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Memory Matters in Synchronization of Stochastically Coupled Maps∗
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Abstract. Synchronization of stochastically coupled chaotic oscillators is a topic of intensive research for its
ubiquitous application across natural and technological systems. Several breakthroughs have been
made over the last decade in understanding the underpinnings of stochastic synchronization. Yet,
most of the literature has focused on memoryless switching, where the coupling between the oscilla-
tors intermittently changes independently of the switching history. Here, we analytically investigate
the synchronization of two one-dimensional coupled nonlinear maps under Markovian switching. We
linearize the system in the vicinity of the synchronous solution and examine the mean square asymp-
totic stability of the error dynamics. By leveraging state-of-the-art techniques in jump linear systems,
fundamentals of ergodic theory, and perturbation analysis, we elucidate the potential of Markovian
switching in manipulating the stability of synchronization. We focus on chaotic tent maps, for
which we compute exact, closed-form expressions to measure the error dynamics. The hypothesis of
memoryless switching has often been challenged in practical applications; this study makes a first,
necessary step toward unraveling the role of switching memory in stochastic synchronization.
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1. Introduction. Examples of coupled dynamical systems include Internet routers, power
grids, genetic networks, ecological networks, neuronal circuits, and communication/social net-
works [4, 49, 68]. A great deal of attention has been devoted to examining the relationship
between the emergent behavior of the network and its intrinsic dynamical and topological
features. Specifically, researchers have extensively studied the interplay between network
topology and individual dynamics in the context of network synchronization; see, for exam-
ple, [7, 11, 14, 15, 25, 50, 51]. Most studies have focused on networks whose connections
are static, and only in the last decade have researchers considered networks with a topology
that evolves in time based on a deterministic [5, 19, 23, 24, 27, 28, 30, 36, 39, 40, 41, 65, 66]
or stochastic rule [6, 38, 42]. These networks belong to a wide class of evolving dynamical
networks whose nonlinear dynamics and control are a hot research topic due to their potential
application in a variety of key domains across science and engineering; see, for example, the
recent reviews in [9, 25] and references therein.
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MEMORY MATTERS IN SYNCHRONIZATION 1373

In many realistic networks, the dynamical systems only interact sporadically via on-off
connections. Examples include stochastically switching engineering networks and circuits,
such as power converters [70], and packet switched networks, such as the Internet [44]. Blinking
networks were introduced in [10, 31, 45, 61, 62, 64, 67] to model this form of intermittent
interactions, whose evolution could be tailored to support synchronization even though the
network may be disconnected at any instant in time. These networks are generally composed
of connections that switch on and off stochastically, at a frequency which is much larger
than the characteristic frequency of the individual oscillators. In this “fast switching limit,”
it has been proved that synchronization in the blinking network emerges almost surely if
synchronization in a static network, obtained by replacing the random variables by their
mean, becomes stable [10, 31, 45, 61, 62, 63, 67].

Since their inception, we have examined several aspects of synchronization in fast switch-
ing blinking networks in both continuous- and discrete-time settings. Experiments on analog
circuits to demonstrate the possibility of fast switching synchronization for periodically cou-
pled units were presented in [57, 59], building on the theoretical insight in [60] on almost sure
stability of synchronization and in [58] on the control of synchronization. In the discrete-time
setting, our work has contributed to an improved understanding of mean square stability of
consensus [1, 2, 46, 55] and synchronization of nonlinear maps [53, 54], and it has put forward
criteria for the control of synchronization [3, 47, 48]. We have also investigated the effect
of inherent noise in the maps, which could destroy synchronization [1] and potentially lead
to a phase transition [56]. Beyond synchronization, a rigorous theory for the behavior of
stochastically switching networks was developed in [32, 33]. In particular, this theory allows
for deriving explicit bounds that relate the probability of converging toward an attractor of a
multistable blinking network, the switching frequency, and the chosen initial conditions [8]. In
a recent paper [29], we have made progress toward understanding synchronization in stochas-
tically switching networks beyond the fast switching limit. We have demonstrated the central
role of nonfast switching, which may provide opportunity for stochastic synchronization in
a range of switching periods where fast switching fails to synchronize the maps, confirming
previous numerical evidence in a continuous-time setting [37].

A common feature of all these efforts is that the blinking networks are a sequence of inde-
pendent identically distributed (i.i.d.) random variables, without memory of prior switching
history. From a practical point of view, switching memory may be critical to model collective
dynamics in which the underlying network reflects the geographic arrangement of the coupled
units. For example, in models of animal grouping, decision making is often based on local
interactions among neighbors that change in time depending on their motion [72]. Similarly,
epidemic spreading is determined by the physical contact between individuals, which is mod-
ulated by their health status and travel [71]. In the literature on time-continuous blinking
models, the possibility of memory effects was explored in [63, 64], but ultimately these results
are limited to the analysis of a fast switching limit. In this limit, the time scale of the units’
motion is so fast that synchronization will be determined by an average network, computed
as the long-run expectation of the dynamic network. Similar findings have been gathered
through numerical simulations in [28]. Presently, a theory for synchronization in blinking net-
works where the units are coupled through a general Markovian process beyond fast switching
is lacking.D
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1374 MAURIZIO PORFIRI AND IGOR BELYKH

Consensus problems in networks of linear time-invariant systems with Markovian switch-
ing have been recently studied in the technical literature, deriving necessary and sufficient
conditions for stochastic convergence to a common state [43, 69, 73, 74]. In these problems,
the maps are typically taken as the identity in one dimension and the switching network results
in a nonexpansive process, in which the error dynamics is bound to never increase. The latter
condition is related to the stochasticity of the state matrix, whose components are nonneg-
ative and whose rows sum to one [61]. Here, we consider synchronization of nonlinear maps
with arbitrary coupling gains, leading to nontrivial error dynamics, which, in principle, may
increase in time or exhibit nonmonotonous decay. We focus on a pair of one-dimensional cou-
pled maps, to gather analytical insight into the fundamental processes that shape stochastic
synchronization under Markovian switching.

By linearizing the error dynamics in the vicinity of the synchronous solution, we derive a
time-varying jump linear system whose stability controls the local synchronization of the cou-
pled maps. Building on state-of-the-art techniques in jump linear systems [22], we formulate
an ancillary deterministic problem for the mean square error dynamics, in the form of a linear
N -dimensional time-varying system, with N being the number of states in the chain. The
analysis of this deterministic system allows for examining the mean square stability of the
error dynamics, without the need for intensive Monte Carlo simulations that would hamper
the accurate evaluation of the stability of synchronization. Specializing the transition matrix
of the Markov chain to i.i.d. switching sequences affords the recovery of classical results in the
technical literature on static synchronization and stochastic synchronization [29]. Similarly,
specializing the problem to synchronization about a fixed point reduces to the eigenvalue
analysis underlying mean square stability of time-invariant jump linear systems, which is
extensively studied in the control literature [22].

