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a b s t r a c t

Several complex systems across science and engineering display on–off intermittent coupling among
their units. Most of the current understanding of synchronization in switching networks relies on the fast
switching hypothesis,where the network dynamics evolves at amuch faster time scale than the individual
units. Recent numerical evidence has demonstrated the existence of windows of opportunity, where
synchronization may be induced through non-fast switching. Here, we study synchronization of coupled
maps whose coupling gains stochastically switch with an arbitrary switching period. We determine the
role of the switching period on synchronization through a detailed analytical treatment of the Lyapunov
exponent of the stochastic dynamics. Through closed-form expressions and numerical findings, we
demonstrate the emergence of windows of opportunity and elucidate their nontrivial relationship with
the stability of synchronization under static coupling. Our results are expected to provide a rigorous basis
for understanding the dynamic mechanisms underlying the emergence of windows of opportunity and
leverage non-fast switching in the design of evolving networks.
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1. Introduction

Dynamical systems with a network structure arise naturally as
models inmany fields, including physics, biology, engineering, and
social sciences [1–5]. Significant attention has been devoted to un-
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derstand the role of and interplay betweennode dynamics and net-
work structure, specifically in regard to network synchronization,
see, for example, [6–13].

While most of the literature has focused on static networks,
many examples of technological and natural networks are more
accurately described through dynamic networks, where individ-
ual nodes interact through time-varying coupling [10,14–32]. Of
particular interest are ‘‘blinking’’ networks [33–37], in which con-
nections switch on and off randomly, modulating the collective
dynamics of the interacting nodes. Examples of stochastically
switching networks include packet-switched networks (the Inter-
net) [38], switching power converters [39], ecological networks
with sporadic dispersal [40], epidemiological networks [41], and
animal grouping [42].

For example, synchronization of computer clocks over the
Internet is achieved via sporadic on–off signals whose switching
frequency is governed by a trade-off between the precision of
synchronization and the traffic load on the network [38]. Stochastic
switching in power converters helps distribute the power of
the parasitic frequency components over a wider frequency
range [39]. In many ecological networks, the coupling among
the patches is sporadic/stochastic, due to rare and short-term
meteorological conditions. However, spatial synchrony, increasing
the danger of extinction, can robustly appear, even though the
patches are disconnected most of the time [40]. The structure
of epidemiological networks of moving individuals is essentially
time-varying and stochastic, and the propagation of a disease
depends on proximity among infected and susceptible moving
agents [41]. In animal grouping, schools of fish are a representative
example of a stochastic time-varying network, where each fish
has access only to its neighbors which randomly change in time
during schooling [42]. All of these networks belong to a wide class
of evolving dynamical networkswhose study and control have yet to
be fully elucidated, see the recent review paper [7] and references
therein.

‘‘Blinking’’ networks were originally introduced for continuous-
time oscillators in the context of network synchronization
in [33]. Over the years, we have investigated various aspects of
synchronization in blinking networks of continuous-time [33,34,
36,37,43–47] and discrete-time [48–57] oscillators. In particular, it
was rigorously proven in both continuous and discrete-time cases
that if the switching frequency is sufficiently high, with respect to
the characteristic time of the individual oscillators (‘‘fast switching
limit’’), the stochastically blinking network can synchronize even
if the network is disconnected at every instant of time.

