found in Fang et al. (1994), albeit in a less
general form.
2 Lemma 4.8 is an implementation of Jensen’s inequality, and it specifically states

that for any random variable ξ , the function F (y) = E(∥ξ∥
y)

1
y is nondecreasing in

R+ whenever it is well defined. This is sufficient to prove our claim, which appears
in a more general form as Theorem in 4.7 in Fang et al. (1995).
3 The sample path Lyapunov exponent should be interpreted in an almost sure

sense (Fang et al., 1995).
4 These claims also include infinitely large values of the Lyapunov exponents that

would imply convergence in one time step.
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Remark. Computing the top δ-moment Lyapunov exponents for
δ ∈ R+ can be undertaken by using the notion of generalized
spectral radius studied in a general setting by Ogura and Martin
(2013). For the more common case of mean-square stability, it is
easy to verify the following relationship:

g(2) = log[ρ(E(H(σ ) ⊗ H(σ )))] = log

⎡⎣ρ

⎛⎝ N∑
j=1

pjH(j) ⊗ H(j)

⎞⎠⎤⎦ ,

(6)

where ρ(·) is the spectral radius of a matrix and⊗ is the Kronecker
product.5

Remark. Evaluating the top sample-path Lyapunov exponent is
a much more challenging task (Tsitsiklis & Blondel, 1997). If a
closed-form result is available for g(δ) and all the state matrices
are invertible, then one may consider applying Proposition 2.3
from Fang and Loparo (2002), which posits that λ = g ′(0+),
corresponding to the derivative of g(δ) from above. Alternatively,
one may utilize the law of large numbers to compute

λ = lim
k→∞

1
k
E log ∥H(σk−1) · · ·H(σ0)∥, (7)

almost surely, from Lemma 4.5 in Fang et al. (1995).

Very few closed-form results on sample-path Lyapunov expo-
nents are presently available, typically restricted to scalar systems
or commuting state matrices. The seminal paper by Pincus (1985)
and later refinements by Lima and Rahibe (1994) have put forward
analytical results for the case of binary switching between two
2 × 2 matrices with one of them being singular. More recently,
tight bounds for binary switching between 2 × 2 shear hyperbolic
matrices have been presented by Sturman and Thiffeault (2017),
who also offer a meticulous overview of the state-of-the-art in
the computation of Lyapunov exponents associated with random
matrix products.

3. Windows of opportunity

Rather than switching between state matrices at every time
step as in (1), we consider the more general case where the same
statematrix is retained form consecutive time steps. By scaling the
time variable, our problem becomes

xk+1 = H(σk) · · ·H(σk)  
m

xk = Hm(σk)xk, (8)

where we take the mth power of each individual state matrix in
one ‘‘scaled’’ time step.

Definition 3. Given the jump linear system in (1), we say that
W ⊂ Z+ is a window of opportunity for almost sure (δ-moment)
stability if (8) is almost sure (δ-moment) asymptotically stable for
anym ∈ W .

The main objective of the rest of this paper is to determine the
existence, extent, and topology of windows of opportunity as a
function of the state matrices H(1), . . . ,H(N) and their probability
to occur p1, . . . , pN . We begin with the study of scalar systems,
for which we can precisely determine windows of opportunity
in an almost sure (Was) and δ-moment sense (Wδ−m). Then, we
turn to higher dimensional problems. First, we examine in de-
tail the archetypical problem of switching between two general-
ized shear matrices in two dimensions, which offers surprising

5 Eq. (6) can be found by writing the Lyapunov equation for the second moment
matrix E

[
xkxTk

]
where T indicates matrix transposition, see, for example, Abaid &

Porfiri (2011).

and counterintuitive evidence with respect to the claims made
for scalar systems. Second, we establish conservative bounds for
general higher-dimensional systems, which we illustrate on our
archetypical problem.

4. Scalar systems

For a scalar system (n = 1), we can compute closed-form ex-
pressions for the almost sure and δ-moment Lyapunov exponents
in (5a) and (5b), respectively, from which we can gather insight
into the asymptotic stability of (8).

Proposition 2. Consider the jump linear system in (1) for n = 1.

1. If
∑N

j=1pj log|H(j)| < 0, thenWas = Z+, such that (8) is almost
sure asymptotically stable for any choice of the switching period
m.

2. If
∑N

j=1pj log|H(j)| > 0, then Was = ∅, such that it is
not possible to find a value of m for which (8) is almost sure
asymptotically stable.