In the context of general Markov chains and time-varying dynamics, we establish an ar-
ray of mathematical techniques to elucidate the stability of synchronization and pinpoint the
added value of switching memory on synchronization. First, we establish upper and lower
bounds for the Lyapunov exponent of the error dynamics, which translate into easy-to-apply
conditions on the coupling gains and probability transition matrix to ensure or exclude syn-
chronization. Next, we present a perturbative analysis, which enables the computation of the
Lyapunov exponent for a Markovian switching proximal to an i.i.d. sequence. At the leading
order, the Lyapunov exponent for Markovian switching is written as a linear combination of
the Lyapunov exponent for the i.i.d. sequence and a perturbation, which depends on the mem-
ory of the chain. For chaotic systems, we demonstrate the application of Birkhoff’s ergodic
theorem [18] to compute all the bounds and the perturbative solution in terms of the invariant
density of the synchronous solution. For chaotic tent maps, we establish closed-form results,
affording critical insight into the physics of synchronization. We focus on a two-state Markov
chain to ease the illustration of our analytical results; the generalization of our results to a
multistate Markov chain is straightforward.

From the analysis of the upper and lower bounds for the Lyapunov exponent, we illustrate
the existence of coupling gain values that always lead to synchronization and others that
instead hinder synchronization for any selection of the probability transition matrix. We also
offer evidence for the feasibility of manipulating synchronization through memory effects, by
comparing the bounds for Markovian and i.i.d. switching. From the detailed analysis of i.i.d.D
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MEMORY MATTERS IN SYNCHRONIZATION 1375

switching as a function of the switching probability and the coupling gains, we demonstrate
a number of counterintuitive results. For example, we show the existence of values of the
coupling gains that individually afford synchronization in the case of static coupling but could
lead to unstable error dynamics for i.i.d. switching. Some of these surprising instances are
resolved through Markovian switching, whereby we successfully demonstrate the possibility
of changing the sign of the Lyapunov exponent of the error dynamics by varying the memory
of the chain without changing the long-run average coupling.

The rest of paper is organized as follows. In section 2, we introduce the synchroniza-
tion problem and present our theoretical framework. In section 3, we apply our findings to
coupled chaotic maps, and in section 4, we summarize our main results and outline possible
research directions. The appendix contains a comparison between Monte Carlo simulations
and theoretical predictions on the mean square error dynamics.

2. Linear stability of synchronization under Markovian switching.

2.1. Problem statement. We investigate the stochastic synchronization of two one-
dimensional maps with state variables xi ∈ R, i ∈ {1, 2}. We assume that the individual
dynamics of each map evolves according to xi(k + 1) = F (xi(k)), where k ∈ Z+ is the dis-
crete time variable and F : R → R is a nonlinear scalar function that is differentiable almost
everywhere [52].

The maps are linearly coupled such that

[
x1(k + 1)
x2(k + 1)

]
=

[
F (x1(k)) + ε1θ(k)(x2(k)− x1(k))

F (x2(k)) + ε2θ(k)(x1(k)− x2(k))

]
(1)

with initial conditions x01 and x02, respectively. Here, θ : Z+ → {1, . . . , N} is a finite-state
homogeneous Markov chain over a set of cardinality N with probability transition matrix
P ∈ RN×N , and ε1 : {1, . . . , N} → R and ε2 : {1, . . . , N} → R are two coupling gains, which
as time progresses take values in {ε11, . . . , ε1N} and {ε21, . . . , ε2N}, respectively. The initial
condition for the Markov chain is θ0, drawn from the initial probability distribution p0 ∈ RN .

The maps synchronize at time-step k if their states are identical, that is, x1(k) = x2(k).
From (1), one may note that once the maps synchronize at a given time-step, they will stay
synchronized. The common synchronous solution s(k) is a solution of the individual dynamics,
whereby s(k + 1) = F (s(k)). The linear stability of synchronization can be investigated by
linearizing (1) in the neighborhood of the synchronous solution, resulting in the following
variational equation:

ξ(k + 1) =
[
F ′(s(k))− dθ(k)

]
ξ(k).(2)

Here, prime indicates differentiation; ξ(k) = x1(k) − x2(k) is the synchronization error at
time-step k; and dθ(k) = ε1θ(k) + ε2θ(k) is the net coupling, which takes values in {d1, . . . , dN}.
Equation (2) describes the linear transverse dynamics of the coupled maps, measured with re-
spect to the difference between their states ξ(k). This quantity is zero when the two oscillators
are synchronized.D
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1376 MAURIZIO PORFIRI AND IGOR BELYKH

2.2. Mean square stochastic stability. Our treatment of (2) follows the general line of
argument proposed in [20] and summarized in [22] for a finite-dimensional jump linear system,
although the approach presented therein is made explicit only to time-invariant systems, for
which the synchronous solution corresponds to a fixed point. We say that (2) is mean square
asymptotically stable if for any initial condition ξ0 6= 0 and any probability distribution p0

(3) lim
k→∞

E[ξ2(k)] = 0,

where the expectation E[·] is computed with respect to the probability space induced by the
Markov chain.

In contrast to the special case of i.i.d. stochastic switching considered in [29], assessing
the mean square stability of (2) involves the detailed treatment of the initial probability
distribution. In other words, expectations shall be computed by accounting for both the
stochastic nature of the switching and its initial distribution. To this end, it is convenient to
introduce the indicator function 1{θ=i} for the ith state of the Markov chain, which is equal
to 1 when θ = i and is zero otherwise. By using indicator functions, the second moment of
ξ(k) can be written as

(4) E[ξ2(k)] =
N∑
i=1

qi(k),

where

(5) qi(k) = E[ξ2(k)1{θ(k)=i}], i = 1, . . . , N.