Beyond synchronization, a rigorous theory for the behavior
of stochastic switching networks of continuous-time oscillators
in the fast switching limit was developed in [58–60]. These
studies have helped in clarifying a number of counterintuitive
findings on the relationship between the stochastic network
and its time-averaged counterpart, where the dynamical law is
given by the expectation of the stochastic variables. While our
intuition suggests that the switching network should follow the
averaged system in the fast switching limit, this is not always
the case, especially when the averaged system is multistable
and its attractors are not invariant under the switching system.
These attractors act as ghost attractors for the switching system,
whereby the trajectory of the switching system can only reach
a neighborhood of the ghost attractor, and remains close most
of the time with high probability when switching is fast. In a
multistable system, the trajectory may escape to another ghost
attractor with low probability [58]. This theory uses the Lyapunov
function method along with large deviation bounds to derive
explicit conditions that connect the probability of converging
toward an attractor of a multistable blinking network, the fast
switching frequency, and the initial conditions [58]. As the
switching frequency decreases, it was shown that there is a range
of ‘‘resonant’’ frequencies where the trajectory of a multistable
switching oscillator receives enough kicks in the wrong direction
to escape from the ghost attractor against all odds [58].

In the context of continuous-time blinking networks, simi-
lar unexpected windows of non-fast switching frequencies were
found in Rössler and Duffing oscillators [61] and tritrophic Rosen-
zweig–MacArthur food-chain models [40]. These regions, called
‘‘windows of opportunity’’ [40,61], correspond to the emergence
of stable synchronization in the switching network over bounded
intervals of the switching frequency, which may not include the
fast switching limit. As a result, networks that do not synchronize
in the fast switching limit may synchronize for non-fast switch-
ing, and then lose synchronization as the frequency is further re-
duced. Observed numerically, this phenomenon calls for a more
rigorous study to isolate the principal mechanisms underpinning
unexpected synchronization from non-fast switching. This paper
aims at establishing such an analytical insight.

We focus on a discrete-time setting,where the coupling between
the maps is held fixed for a finite number of time steps (switching
period) and then it stochastically switches, independent of the time
history. In this case, non-fast switching can be tackled by re-scaling
the time variable and consequently modifying the individual
dynamics of the coupled maps. This enables the formulation of a
rigorousmathematical framework for the analysis of the stochastic
stability of synchronization as a function of the switching period.
We restrict our analysis to two one-dimensional (1D) coupled
maps with the two-fold aim of: (i) providing a clear demonstration
for the origin of this phenomenon, which may be hidden by
topological factors in large networks, and (ii) establishing a
toolbox of closed-form results for the emergence of windows of
opportunity.

We study the stability of synchronization by analyzing the
linear stability of an augmented system, associated with the linear
mean square transverse dynamics. We perform a detailed analysis
of the Lyapunov exponent of the transverse dynamics, based on the
knowledge of the probability density function for the synchronized
trajectory. We establish a necessary condition for stochastic
synchronization in terms of the synchronizability of the coupled
mapswith a static coupling. The necessary condition can be used to
demonstrate that switching between configurations which do not
individually support synchronization will not stabilize stochastic
synchronization for any switching frequencies. This is in contrast
with networks of continuous-time oscillators where windows of
opportunity for stable synchronization may appear as a result of
switching between unstable states [40,61,62].

To illustrate our approach, we use the paradigm of two linearly
coupled ‘‘sigmoid’’ maps, which encompasses the traditional
logistic and tent maps. Statically coupled tent maps are known to
have two symmetric ranges of positive and negative coupling for
which synchronization is locally stable [63], and a similar behavior
is observed for their smooth versions in the form of sigmoid maps.
In our setting, we let the coupling stochastically switch between
values within and outside these stability regions to explore the
emergence ofwindows of opportunity.We demonstrate thatwhile
fast switching, occurring at each time step, may not synchronize
the maps, there can be a range of lower frequencies that yields
stable synchronization. We argue that this is possible for coupled
maps where the probability of switching between stable and
unstable configurations is uneven, inducing a non-trivial balance
between the dynamics of the coupled maps and the switching
periods.