Proof. By adapting (7) to (8) and recalling that n = 1, we compute

λ(m) = m
N∑
j=1

pj log|H(j)|, (9)

wherewe explicitly indicate the dependence onm. This expression
proves that almost sure asymptotic stability of (8) is independent
of m, such that the system is either asymptotically stable for any
choice of m (case 1) or it is unfeasible to determine a value of m
that guarantees asymptotic stability (case 2). □

Remark. We note that
∑N

j=1pj log|H(j)| < 0 if all the individual
realizations H(1), . . . ,H(N) are Schur-stable, but also if there are
some which are not Schur-stable, provided that their probability
to occur is sufficiently small.

For δ-moment stability, we uncover a surprisingly different
behavior through the following claim.

Proposition 3. Consider the jump linear system in (1) for n = 1.

1. If all the individual realizations H(1), . . . ,H(N) are Schur-
stable, then Wδ−m = Z+, such that (8) is δ-moment asymp-
totically stable for any choice of the switching period m.6

2. If some of the individual realizations H(1), . . . ,H(N) are not
Schur-stable, then there exists a single (potentially empty) win-
dow of opportunity Wδ−m = {1, . . . , ⌊µ⌋}, with µ being the
nonzero solution of γ (µ, δ) = 0 given by

γ (µ, δ) = log

⎡⎣ N∑
j=1

pj|H(j)|δµ

⎤⎦ . (10)

Proof. By adapting (5b) to (8) and recalling that n = 1, we
can compute the δ-moment Lyapunov exponent, g(m, δ), which is
equal to γ (m, δ) in (10), where, again, we explicitly identify the
dependence on m. Building on the arguments by Golovneva et al.
(2017), we take the exponential of both sides of (10) and define
q(µ) =

[∑N
j=1pj|H(j)|δm

]
. In case 1, q(µ) < 1 for any µ > 0, such

that (8) is δ-moment asymptotically stable for anym ∈ Z+. In case
2, it is easy to verify that q(µ) is a concave function (q′′(µ) ≥ 0
for any µ > 0, where prime indicates derivative with respect to
the argument) which takes values below 1 in the neighborhood of

6 This claim is true even if some of the realizations have unitary magnitude,
provided there is at least one which is Schur-stable.
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the origin (q(0) = 1 and q′(0) =
∑N

j=1pj log|H(j)| < 0), although
limµ→∞q(µ) = ∞. Thus, (8) is δ-moment asymptotically stable for
m ranging from 1 tom = ⌊µ⌋, such that q(µ) = 1 with µ > 0. This
set might be empty ifm is zero or one. □

Example. Consider the two-state process (N = 2) with H(1) =
5
8

and H(2) =
9
8 of equal probability p1 = p2 =

1
2 . The sample-

path Lyapunov exponent in (9) is λ(m) ≃ −0.176m, such that
the system is almost sure asymptotically stable for any switching
period, that is, Was = Z+. The δ-moment Lyapunov exponent in
(10) is γ (m, δ) = log

(
2−3δm−15δm

+ 2−3δm−19δm
)
, which becomes

positive for sufficiently large values of m. For instance, the system
is mean-square asymptotically stable only in the narrow window
W2−m = {1, 2}.

Remark. Based on prior literature on the fast-switching stability
of continuous systems (Belykh, Belykh, & Hasler, 2004; Porfiri,
Stilwell, & Bollt, 2008; Stilwell, Bollt, & Roberson, 2006), one may
be tempted to infer the stability of the jump linear system for
small values of m (in particular m = 1) from the averaged sys-
tem, whose state-matrix is E[H(σk)]. However, this is incorrect for
discrete-time systems, as pointed out by Golovneva et al. (2017)
in the context of mean-square stability of scalar maps. Below, we
expand on those arguments in the context of both almost sure and
δ-moment stability, focusing onm = 1.

First, stability of the averaged system does not imply stability of
the jump linear system, as shown through the following example.

Example. Consider the two-state process with H(1) = 2 and
H(2) = −2 of equal probability p1 = p2 =

1
2 . The averaged system

reaches the origin in a single time step, while the sample-path
Lyapunov exponent in (9) with m = 1 is log 2, such that the jump
system is not almost sure (or δ-moment) asymptotically stable.