The deterministic quantity (5) corresponds to the expectation of ξ2(k) conditional to
the state of the Markov chain being equal to i at time k. By using (2), we establish a
recursive relation to express qi(k) as a linear combination of q1(k), . . . , qN (k). Specifically, by
substituting (2) into (5) at time (k + 1), we obtain

(6) qi(k + 1) = E
[
rθ(k)(k)ξ2(k)1{θ(k+1)=i}

]
,

where, for brevity, we have introduced the time-varying function r : {1, . . . , N} × Z+ → R
that at the generic time-step k takes values in {r1(k), . . . , rN (k)} defined by

(7) ri(k) =
[
F ′(s(k))− di

]2
, i = 1, . . . , N.

Similar to (4), the expectation on the right-hand side of (6) can be written as

(8) E[rθ(k)(k)ξ2(k)1{θ(k+1)=i}] =
N∑
j=1

E
[
rθ(k)(k)ξ2(k)1{θ(k)=j}1{θ(k+1)=i}

]
.

By recalling that the ijth entry of the transition matrix Pij is the probability that θ(k+1) = j
given that θ(k) = i, we finally obtain

(9) qi(k + 1) =
N∑
j=1

rj(k)Pjiqj(k).
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An equivalent result was derived in Proposition 3 of [20] for higher-order time-invariant
systems.

We define the N -dimensional vector q(k) = [q1(k) · · · qN (k)]T for all times, where T indi-
cates transposition. By using q(k), the iteration in (9) can be compactly rewritten as

(10) q(k + 1) = L(k)q(k).

Here, we have introduced

(11) L(k) = PTR(k)

and the diagonal matrix R(k) = diag[r(k)], with r(k) being the N -dimensional vector whose
components are given by (7). By construction, L(k) is a nonnegative matrix, but it is in
general not stochastic, due to the presence of R(k). By iterating (10) from the initial time to
time k, we ultimately find

(12) q(k) = ξ20

[
k−1∏
t=0

L(t)

]
p0.

The second moment of ξ(k) is simply obtained from (12) by left multiplying by the
N -dimensional vector of all ones 1N such that

(13)
E[ξ2(k)]

ξ20
= 1TN

[
k−1∏
t=0

L(t)

]
p0.

The exponential growth rate of the mean square dynamics for the initial distribution p0 can
be quantified through the Lyapunov exponent. If it exists, the following limit measures the
Lyapunov exponent for the mean square error dynamics:

(14) λ(p0) = lim
k→∞

1

k
ln

[
E[ξ2(k)]

ξ20

]
= lim

k→∞

1

k
ln

[
1TN

[
k−1∏
t=0

L(t)

]
p0

]
.

The analysis of this Lyapunov exponent is one of the main objectives of this study.
Under the premise of the existence of the limit in (14), the Lyapunov exponent can be used

to ascertain the mean square asymptotic stability of the original system in (2). Specifically,
negative values of the Lyapunov exponent for any selection of p0 identify the region where the
system is mean square asymptotically stable, while positive values are indicative of instability.
In general, the limit in (14) may not exist and one should resort to the study of the upper and
lower Lyapunov exponents computed as the supremum and infimum for the exponential rates
of functions bounding the mean square dynamics from above and below; see, for example, [35].
In what follows, we hypothesize regularity conditions that enable the exact computation of
the Lyapunov exponent through the limit, for every choice of p0. Further, we exclude the
possibility of singular dynamics (for which the error would go to zero in a single step), such
that the computation of the Lyapunov exponent is independent of the selection of the initial
time, taken as zero in our case.D
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2.3. Special cases. For time-invariant dynamics associated with synchronization about
a fixed point, L(k) is constant. In this case, mean square asymptotic stability reduces to
enforcing the Schur stability of L, that is, ensuring that the spectral radius is less than 1. The
equivalence between mean square asymptotic stability of the system and Schur stability of L
is studied in detail in [21, 26] for finite-dimensional jump linear systems. While the sufficiency
of Schur stability for mean square stability is trivial from (10) as originally posited in [26],
its necessity requires some more thought. The proof relies on the arbitrariness of p0 and the
nonnegativeness of both p0 and L as shown in [21]. By referring to the Euclidean norm, these
facts imply 1TNL

kp0 ≥‖ Lkp0 ‖2, such that limk→∞ ‖ Lkp0 ‖2= 0. Using Proposition 1 in [20],
the necessity of Schur stability follows; the proposition relies on the decomposition of square
matrices into positive-semidefinite matrices, which here simply entails writing a generic vector
as the difference between two vectors with nonnegative entries.

Beyond time-invariant dynamics, in the special case of i.i.d. stochastic switching, we have
that P = 1Np

T, where p is the N -dimensional vector whose ith component pi is equal to the
probability that θ(k) = i. Equation (14) takes the form

(15) λi.i.d.(p0) = lim
k→∞

1

k
ln

[
1TN

[
k−1∏
t=0

p r(t)T

]
p0

]
,

where we have used (7) and (11). By expanding the product in (15), we find

(16) λi.i.d.(p0) = lim
k→∞

1

k
ln

[
1TNp

[
k−1∏
t=1

r(t)Tp

]
r(0)Tp0

]
,

which simplifies to

(17) λi.i.d. = lim
k→∞

1

k

k−1∑
t=0

ln
[
r(t)Tp

]
,

where we have made it explicit that the Lyapunov exponent is independent of p0; note that
the summation above may start from 0 or 1 (or any finite value) without changing the com-
putation. This expression is equivalent to equation (6) in [29] when the switching period is
one, such that the coupling gain changes at every time-step.

If p is such that all its entries are zero except the ith, which is equal to one, then (17)
further reduces to the deterministic Lyapunov exponent of the map for θ(k) = i. Specifically,

(18) λsti = lim
k→∞

1

k

k−1∑
t=0

ln [ri(t)] ,

where we have used the subscript “st” to make clear that it refers to the static case, in which
switching is prevented.

For a chaotic system, one may apply Birkhoff’s ergodic theorem [18] to replace the sum-
mation in either (17) or (18) with integration based on the knowledge of the invariant density
of the map F , defined on a set B. The application of Birkhoff’s theorem to evaluate staticD
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Lyapunov exponents associated with the stability of synchronization was first proposed in [34],
while the application to the study of i.i.d. switching was proposed in [29]. Once the invariant
density ρ : B → R+ is found analytically or numerically [13, 16], we may compute λsti and
λi.i.d. as follows:

λsti =

∫
B

ln [yi(z)] ρ(z)dz,(19a)

λi.i.d. =

∫
B

ln
[
pTy(z)

]
ρ(z)dz,(19b)

where

(20) yi(x) = (F ′(x)− di)2, i = 1, . . . , N,

and y(x) = [y1(x) · · · yN (x)]T.