The layout of this paper is as follows. First, in Section 2, we
present the stochastic model of coupled maps and introduce the
mean square stability of the transverse dynamics. In Section 3,
we establish a mathematically-tractable form for the Lyapunov
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exponent of the stochastic dynamics,which unveils its relationship
with the stability of synchronization when the maps are statically
coupled. We discuss the case when the individual map has a fixed
point and then turn to periodic and chaotic dynamics. We derive
a necessary condition for stochastic synchronization, implicitly
involving the switching period required for stable synchronization.
In Section 4, we study in detail the case of coupled sigmoid
maps through both analysis and numerics. In Section 5, a brief
discussion of the obtained results is given. Appendix A contains
the description of the sigmoid map along with its probability
density function. Finally, Appendix B presents the derivation of the
closed-form expression of the Lyapunov exponent of stochastically
coupled tent maps used to reveal windows of opportunity.

2. Linear stability of synchronization under stochastic switch-
ing

2.1. Problem statement

We study the stochastic synchronization of two 1D maps
characterized by the state variables xi ∈ R, i ∈ {1, 2}. We assume
that the individual dynamics of each node evolves according to
xi(k + 1) = F(xi(k)), where k ∈ Z+ is the time step and F : R →

R is a smooth nonlinear scalar function. The maps are linearly
coupled through the stochastic gains ε1(k), ε2(k) ∈ R, such that
x1(k + 1)
x2(k + 1)


=


F(x1(k)) + ε1(k)(x2(k) − x1(k))
F(x2(k)) + ε2(k)(x1(k) − x2(k))


. (1)

Each of the sequences of coupling gains, ε1(0), ε1(1), ε1(2), . . .
and ε2(0), ε2(1), ε2(2), . . . , is assumed to be switching stochas-
tically at the same period m ∈ Z+

\ {0}. Every m time steps,
the coupling gains simultaneously switch, such that ε1(mk) =

ε1(mk + 1) = · · · = ε1(mk + m − 1) = ε̃1(k) and ε2(mk) =

ε2(mk+1) = · · · = ε2(mk+m−1) = ε̃2(k) for every time step k,
where ε̃1(0), ε̃1(1), . . . and ε̃2(0), ε̃2(1), . . . are two sequences of
independent identically distributed random variables.

The evolution of the coupled maps in Eq. (1) is determined by
the random variables ε̃1 and ε̃2, from which the coupling gains are
drawn. In general, these random variables may be related to each
other and may not share the same distribution. For example, in
the case of one-directional stochastic coupling, one of the random
variables is zero; on the other hand, for bi-directional interactions,
the two random variables coincide.

The current state of knowledge on stochastic synchronization
of coupled discrete maps is largely limited to the case m = 1,
for which the coupling gains switch at every time step [7]. In this
case, the random variables εi(0), εi(1), εi(2), . . . , for i ∈ {1, 2}, are
mutually independent. For each value of k, x1(k+ 1) and x2(k+ 1)
are functions only of the previous values x1(k) and x2(k), and Eq. (1)
reduces to a first order Markov chain with explicit dependence
on time through the individual dynamics. In the case of m > 1,
the random variables εi(0), εi(1), εi(2), . . . , for i ∈ {1, 2}, are no
longer independent, which poses further technical challenges for
the analysis of the system,while opening the door for rich behavior
to emerge from the stochastically driven coupling.

The oscillators synchronize at time step k if their states are
identical, that is, x1(k) = x2(k). From Eq. (1), once the oscillators
are synchronized at some time step, theywill stay synchronized for
each subsequent time step. The common synchronized trajectory
s(k) is a solution of the individual dynamics, whereby s(k + 1) =

F(s(k)). The linear stability of synchronization can be studied
through the following variational equation, obtained by linearizing
Eq. (1) in the neighborhood of the synchronization manifold:

ξ(k + 1) =

F ′(s(k)) − d(k)


ξ(k), (2)
where prime indicates differentiation, d(k) = ε1(k) + ε2(k) is the
net coupling, and ξ(k) = x1(k)−x2(k) is the synchronization error
at time step k. Eq. (2) defines the linear transverse dynamics of
the coupled oscillators, measured with respect to the difference
between their states ξ(k). This quantity is zero when the two
oscillators are synchronized. Eq. (2) rests on the assumption that
themapping governing the individual dynamics, F , is differentiable
everywhere. This assumption can be relaxed, however, to functions
that are differentiable almost everywhere [64].