Second, the lack of stability of the averaged systemdoes not pre-
vent the jump system from being stable, as demonstrated through
the following example.

Example. Consider the two-state process with H(1) =
15
8 and

H(2) =
3
8 of equal probability p1 = p2 =

1
2 . The averaged system is

unstable with Lyapunov exponent of log 9
8 . On the other hand, the

jump systemwithm = 1 is almost sure asymptotically stable – the
sample-path Lyapunov exponent in (9) is equal to 1

2 log 45
64 – and

δ-moment asymptotically stable for δ < 0.562 – the δ-moment
Lyapunov exponent, from (10), is equal to log

[
1
2

( 15
8

)δ
+

1
2

( 3
8

)δ
]
.

5. Higher-dimensional systems

For n larger than one and state matrices that do not commute,
we cannot expect an equivalent case to the scalar system analyzed
above. More specifically, the notions that almost sure asymptotic
stability is independent of m and that δ-moment stability is re-
stricted to a single window in m that must start from m = 1 are
both invalid.

5.1. The archetypical example of two generalized shear matrices in
two dimensions

We illustrate the highly nontrivial nature of the problem
through the analysis of a two-dimensional (n = 2) example.
Specifically, we consider a two-state process

H(1) =

[
a 1
0 a

]
, H(2) =

[
a 0

−1 a

]
, (11)

Fig. 1. Phase portraits for state matrices in (11) with a =
7
10 : (a) H(1) and (b)

H(2). Temporally-adjacent states are connected for ease of illustration. Trajectories
converge to the stable fixed point at the origin along the eigenvector (black line in
each panel) in the direction of the black arrows.

where 0 < a < 1 and p1 = p2 =
1
2 . In this case, each of the

realization is Schur-stable as the spectral radius of each matrix is
a < 1, but the coupled stochastic dynamics will reveal a complex
dependence onm.

Fig. 1 illustrates the evolution associatedwith each statematrix
for a =

7
10 . The system switches between two stable degenerate

nodes with a repeated eigenvalue a and one linearly indepen-
dent eigenvector. As a result, the trajectories of either system
are tangent to the eigenvector and curve around to the opposite
direction. Therefore, each trajectory can increase its relative dis-
tance from the origin before reaching the turning point where it
starts approaching the stable fixed point. This property suggests a
mechanism for the trajectory of the switching system to escape to
infinity, for some value of the switching period.

We start by determining windows of opportunity in a mean-
square sense through the following proposition.

Proposition 4. Consider the two-dimensional jump linear system (1)
with state matrices (11), 0 < a < 1, and p1 = p2 =

1
2 .

1. For a > 1
√
2
, there is a single window of opportunity for mean-

square stability W2−m = {⌈µ⌉ ⌈µ⌉ + 1, . . .}, with µ being the
nonzero solution of γ (µ, 2) = 0 given by

γ (µ, 2) = log
[
a2µ

(
1 +

1
2

µ2

a2

)]
. (12)

2. For a < 0.6434, W2−m = Z+.
3. For 0.6435 < a < 0.6704, W2−m = Z+

\ {2}.
4. For 0.6705 < a ≤ 0.7001, W2−m = Z+

\ {2, 3}.
5. For 0.7002 < a < 1

√
2
, W2−m = Z+

\ {2, 3, 4}.

Proof. Our argument is based on the direct evaluation of the top
second-moment Lyapunov exponent in (6), which is equivalent
to the computation of the spectral radius of the following 4 × 4
matrix:
1
2
(Hm(1) ⊗ Hm(1) + Hm(2) ⊗ Hm(2)) =

a2m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
m
a

1
2
m
a

1
2
m2

a2

−
1
2
m
a

1 0
1
2
m
a

−
1
2
m
a

0 1
1
2
m
a

1
2
m2

a2
−

1
2
m
a

−
1
2
m
a

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)
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Table 1
Analysis of the problem in (11) with p1 = p2 =

1
2 , a =

7
10 . Each column shows results for a different value of the switching period m and each row depicts predictions of

the top mean-square and sample path Lyapunov exponents, along with the claims about stability from the proposed sufficient conditions. The computation of sample path
Lyapunov exponents is performed by drawing

⌊ 5000
m

⌋
realizations of the state matrix, taking their product, and evaluating the Lyapunov exponent through (5a) using the