2.4. Conservative bounds. First, we establish upper and lower bounds, independent of
the transition matrix of the Markov chain, to offer insight into the role of the individual
dynamics on the stochastic stability of the synchronous solution. To this end, we define

r(k) = min
i=1,...N

ri(k),(21)

r(k) = max
i=1,...N

ri(k).(22)

Using these quantities, the generic ijth entry of the matrix L(t) in (10), Lij(t) = Pjirj(t), can
be bounded as follows:

(23) r(t)Pji ≤ Lij(t) ≤ r(t)Pji.

We can then bound the ijth entry of the product of the L(t)’s in (14) to obtain

(24) P kji

k−1∏
t=0

r(t) ≤

[
k−1∏
t=0

L(t)

]
ij

≤ P kji
k−1∏
t=0

r(t).

By using these bounds, the argument of the logarithm in (14) satisfies

(25)
k−1∏
t=0

r(t) ≤
∑

i,j=1,...N

[
k−1∏
t=0

L(t)

]
ij

p0j ≤
k−1∏
t=0

r(t),

where we have used the fact that the power of stochastic matrices is also a stochastic matrix.
Hence, the Lyapunov exponent can be uniformly bounded in p0 as follows:

(26) λ ≤ λ(p0) ≤ λ

with

λ = lim
k→∞

1

k

k−1∑
t=0

ln r(t),(27)

λ = lim
k→∞

1

k

k−1∑
t=0

ln r(t).(28)
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In general, these quantities are not the deterministic Lyapunov exponents of the map. For
chaotic systems, Birkhoff’s ergodic theorem may be applied once again to evaluate these
conservative bounds in terms of the invariant density ρ(t), following the line of argument
underlying (19). Specifically, we find

λ =

∫
B

ln
[
y(z)

]
ρ(z)dz,(29)

λ =

∫
B

ln [y(z)] ρ(z)dz,(30)

where

y(x) = min
i=1,...N

yi(x),(31)

y(x) = max
i=1,...N

yi(x).(32)

In order to account for the specific features of the transition matrix, an additional up-
per bound for the Lyapunov exponent is established based on the use of submultiplicative
properties of induced matrix norms [12]. With respect to the ∞-norm, from (14) we obtain

(33) 1TN

[
k−1∏
t=0

L(t)

]
p0 ≤‖ 1TN ‖∞

[
k−1∏
t=0

‖ L(t) ‖∞

]
‖ p0 ‖∞≤‖ 1TN ‖∞

[
k−1∏
t=0

r?(t)

]
‖ p0 ‖∞,

where

(34) r?(k) = max
i=1,...,N

N∑
j=1

Pjirj(k).

Thus, we can ultimately bound the Lyapunov exponent uniformly in p0 through

(35) λ(p0) ≤ λ? = lim
k→∞

1

k

k−1∑
t=0

ln r?(t).

For chaotic systems, Birkhoff’s theorem may be leveraged once again to evaluate λ?, such that

(36) λ? =

∫
B

ln y?(z)ρ(z)dz,

where

(37) y?(x) = max
i=1,...,N

N∑
j=1

Pjiyj(x).
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2.5. Perturbation estimates. An alternative approach to estimate the Lyapunov expo-
nents entails the use of perturbation methods to simplify the matrix product. First, we
hypothesize that the Markov chain is close to an i.i.d. process, whereby we assume

(38) P = 1Np
T + P̃ ,

where ‖P̃‖ = O(ε), for some norm, with ε being a small positive number and O(·) being the
Landau symbol. By replacing (38) in the outermost right-hand side of (14) and discarding
terms of order higher than ε, we obtain

λ(p0) ' lim
k→∞

ln

k−1∏
t=1

r(t)Tpr(0)Tp0 +

k−1∑
q=1

(
r(q)TP̃TR(q − 1)p

) k−1∏
t=1,t6=q,q−1

r(t)Tpr(0)Tp0

 .
(39)

Next, we expand the logarithm as a MacLaurin series with respect to ε, leading to the following
compact expression:

(40) λε = λi.i.d. + ∆λ,

where

(41) ∆λ = lim
k→∞

1

k

k−1∑
q=1

r(q)TP̃TR(q − 1)p

r(q)Tpr(q − 1)Tp

is the perturbation on the Lyapunov exponent associated with P̃ . The approach could be
potentially extended to higher-order perturbations, by including terms of higher order in ε.
We comment that in the linearized expression, the dependence on p0 is lost.

For a chaotic map, the application of Birkhoff’s ergodic theorem leads to an elegant
representation of ∆λ, that is,

(42) ∆λ =

∫
B

ŷ(t)TP̃TY (t)p

ŷ(t)Tpy(t)Tp
ρ(t)dt,

where Y (t) = diag[y(t)] and ŷ(t) = [ŷ1(t) · · · ŷN (t)]T with

(43) ŷi(t) = (F ′(F (t))− di)2, i = 1, . . . , N.

Equation (43) mirrors the one-time-step lag in (41), such that the dynamics at time q − 1
interacts with the dynamics at time q to modulate the linear stability of synchronization.
Increasing the order of the perturbation analysis will lead to the presence of a higher-order
interaction in the perturbation on the Lyapunov exponent, which should manifest in composite
functions of order larger than one in (42).

For a given Markov chain, one may find the i.i.d. process about which to perform the
expansion by solving a simple optimization problem. Specifically, given P , the correspond-
ing rank one matrix 1Np

T about which to perform the expansion may be determined asD
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arg minp ‖P − 1Np
T‖ for a given norm and p varying such that its entries are all nonzero and

have unit sum.
Alternatively, the i.i.d. process may be determined from the stationary limit of the Markov

chain, if it exists, to establish a direct connection between the long-run behavior of the switch-
ing process and the stability of synchronization. The idea of linking synchronization of switch-
ing systems to the long-run behavior of the coupling dates back a decade. This approach was
originally proposed in [63] to study synchronization of continuous-time chaotic oscillators cou-
pled through Markovian discrete-time switching networks. Therein, it was shown that under
fast switching conditions, the synchronization of the stochastically coupled maps could be
inferred by studying synchronization over a static network, corresponding to the long-run
average network.

3. Application to chaotic tent maps. We demonstrate our analytical framework to study
stochastic synchronization of two coupled chaotic tent maps, with parameter equal to 2, such
that F (x) = 2x for x ∈ [0, 1/2] and F (x) = −2x + 1 for x ∈ (1/2, 1]. In this case, the
invariant density is simply ρ(x) = 1 in B = [0, 1] (see, for example, [16]), thereby simplifying
the application of Birkhoff’s theorem and ultimately leading to closed-form results.