Only the sum of the two coupling gains ε1(k) and ε2(k) affects
the transverse dynamics, thereby only the statistics of the random
variable d(k) modulate the linear stability of the synchronization
manifold. To simplify the treatment of the variational problem
in Eq. (2), we can re-scale the time variable with respect to the
switching period as follows:

ξ̃ (k + 1) =

m−1
i=0

(F ′(s(mk + i)) − d̃(k))ξ̃ (k), (3)

where ξ̃ (k) = ξ(mk) and d̃(k) = ε̃1(k) + ε̃2(k). Eq. (3) casts the
variational dynamics in the form of a first order time-dependent
Markov chain, generated by a linear time-varying stochastic finite
difference equation [65,66].

It is important to emphasize that the synchronization manifold
x1(k) = x2(k) is an invariant set of the stochastic equation
(1). Therefore, the dynamics on the synchronization manifold is
governed by an attractor which is also invariant under the flow
of the stochastic system, such that its existence is defined via
the individual deterministic map. Therefore, we can assume the
existence of the synchronous solution s(k) without any additional
proof. In this context, system (3) with stochastically switching
coupling gains differs from a general random dynamical system
where the definition of an attractor is not straightforward and
requires the notion of invariant measure and space averages.
While the synchronous dynamics in the stochastic Eq. (1) is
deterministic, the convergence to the synchronization manifold is
governed by the stochastic switching process. In the following, we
analyze this stochastic convergence to ascertain stable stochastic
synchronization.

2.2. Mean square stability of synchronization

In determining the stability of the synchronous state, various
criteria can be considered, such as almost sure, in probability,
and mean square [65,66]. The concept of mean square stability
is particularly attractive, due to its practicality of implementation
and its inclusiveness with respect to other criteria. Mean square
stability of the synchronous state is ascertained through the
analysis of the temporal evolution of the second moment of the
error E[ξ̃ 2

], where E[·] indicates expectation with respect to the
σ -algebra generated by the switching. By taking the square of each
side of Eq. (3) and computing the expectation, we obtain

E

ξ̃ 2(k + 1)


= E


m−1
i=0

(F ′(s(mk + i)) − d̃(k))2

E

ξ̃ 2(k)


. (4)

The above recursion is a linear, time-varying, deterministic
finite difference equation whose initial condition is ξ̃ 2(0), which
is treated as a given value and not as a random variable. We
say that Eq. (3) is mean square asymptotically stable if Eq. (4) is
asymptotically stable, that is, if the Lyapunov exponent λ of Eq. (4)
is negative. This implies that any small difference between the
states of the oscillators will converge to zero in the mean square
sense as time increases.

Eq. (4) is based on the assumption that switching ismemoryless,
such that the first expectation on the right hand side is not
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conditioned with respect to the previous time step. Extending
the analysis to switching with memory could be addressed by
augmenting the error dynamics with the net coupling gain. This
effort will be the object of future studies.

The Lyapunov exponent is a function of the switching periodm
and can be computed from Eq. (4) as follows [64]:

λ(m) = lim
k→∞

1
k
ln

k−1
j=0

E


m−1
i=0

(F ′(s(mj + i)) − d̃(j))2


. (5)

In general, the stability of the synchronization manifold
depends on the underlying synchronous solution, whereby λ(m)
in Eq. (5) explicitly depends on s(k). In what follows, we focus on
the casewhere s(k) is a fixed point of the individualmap, a periodic
trajectory, or a chaotic trajectory. We comment that our approach
is based on the linearized dynamics in Eq. (2), which requires small
perturbations near the synchronous state. Thus, our analysis is only
applicable to the study of local stability of the synchronization
manifold, and initial conditions cannot be arbitrarily selected in the
basin of attraction.