Euclidean norm. We average the last 10% of the samples to mitigate the effect of the initial transient. ‘‘N/A’’ indicates that the sufficient condition is not applicable, while
‘‘Yes’’ means that asymptotic stability can be inferred from the sufficient condition.

m 1 2 3 4 5 6 7 8 9 10

g(m, 2) −0.010 0.199 0.181 −0.001 −0.289 −0.649 −1.062 −1.512 −1.993 −2.498
Proposition 5 - 1 norm N/A N/A N/A N/A N/A N/A N/A Yes Yes Yes
Proposition 5 - 2 norm N/A N/A N/A N/A N/A N/A N/A Yes Yes Yes
Proposition 5 - ∞ norm N/A N/A N/A N/A N/A N/A N/A Yes Yes Yes
λ(m) −0.111 0.036 −0.080 −0.332 −0.529 −0.789 −1.049 −1.420 −1.702 −1.947
Proposition 6 - 1 norm N/A N/A N/A N/A N/A N/A Yes Yes Yes Yes
Proposition 6 - 2 norm N/A N/A N/A N/A N/A N/A Yes Yes Yes Yes
Proposition 6 - ∞ norm N/A N/A N/A N/A N/A N/A Yes Yes Yes Yes

Fig. 2. Analysis of the problem in (11) with p1 = p1 =
1
2 . Probability that the top

sample-path Lyapunov exponent, λ(m), is negative as a function of the parameter
a and switching period m. Probability is based on 1000 trials of 500 time steps,
with light yellow indicating asymptotic stability (negative Lyapunov exponent)
with probability 1 and pink indicating probability 0. The dashed black curve gives
the boundary for which the Lyapunov exponent for mean-square stability changes
sign; below the boundary, the system is mean-square asymptotically stable and it
is unstable above it.

Through simple algebra, we can calculate the four eigenvalues of
this matrix and determine a general form for the spectral radius,
such that the top mean-square Lyapunov exponent of (8), g(m, 2),
is equal to γ (m, 2) in (12). From the analysis of the function γ (m, 2)
we derive all the salient cases listed above. □

Remark. For a =
7
10 , we compare the claims on mean-square

stability in Proposition 4 with almost sure stability results. This
requires a computational approach, which yields the top sample
path Lyapunov exponent. As shown in Table 1, we find that the
system is almost sure asymptotically stable for every value of m,
except form = 2 when it loses stability, such thatWas = Z+

\ {2}.
For completeness, in Table 1, we also report the numerical values
of the top mean-square Lyapunov exponent, for which we have a
window of opportunity equal to W2−m = Z+

\ {2, 3}.

To shed more light on the effect of a on the stability of the
system, in Fig. 2 we display results from a parametric analysis in
which we systematically vary a from 0 to 1 and m from 1 to 20.
Numerical results in Fig. 2 indicate that for small values of a, the
system is almost sure asymptotically stable for any selection of m,
while for values of a approaching 1, the system is unstable for any
value of m up to 20. For values of a in the neighborhood of 0.8,
we find the existence of two windows of opportunity, describing
fast and slow-switching, and in the neighborhood of 0.9 stability is

attained only through slow-switching. For completeness, we also
present the stability bound associated with mean-square stability,
derived by using Proposition 4. In agreement with Proposition 1,
for all the values of a and m that guarantee mean-square stability,
we determine that the system is stable for each of the trials.

Remark. By comparing (11) with a scalar problem, we evidence a
dramatically different behavior.With respect to almost sure stabil-
ity, in two dimensions, we demonstrate the existence of nontrivial
windows of opportunity, in contrast to the scalar case where m
plays no role. With respect to moment stability, we illustrate the
possibility of disjoint windows of opportunities, as well as the
possibility of windows of opportunity that do not include m = 1,
in contrast with the scalar case where none of these scenarios is
feasible. The latter opens the door to the possibility of controlling
the stability of a jump linear system, by regulating its time spent
in each of its possible states, see Table 1.

5.2. General claims

In general, it is difficult to provide necessary and sufficient
conditions for stochastic stability of higher-dimensional systems
due to the complexity of evaluating the spectrum of a large matrix
associatedwithmean-square stability or the application of the law
of large numbers for almost sure stability.

A trivial result is obtained if all the individual state matrices
are Schur-stable. In this case, for sufficiently large values of m,
each of the summands in (6) will asymptotically approach zero
and the spectral radius of the matrix will tend to zero accordingly.
As a consequence, the system will be mean-square stable for large
switching periods.