We focus on a two-state Markov chain, N = 2, such that

(44) P =

[
u 1− u
v 1− v

]
with u, v ∈ (0, 1). Here, 1 − u is the probability of switching from state 1 to 2 and v is the
probability of switching from 2 to 1. The stationary distribution of this ergodic Markov chain
is π = [ v

1−u+v , 1−
v

1−u+v ]T, such that PTπ = π. This distribution measures the average time
spent in a given state, defined as the expected time the chain will take to return to that
state; see, for example, [17]. Specifically, we have E [inf{k ∈ Z+ : θ(k) = i}|θ0 = i] = 1

πi
with

πi being the ith component of π. The probability distribution from which the Markov chain
is initiated is the uniform distribution, such that p0 = [1/2, 1/2]T. Numerical computations
were performed in Mathematica.

3.1. Understanding what Markovian switching may afford: The application of conser-
vative bounds. Paralleling the reasoning in [29], we consider three general cases as a function
of the values of the coupling gains d1 and d2: Case I, Case II, and Case III. These cases are
informed by the synchronization of statically coupled tent maps, which is controlled by the
Lyapunov exponent in (19a). By replacing the equation of the tent map and its invariant
density, we obtain

(45) λst(dst) = ln |2− dst|+ ln |2 + dst|

as a function of the static coupling gain dst. This expression was first computed in [34]. For
statically coupled tent maps, synchronization is attained in the following set composed of two
disjoint intervals for the coupling gain dst: Ist = (−

√
5,−
√

3) ∪ (
√

3,
√

5). When dst = ±2,
synchronization is attained in a single time-step, whereby the Lyapunov exponent goes to −∞.

For Case I, neither of the two coupling gains supports synchronization of the statically
coupled maps, that is, d1 and d2 do not belong to Ist. For Case II, one of the coupling gainsD
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supports synchronization and the other does not, that is, either d1 or d2 belongs to Ist, while
the other is in R/Ist. Finally, for Case III, both the coupling gains support synchronization,
that is, both d1 and d2 are in Ist.

The conservative bounds could be used to identify values of the coupling gains for which
Markovian switching could be pursued to manipulate the stability of synchronization of the
coupled maps. By applying once more Birkhoff’s theorem in (29), we establish the following
closed-form expression for the lower and upper bounds of the Lyapunov exponent:

λ =
1

2
ln[min{(2− d1)2, (2− d2)2}] +

1

2
ln[min{(2 + d1)

2, (2 + d2)
2}],(46)

λ =
1

2
ln[max{(2− d1)2, (2− d2)2}] +

1

2
ln[max{(2 + d1)

2, (2 + d2)
2}].(47)

When λ ≥ 0, no Markovian switching could be designed to achieve synchronization, and,
on the other hand, when λ ≤ 0, synchronization is possible for any selection of the switching
signal. From Figure 1(a), we evince that there is a wide region of the d1d2 space in which
synchronization is not possible. By construction, this region is a subset of Case III described
earlier, in which none of the two coupling gains would support synchronization for statically
coupled maps. On the other hand, Figure 1(b) demonstrates that synchronization is feasible
for any switching signal in two small portions, which nearly cover [

√
3,
√

5] × [
√

3,
√

5] and
[−
√

5,−
√

3] × [−
√

5,−
√

3] pertaining to Case III. For completeness, we report a zoomed-in
view of one of these portions in Figure 1(d), along with a zoomed-in view of Figure 1(a) in
the same region as Figure 1(c).

By applying Birkhoff’s theorem again, we derive a closed-form result for the other conser-
vative upper bound in (36),

λ? =
1

2
ln[max{u(2− d1)2 + v(2− d2)2, (1− u)(2− d1)2 + (1− v)(2− d2)2}](48)

+
1

2
ln[max{u(2 + d1)

2 + v(2 + d2)
2, (1− u)(2 + d1)

2 + (1− v)(2 + d2)
2}].

Figure 2 shows a zoomed-in view of the d1d2 space for two selected values of u and v. By com-
paring Figure 2 with Figure 1(d), we confirm the possibility of leveraging Markovian switching
to synchronize coupled maps in Cases II and III. Specifically, by changing the transition prob-
ability matrix, we may enlarge the synchronization region within Case III as compared to
Figure 1(d), and we may further extend beyond this region to Case II, where one of the
couplings does not support synchronization. In Figure 2(a), we show i.i.d. switching with
p1 = u = v = 0.2 and Markovian switching with u = 0.6 and v = 0.1 as an illustration; both
instances have the same stationary distribution with π1 = 0.2.

3.2. What i.i.d. switching can and cannot do. By applying Birkhoff’s theorem in (19b),
we evaluate the Lyapunov exponent for two coupled maps with i.i.d. switching between two
coupling gains d1 and d2 with probability p1 and 1− p1:

λi.i.d.(d1, d2, p1) =
1

2
ln[p21(4− d21)2 + (1− p1)2(4− d22)2 + p1(1− p1)((2− d1)2(2 + d2)

2(49)

+ (2− d2)2(2 + d1)
2)].
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(a) (b)

(c) (d)

Figure 1. Predictions of the conservative bounds on the synchronization of coupled chaotic tent maps with
Markovian switching. With respect to the bounds in (46), red identifies a positive value of λ, green a negative
value of λ, and gray zero values of either of them. The white regions correspond to negative values of λ and
positive values of λ, for which no inference can be made on the synchronization of the stochastically coupled
maps. The dashed lines at ±

√
3 and ±

√
5 correspond to the critical values of d1 and d2 for the synchronization

of statically coupled maps. (a)–(b) λ and λ in a broad range of variation of d1 and d2. (c)–(d) Zoomed-in
views.

Although this expression can be recovered from (26) in [29], a detailed analysis of stochastic
synchronization for i.i.d. switching is currently lacking. In what follows, we seek to address
this gap to offer a basis on which to elucidate the role of Markovian switching.D
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(a) (b)

Figure 2. Predictions of the conservative upper bound based on the ∞-norm bound on the synchronization
of coupled chaotic tent maps with Markovian switching. With respect to the bound in (48), green corresponds
to a negative value of λ? and gray to zero. The white regions indicate positive values, for which no inference
can be made on the synchronization of the stochastically coupled maps. The dashed lines at ±

√
3 and ±

√
5

correspond to the critical values of d1 and d2 for the synchronization of statically coupled maps. (a) Zoomed-in
view for u = 0.2 and v = 0.2, and (b) Zoomed-in view for u = 0.6 and v = 0.1.