3. Main results

We assume that d̃(k) takes values on a finite sample space D =

{d1, d2, . . . , dn} of cardinality n. For l = 1, . . . , n, the probability
that the net coupling is equal to dl is chosen to be equal to pl. For
example, in the case of simple on–off connections, the individual
coupling gains take values 0 and εwith corresponding probabilities
p and 1 − p. Therefore, the net coupling gain d̃(k) takes values
d1 = 0, d2 = ε, and d3 = 2ε with corresponding probabilities
p1 = p2, p2 = 2p(1 − p) and p3 = (1 − p)2.

From the individual values of the net coupling and their
probabilities, we can evaluate the Lyapunov exponent in Eq. (5) as

λ(m) = lim
k→∞

1
k

k−1
j=0

ln


n

l=1

pl
m−1
i=0

(F ′(s(mj + i)) − dl)2


. (6)

One of the central objectives of this study is to understand the
relationship between the synchronizability of the coupled maps
when statically coupled through the net coupling gains in D and
their stochastic synchronizability when the net coupling randomly
switches at a periodm. To this end, we adjust Eq. (6) to the case of
statically coupled maps with a net coupling d⋆

λst(d⋆) = lim
k→∞

1
k

k−1
j=0

ln

(F ′(s(j)) − d⋆)2


. (7)

For convenience, we write λst
l = λst(dl) for l = 1, . . . , n. De-

pending on the value of dl, the statically coupled systemsmay syn-
chronize or not, that is, the corresponding error dynamics may be
asymptotically stable or unstable.

In what follows, we first establish a relationship between
the Lyapunov exponents associated with the statically coupled
maps and the Lyapunov exponent of the stochastic dynamics. We
leverage this relationship to formulate a necessary condition for
stochastic synchronization, which only requires knowledge of the
statically coupled maps. Next, we explore the connection between
the averaged system, which is at the core of the fast switching
literature, and stochastic synchronization. Finally, we demonstrate
the approach to the study of synchronization about fixed points
and periodic or chaotic dynamics. For fixed points, we show the
feasibility of a single window of opportunity in relation to the
stability properties of each coupling configuration. For periodic
or chaotic dynamics, a similar, general treatment is problematic.
Thus, we propose an analytical approach for maps with known
probability density function, on which we base the closed-form
computation of stochastic Lyapunov exponents for coupled tent
maps, detailed in Appendix B.
3.1. Relating Lyapunov exponents of statically and stochastically
coupled maps

If all of the Lyapunov exponents of the statically coupled
systems are finite, thenwe can establish the following relationship
between the Lyapunov exponent of the stochastic error dynamics
(6) and {λst

r }
n
r=1:

λ(m) = mλst
r + lim

k→∞

1
k

k−1
j=0

ln


n

l=1
pl

m−1
i=0

(F ′(s(mj + i)) − dl)2

m−1
i=0

(F ′(s(mj + i)) − dr)2

 ,

(8)

for r = 1, . . . , n. Eq. (8) is derived from Eq. (6) by: (i) dividing and
multiplying the argument of the logarithmby

m−1
i=0 (F ′(s(mj+i))−

dr)2; (ii) using the product rule of logarithms; and (iii) applying
Eq. (7) upon re-scaling the time variable by the periodm. We note
that if pr = 1, such that the coupling does not switch, λ(m) =

mλst
r ; the dependence onm is due to the time re-scaling in Eq. (3).
By multiplying both sides of Eq. (8) by pr and summing over

r , we obtain the following compact relationship between the
Lyapunov exponent of the stochastic dynamics and the individual
Lyapunov exponents for statically coupled maps:

λ(m) = m
n

l=1

plλst
l + lim

k→∞

1
k

k−1
j=0

ln

n
l=1

plζl(j)

n
l=1

ζ
pl
l (j)

. (9)

Here, we have introduced:

ζl(j) =

m−1
i=0

(F ′(s(mj + i)) − dl)2, (10)

which we assume to be different than zero to ensure that the
Lyapunov exponent stays finite.