However, stability may also be possible for unstable state ma-
trices and a number of sufficient conditions might be established
from the application of classical spectral bounding techniques, by
extending the line of argument from Fang et al. (1994) to m ̸= 1.
For example, a sufficient condition formean square stability can be
derived by bounding the spectral radius of the matrix in (6) using
classical norm bounds, as shown in what follows.

Proposition 5. The jump linear system in (8) is mean-square asymp-
totically stable if for some p-norm, the following inequality holds

N∑
j=1

pj∥Hm(j)∥2 < 1. (14)

Proof. For a p-norm, we have that ρ(A) ≤ ∥A∥ for any matrix
A ∈ Rn×n. By applying the triangle inequality and recalling that
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the norm of the Kronecker product of two matrices is equal to the
product of the norms, we prove our claim. □

Remark. Note that for m = 1 and the Euclidean norm, this is
equivalent to the second statement in Theorem 2.5 from Fang et
al. (1994). Also, the power m could be brought out of the norm
leading to a more conservative bound, which is, however, simpler
to implement.

For almost sure asymptotic stability, we can directly apply
Theorem 2.2 from Fang et al. (1994), which for the case at hand
will read as follows.

Proposition 6. The jump linear system in (8) is almost sure asymptot-
ically stable if for some matrix norm, satisfying the submultiplicative
property, the following inequality holds
N∏
j=1

∥Hm(j)∥pj < 1. (15)

Proof. The Proposition is a direct application of Young’s inequality
to the right hand side of (5a). □

Table 1 illustrates the application of these conservative bounds
for our exemplary problem, for which all of these bounds take a
compact form that is easy to check for different values ofm. In this
example, varying the norm does not influence the tightness of the
lower bound,whereby for the three considered norms,we find that
mean-square asymptotic stability is attained for m larger than 7,
while almost sure asymptotic stability is reached form larger than
6. While these predictions are on the same order of magnitude of
exact computations, they do not assist in identifying the instability
region for lower values ofm, thereby challenging the identification
of disjoint windows of opportunity.

6. Conclusions

In this note, we have studied the stochastic stability of a class
of jump linear system, where the state matrix retains the same
value form consecutive time steps, before switching according to a
finite-state i.i.d. process. Through a detailed analytical treatment,
we have demonstrated a complex dependence of stochastic sta-
bility on the switching period m. Changing the dimensions of the
system and the lens through which stability is examined has a re-
markable effect on the existence, extent, and topology of windows
of opportunity for the stability of the system.

For scalar systems, windows of opportunity in an almost sure
sense are trivial, such that asymptotic stability is independent of
the switching period: either a system is asymptotically stable for
any value of m or it is always unstable. With respect to moment
stability, finite windows of opportunity might appear if one of
the realizations of the state matrices are Schur-stable, although
these windows are constrained to have the form {1, . . . ,m}. For
higher dimensional systems, a completely different scenario that
challenges our intuition emerges. Nontrivial windows of oppor-
tunity become feasible also for almost sure stability and their
extent and topology radically change, encompassing infinite sets
and disconnected regions.

Particularly surprising is the effect of the switching period on
almost sure asymptotic stability. Our intuition suggests that in-
creasing the switching periodwould automatically enhance almost
sure stability, by reducing the range of matrix products on which
we should enforce the top Lyapunov exponent to be negative. In
other words, one may expect that if the system is almost sure

asymptotically stable for a given m, then it should remain almost
sure asymptotically stable for any larger, multiple, value of m.
However, this is not the case of higher-dimensional systems,where
we have shown that a system may be asymptotically stable for
m = 1 but not for m = 2 and again be asymptotically stable
for any larger switching period. It is tenable that for m larger
than 2, the repetitive occurrence of multiple product of the same
state matrices will cause a stabilizing counter-effect, against the
destabilizing effect elicited by the second order powers of the state
matrices.

Beyond the need for further research to illuminate the causes
of windows of opportunity, especially in an almost sure sense,
future work should seek to expand on the theoretical framework
for the analysis and design of switched systems. For example, it is
viable to incorporatememory effects through aMarkovian switch-
ing process, contemplate the possibility of time-varying dynam-
ics and switching periods, and include stochastic perturbations.
With respect to design, future work should attempt at formulating
mathematically-tractable criteria for the selection of switching
periods to attain Lyapunov exponents within chosen performance
bounds.
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