If neither of the two coupling gains supports synchronization of the statically coupled
maps (Case I), then stochastic synchronization is not feasible for any choice of p1. This claim
is verified by evaluating (49) for every pair of coupling gains and confirming that there is
not a value of p1 for which λi.i.d.(d1, d2, p1) is negative. This step is specifically addressed
by checking that the region in which the curvature of the argument of the logarithm in (49)
is positive (existence of a local minimum) does not intersect with the region in which the
extremum of the argument of the logarithm in (49) is between 0 and 1.

If instead one of the coupling gains supports synchronization (Case II), then stochastic
synchronization is possible for some values of p1. Assuming that d2 ∈ Ist, without lack of
generality, for p1 = 0 the maps do not synchronize and as p1 increases, there is a critical value
above which synchronization is always attained. The critical value of the probability is simply
computed by solving the second-order equation λi.i.d.(d1, d2, p1) = 1 for p1.

If both of the coupling gains support synchronization (Case III), we may always find values
for p1 which leads to synchronization similar to Case II. Surprisingly, even if individually d1
and d2 may lead to the stability of the synchronous solution, one may find values of p1 such
that switching between them will cause a highly unstable error dynamics. If d1 and d2 have
opposite signs, the maps synchronize only in the vicinity of p1 = 0 and p1 = 1, whereby a
maximum for the Lyapunov exponent always exists between 0 and 1. This scenario is also
found for d1 and d2 with the same sign, but close to the stability limits, that is, in the
vicinity of the following points in the d1d2 space: ±(

√
3,
√

5) and ±(
√

5,
√

3). This behaviorD
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(a) (b)

(c) (d)

Figure 3. Synchronization of coupled chaotic tent maps with i.i.d. switching. With respect to the Lyapunov
exponent in (49), red identifies a positive value, green a negative value, and gray zero. The dashed lines at
±
√

3 and ±
√

5 correspond to the critical values of d1 and d2 for the synchronization of statically coupled maps.
(a) p1 = 0.0025, (b) p1 = 0.025, (c) p1 = 0.25, and (d) p1 = 0.25 (zoomed-in view).

is compatible with the prediction from the upper bound in Figure 1, which fails to predict
synchronization of stochastically coupled maps in these regions.

Figure 3 shows λi.i.d.(d1, d2, p1) for three values of p1 as functions of d1 and d2, in the same
parameter space explored in Figure 1. As p1 increases, we observe that the oblate regions,
where synchronization is attained, shrink toward the two squares (

√
3,
√

5) × (
√

3,
√

5) andD
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(−
√

5,−
√

3) × (−
√

5,−
√

3) constituting part of Case III. The rest of Case III comprises
the two squares (

√
3,
√

5) × (−
√

5,−
√

3) and (−
√

5,−
√

3) × (
√

3,
√

5), which could support
synchronization only for p1 less than approximately 0.0451. Although Figures 3(a), (b), and
(c) may suggest that synchronization is always attained within (

√
3,
√

5) × (
√

3,
√

5) and
(−
√

5,−
√

3)× (−
√

5,−
√

3), a closer view in Figure 3(d) justifies our previous claim that that
synchronization is lost for d1 and d2 close to some stability boundaries.

Case II synchronization is instead always visible, with the oblate regions consistently
extending beyond [

√
3,
√

5]× [
√

3,
√

5] and [−
√

5,−
√

3]× [−
√

5,
√

3]. In fact, as p1 decreases
the probability that the net coupling is equal to d1 decreases and synchronization is dominated
by d2. As d1 plays a secondary role in synchronization, we confirm the possibility of Case
II synchronization. In the limit of p1 → 0, the oblate regions will become horizontal bands.
If p1 is increased above 0.5, the same behavior is observed, with the oblate regions turning
vertical.

To offer more context into the complexity induced by switching, even in the simple i.i.d.
case, we compare (49) with the Lyapunov exponent obtained by evaluating (45) in correspon-
dence to the expected coupling E[d] = p1d1 + (1−p1)d2. Figure 4 illustrates the prediction on
synchronization which would be garnered by looking at the Lyapunov exponent of the average
switching for p1 = 0.25. By comparing Figure 4 with Figures 3(c) and (d), we evince that
(i) synchronization of the average system does not imply synchronization of the stochastically
coupled maps (see the extent of the green bands in Figure 4, which is far beyond the oblate
regions in Figure 3) and (ii) lack of synchronization of the average system does not imply lack
of synchronization of the stochastically coupled maps (note that the transition in Figure 3(d)
is abolished in Figure 4, where a zoomed-in view would just be a green box).

Figure 4. Synchronization of statically coupled chaotic tent maps with a net coupling E[d] = p1d1+(1−p1)d2
and p1 = 0.25. With respect to the Lyapunov exponent in (45) evaluated in correspondence to the expected
coupling, red identifies a positive value, green a negative value, and gray zero. The dashed lines at ±

√
3 and

±
√

5 correspond to the critical values of d1 and d2 for the synchronization of statically coupled maps.
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3.3. How Markovian switching may help. Using the stationary distribution, we can write
the transition matrix as

(50) P =

[
π1 1− π1
π1 1− π1

]
+ δ

[
−1 + π1 1− π1
π1 −π1

]
,

where we introduced δ = v − u. A positive value of δ implies that it is more likely to switch
coupling gain than to retain it, while a negative value indicates that it is more likely to keep
the same coupling gain than to switch. By construction, irrespective of the value of δ, the
long-run average of the coupling is π1d1 + (1 − π1)d2, which only depends on the stationary
distribution.

By specializing (42) to the tent map with a uniform invariant density, we determine the
following expression for the perturbation of the Lyapunov exponent:

∆λ

(51)

= − δ
(1−π1)π1

(
4d21−16d1d2+12d22 + d21d

2
2 − d42 + (d1 − d2)2(d1 + d2 − 4)(d1 + d2 + 4)π1

)2
(4 + (d2 − 4)d2(1− π1)+(d1 − 4)d1π1)2(4 + d2(4 + d2)(1− π1) + d1(4 + d1)π1)2

.

To evaluate the integral in (42), we have considered four different intervals (0, 1/4), (1/4, 1/2),
(1/2, 3/4), and (3/4, 1) corresponding to the four possible combinations of F ′(x) and F ′(F (x)).