The first summand on the right-hand side of Eq. (9) is
linearly proportional to the switching periodm and the ‘‘effective’’
Lyapunov exponent λ̄ =

n
l=1 plλ

st
l , which corresponds to the

average of the Lyapunov exponents associated with the statically
coupled maps, weighted by the probability of the corresponding
switching. The second summand on the right-hand side of Eq. (9)
is a residual quantity,which encapsulates the complex dependence
of the transverse dynamics on the switching period beyond the
linear dependence associated with the first summand.

A lower bound for the Lyapunov exponent λ(m) can be
obtained by applying the weighted arithmetic–geometric mean
inequality [67]

n
l=1

ζ
pl
l 6

n
l=1

plζl. (11)

From inequality (11), it follows that the argument of the logarithm
in Eq. (9) is larger than or equal to 1, such that the second summand
therein is always nonnegative. As a result, we obtain

λ(m) > mλ̄. (12)

This inequality1 establishes that for λ(m) to be negative, λ̄ must
also be negative. Thus, we are ready to state the following
necessary condition for stochastic synchronization.

1 For chaotic dynamics, the inequality is always strict, whereby the weighted
arithmetic and geometric mean, introduced in (11), are equal if and only if ζ1 =
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Proposition 1. The synchronization of the stochastic system (1) is
mean square stable only if the effective Lyapunov exponent λ̄ is
negative.

This proposition implies that if none of the Lyapunov exponents
{λst

r }
n
r=1 is negative, synchronization is not feasible for any

selection ofm and {pr}nr=1. Thus, stochastic synchronization cannot
be achieved without at least one coupling configuration that
supports synchronization. This is in contrast with observations
on continuous-time systems which indicate the possibility of
stable synchronization even if none of the coupling configurations
support synchronization [40,61].

3.2. Can we infer stochastic synchronization from the averaged
system?

For continuous-time systems, in our previous work [33,34,
36,37,43–47] we have shown that under fast switching condi-
tions the synchronizability of the stochastically switching system
can be assessed from the synchronizability of the averaged system,
where the stochastic coupling is replaced by its time-average. Here,
we re-examine this limit in the case of coupled maps, whereby the
averaged system is obtained by replacing the switching gain by its
expected values. The synchronizability of the averaged system is
ascertained by studying the Lyapunov exponent obtained by re-
placing d⋆ with E[d] in Eq. (7), that is,

λaver
= lim

k→∞

1
k

k−1
j=0

ln

(F ′(s(j)) − E[d])2


. (13)

3.2.1. Not in general
Here, we demonstrate through examples that the weighted av-

erage Lyapunov exponent λ̄ can be positive or negative, indepen-
dent of the value of λaver. Therefore, the averaged system does not
offer valuable insight on the stability of the synchronization mani-
fold of the stochastically coupledmaps. For the sake of illustration,
we consider the case inwhich the individual dynamics corresponds
to the identity, such that
x1(k + 1)
x2(k + 1)


=


x1(k) + ε1(k)(x2(k) − x1(k))
x2(k) + ε2(k)(x1(k) − x2(k))


. (14)

In this case, the transverse dynamics in (2) takes the simple form

ξ(k + 1) = [1 − d(k)] ξ(k). (15)

Statically coupled identitymaps should have a Lyapunov exponent
given by (7) with F ′(s(j)) = 1, that is,

λst(d⋆) = ln

(1 − d⋆)2


. (16)

Suppose that the net switching gain is a random variable that
takes values d1 = 1 and d2 = −1 with equal probabilities 0.5.
Then, using Eq. (16) we compute

λ̄ =
1
2


λst(1) + λst(−1)


= −∞, (17a)

λaver
= λst(0) = 0 > λ̄. (17b)

ζ2 = · · · = ζn . Thus, inequality (12) reduces to an equality if and only if

m−1
i=0

(F ′(s(mj + i)) − d1)2 =

m−1
i=0

(F ′(s(mj + i)) − d2)2

= · · · =

m−1
i=0

(F ′(s(mj + i)) − dn)2

holds for any j ∈ Z+ , which cannot be fulfilled by aperiodic dynamics.
Thus, the average coupling does not support synchronization, even
though the effective Lyapunov exponent is negative.