The perturbation on the Lyapunov exponent is linear in δ by construction, such that
the Lyapunov exponent would reduce to the prediction of i.i.d. switching for u = v. The
perturbation may have a dominant role on the Lyapunov exponent, potentially altering the
synchronization of the coupled maps. In principle, changing the value of δ could be used to
lower the Lyapunov exponent of maps that would not synchronize under i.i.d. switching to
attain synchronization for the same expected coupling gain. Similarly, changing δ could in-
crease the Lyapunov exponent of maps that are synchronized under i.i.d. coupling, potentially
destroying synchronization.

Figure 5 displays the Lyapunov exponent for Markovian switching computed using the
complete expression in (14), against the results from perturbation analysis in (41) and appli-
cation of Birkhoff’s theorem in (51), corresponding to Case II (d1 = −1.6 and d2 = 1.9). The
numerical computation underlying (14) and (41) is based on a time series of 10000 time-steps
for s(k), initialized at 0.1. The parameter of the tent map is set to 2 − 10−10 to avoid the
generation of periodic orbits from rational initial conditions, and the initial probability distri-
bution is artificially magnified to maintain the error dynamics above the minimum machine
precision. The Lyapunov exponent is then evaluated by averaging the last 100 samples of the
long time series. When plotting the Lyapunov exponent from both perturbation analysis in
(41) and the application of Birkhoff’s theorem in (51), we use λi.i.d. from (49).

We show two different values of π1, for which i.i.d. switching supports (π1 = 0.0035) or
does not support (π1 = 0.005) synchronization in Figures 5(a) and (b), respectively. Several
comments should be drawn from the analysis. First, we confirm that changing δ allows us
to manipulate the stability of synchronization, without changing the long-run average of the
coupling gain. Specifically, in Figure 5(a), increasing δ above approximately 0.002 will causeD
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(a) (b)

Figure 5. Synchronization of coupled chaotic tent maps under Markovian switching for d1 = −1.6 and
d2 = 1.9. Black dots are predictions from (14), open red squares results from perturbation analysis in (41),
and green diamonds exact findings from the application of Birkhoff’s theorem in (51). (a) π1 = 0.005 and (b)
π1 = 0.0035.

the chaotic maps to synchronize, while in Figure 5(b), decreasing δ below approximately
−0.0021 will destroy synchronization. Second, the application of Birkhoffs theorem yields
excellent agreement with respect to the numerical computation in (41), confirming the validity
of using the uniform invariant density as a proxy for the stochastically coupled maps. Third,
the linear perturbation analysis is in very good agreement with (14), for a broad range of
variation of δ, with noticeable differences only for δ close to π1. As δ approaches π1, u tends
to π21 ≈ 0 and v to π1 + π21 ≈ π1, making the Markov chain significantly different from an
i.i.d. process. As δ approaches −π1, u tends to 2π1 − π21 ≈ 2π1 and v to π1 − π21 ≈ π1, and
the agreement is in fact better.

An alternative illustration of the findings in Figure 5 could be garnered by examining
synchronization of coupled chaotic maps as a function of both u and v, through (40) with
the i.i.d. Lyapunov exponent and the linear perturbation given by the closed-form expressions
in (49) and (51). In Figure 6(a), we present the sign of the Lyapunov exponent of the
coupled maps for the same instance of coupling gains considered in Figure 5, by systematically
varying u and v. Each white curve represents a value of the stationary distribution π1,
giving evidence that synchronization could be promoted or hampered without changing the
stationary distribution. In Figure 6(b), we present a similar diagram for d1 = −1.9 and
d2 = 1.9, corresponding to Case III. We again confirm the possibility of changing the stability
of synchronization, without the need of varying the long-run average the coupling gain.

Figure 6(c) also refers to a Case I selection of the coupling gains (d1 = 1.731 and d2 =
2.235), for which i.i.d. switching was not successful in achieving synchronization for p1 = 0.25,
as shown in Figure 3(d). Surprisingly, the stability boundary seems to coincide with a level line
for π1, such that synchronization cannot be obtained without changing the long-run average
of the coupling gain from the value at π1 = 0.25. An equivalent behavior was retrieved in
every attempt to elicit synchronization in Case I, where none of the coupling gains would
individually lead to synchronization, similar to [29], where increasing the switching period for
i.i.d. switching was also found to not influence synchronization in Case I.D

ow
nl

oa
de

d 
08

/0
4/

17
 to

 1
31

.9
6.

25
3.

48
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1390 MAURIZIO PORFIRI AND IGOR BELYKH

(a) (b)

(c)

Figure 6. Synchronization of coupled chaotic tent maps with Markovian switching. With respect to the
Lyapunov exponent obtained by summing (49) and (51), red identifies a positive value, green a negative value,
and gray zero. The dashed line corresponds to the bisectrix, pertaining to i.i.d. switching. The dot refers to
the value of u = v needed for synchronization under i.i.d. switching, obtained by setting (49) to zero. The
white lines are level lines for π1, identifying pairs of u and v leading to the same value of the long-run expected
coupling. (a) d1 = −1.6 and d2 = 1.9; (b) d1 = −1.9 and d2 = 1.9; and (c) d1 = 1.731 and d2 = 2.235.

4. Conclusions. The hypothesis of i.i.d. switching has often been questioned in the liter-
ature on stochastic synchronization, whereby collective dynamics of many realistic networks
seem to be influenced by some memory of the network evolution. For example, infectious
contacts supporting the spread of epidemics may take place only when individuals are in
close physical proximity: these contacts should not be adequately described through an i.i.d.D
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sequence. People who are in physical proximity at a given time are likely to contact again in
the near future, suggesting that a more general Markovian process should be preferred to i.i.d.
switching. Similarly, information sharing between animals is unlikely to be well approximated
by an i.i.d. sequence, whereby individuals will tend to consistently interact with others in their
vicinity, rather than with randomly chosen group members as an i.i.d. process would dictate.
This paper makes a first, necessary step toward unveiling the effect of switching memory on
synchronization.

To disentangle the role of the network topology, we have focused on a simple dyadic
interaction between two nonlinear maps in a discrete-time setting. The maps are coupled
through a Markovian switching process, which relates the coupling at the present time to the
coupling at the previous time-step. By leveraging state-of-the-art tools in jump linear systems
[22], we have transformed the analysis of the one-dimensional stochastic error dynamics into
a higher-order deterministic system which is amenable to analytical treatment. We have
established an equation for the Lyapunov exponent of the mean square error dynamics, in
terms of the transition probability matrix, the evolution of the synchronous solution, and
values of the coupling gains. This approach is not prone to the numerical confounds associated
with the generation of a large statistical population, which may hinder the accurate evaluation
of the Lyapunov exponent through Monte Carlo simulations—often the only available tool to
investigate stochastic stability.

We have presented an in-depth, rigorous analysis of the Lyapunov exponent by exploring a
number of relevant aspects. First, we have demonstrated the possibility of recovering classical
results for i.i.d. switching and static coupling by simply specializing the transition probability
matrix and the synchronous solution [21, 26, 29]. For the general case of Markovian switching
and time-varying synchronous solutions, we have derived upper and lower bounds for the
Lyapunov exponent, which have helped clarifying the potential of Markovian switching to
influence the stability of synchronization. Through perturbation theory, we have established
a first-order approximation of the Lyapunov exponent with respect to synchronization under
an associated i.i.d. switching process. For chaotic maps, the application of Birkhoff’s ergodic
theorem [18] allows for the evaluation of all the bounds and the perturbative solution from
the invariant density of the synchronous solution.

To demonstrate our approach, we have focused on two chaotic tent maps coupled by a
two-state Markov chain, for which we have presented closed-form expressions for all of the
bounds and the perturbative solution. Through the application of the conservative bounds,
we have shown that (i) there are pairs of coupling gains which support synchronization for
any choice of the transition probability matrix and pairs for which synchronization is always
unstable, and (ii) introducing memory through the Markov process could change the stability
of the synchronous solution with respect to i.i.d. switching. To further delve into the latter
claim, we have systematically contrasted the stability of synchronization for Markovian to
i.i.d. switching. From the analysis of i.i.d. switching, we have unveiled surprising results that
challenge the use of averaged network models in the study of stochastic synchronization in a
discrete-time setting. For example, we have demonstrated the possibility of unstable synchro-
nization for coupling gains that would individually support synchronization and, at the same
time, would lead to an average coupling that also supports synchronization. In discrete-time,
the switching frequency is bounded from above, whereby a single time-step could produce aD
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large variation in the state of the system. This in contrast with continuous-time synchroniza-
tion for which the switching frequency could be made arbitrarily large, thereby causing the
average system to closely describe the stochastic dynamics [10, 31, 45, 61, 62, 63, 67].

Our results on coupled chaotic tent maps demonstrate that memory has a direct impact
on the stability of synchronization. Specifically, we have analytically shown that the sign
of the Lyapunov exponent of the mean square error dynamics may be changed by varying
the memory of the Markov chain without altering the long-run average coupling. The extent
of memory effects may shape the stability of synchronization, without changing the times
that the switching process yields one coupling gain rather than the other one. For example,
we have demonstrated the existence of coupling gains that do not support synchronization
under i.i.d. switching for a given switching probability but yield stable synchronization for
sufficiently strong memory. This is also in contrast with the continuous-time literature [63, 64],
which has suggested that the ergodic limit of the Markovian switching network could be used
to infer stochastic synchronization under fast switching. In this paper, we have focused on
stochastic switching governed by a first-order Markov chain where the probability of a state
depends only on the probability of the previous state. An extension of our results to higher-
order Markov chains which take into account multistep memory of the switching sequence
will require the use of higher-order matrices. Likely, such an extension is amenable to an
equivalent mathematical treatment; however, this study is beyond the scope of this paper and
will be reported elsewhere.

We expect that the study of nonfast switching of coupled maps in [29] to be integrated with
Markovian switching considered in this paper to investigate the interplay between memory
and switching frequency. Such an interplay is likely to modulate the occurrence and shape
of “windows of opportunities,” defined in [29, 37] as nonfast ranges of switching frequencies
where synchronization is stable. The extension of the proposed analytical approach to larger
networks is the subject of ongoing research, which seeks to combine the eigenvalue analysis
on ancillary higher-order algebraic problems put forward in [1, 2, 46, 53, 54, 55] with the
current approach to tackle Markovian switching. The proposed framework also promises
to allow analytical treatment of the stochastic convergence to nonsynchronous attractors for
multistable networks of nonlinear maps, which we have addressed in a continuous-time setting
for i.i.d. switching in [8, 32, 33].

Appendix. Verification of analytical findings through Monte Carlo simulations. To
demonstrate the validity of our approach and illustrate its computational power, we compare
analytical findings on the second moment of the error dynamics with Monte Carlo simulations.
First, we run the individual tent map to generate a baseline synchronous solution with initial
condition equal to 0.1 over 20 time-steps.

We select the following numerical values for the system parameters: d1 = −1.4, d2 = 1.8,
u = 0.8, and v = 0.4. For the Monte Carlo analysis, we run the error dynamics (2) for 1000000
realizations of the Markov chain using a unitary initial condition, and at each time-step we
average the square of the error of all the realizations to estimate E[ξ2(k)] for k = 1, . . . , 20.
Within our theoretical approach, we simply evaluate (13) once for all.

Figure 7(a) displays five realizations of (2), while Figure 7(b) demonstrates the accuracy
of our analytical predictions from (13) with respect to Monte Carlo simulations. Even if theD
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(a) (b)

Figure 7. Error dynamics for coupled chaotic tent maps with d1 = −1.4, d2 = 1.8, u = 0.8, and v = 0.4.
(a) Five realizations from Monte Carlo simulations and (b) comparison of Monte Carlo simulations (MC) for
1000000 realizations and analytical predictions (An).

simulations are run for only 20 time-steps, 1000000 realizations seem to be barely sufficient
to mitigate the variability of the error dynamics toward an accurate statical evaluation of the
expectation of the square of the error. Some of the realizations show a moderate growth within
a factor of 10, while others display a violent change of five orders of magnitude. Increasing the
numbers of time-steps would hamper the accurate evaluation of the mean square dynamics
from Monte Carlo simulations, thereby prohibiting the evaluation of the Lyapunov exponent
from Monte Carlo simulations. An equivalent scenario will appear when considering stable
error dynamics, for which the error may reach below small values below numerical precision
in a few steps, thereby hindering the evaluation of the Lyapunov exponent from the mean
square dynamics.

Our theoretical approach simply entails the evaluation of a sequence of matrix products in
(13), which can be easily performed over long time series to accurately evaluate the Lyapunov
exponent of the mean square dynamics. The use of perturbation analysis and the application
of Birkhoff’s theorem further simplify the analysis, leading to closed-form expressions.
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