Now, we assume d1 = 0 and d2 = 2 with the same probability
0.5, which yields

λ̄ =
1
2


λst(0) + λst(2)


= 0, (18a)

λaver
= λst(1) = −∞ < λ̄. (18b)

This posits that the stochastically coupled maps cannot synchro-
nize for any selection of the period m, even though the average
coupling affords synchronization in a single time step.

3.2.2. Yes, for coupling gains which are close to each other
If the difference between the possible values of the net coupling

gain in D is sufficiently small, the stability of the stochastic system
can be related to the stability of the error dynamics of the averaged
system. In this case, if for all l = 1, . . . , n, we canwrite F ′(x)−dl as
F ′(x)−E[d]+1dl, where |1dl| ≪ |F ′(x)−E[d]| is the deviation of
the stochastic switchingwith respect to their expected value. Thus,
we obtain

λ̄ =

n
l=1

pl lim
k→∞

1
k

k−1
j=0

ln

(F ′(s(j)) − E[d] + 1dl)2


≈ lim

k→∞

1
k

k−1
j=0


ln


(F ′(s(j)) − E[d])2


+

n
l=1

lim
k→∞

k−1
j=0

2pl1dl
F ′(s(j)) − E[d]

= λaver, (19)

where we have expanded the logarithm in series in the neighbor-
hood of F ′(s(j))−E[d] andwe have used the fact that

n
l=1 pl1dl =

0 by construction.

3.3. Stochastic synchronization at fixed points

We start the analysis by considering synchronization at a fixed
point s0, that is, s0 = F(s0). In this case, the computation of the
Lyapunov exponent for the stochastically coupled system in Eq. (6)
can be simplified as

λ(m) = ln


n

l=1

plemλstl


, (20)

where the Lyapunov exponents of the statically coupled maps are
given by Eq. (7), which takes the following form:

λst
l = ln


(F ′(s0) − dl)2


. (21)

Depending on the value of the Lyapunov exponents of the
statically coupled maps (21) and the probabilities of occurrence
of the corresponding gains, we classify three distinct behaviors of
the function eλ(m)

=
n

l=1 ple
mλstl , given by the argument of the

logarithm in (20), as shown in Fig. 1. The existence of these three
behaviors can be demonstrated by consideringm as a real variable.
First, we note that eλ(m) is a convex function in m, since its second
derivative with respect to m is nonnegative. As m goes to 0, eλ(m)

tends to 1 and its slope approaches λ. As m goes to infinity eλ(m)

will grow unbounded if there is a net coupling gain with nonzero
probability that would not support synchronization.

Thus, if the coupling switches between states such that λst
l <

0 for all l = 1, 2, . . . , n, λ(m) will decrease with m and will
always be negative (Fig. 1(a)). This corresponds to a system
that stochastically switches between coupling gains which would
individually lead to synchronization for statically coupledmaps. In
the case of maps of a higher dimension, a similar finding should
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not be expected given the possibility of complex, non-commuting
eigenstructures [68]. On the other hand, if the coupling switches
between values such that λ > 0, λ(m) will always be positive and
will increase with m (Fig. 1(b)).

Finally, if the system has at least one coupling gain correspond-
ing to λst

l > 0, but λ < 0, we may observe a window of opportu-
nity. Specifically, if eλ(1) < 1, the stochastically coupled maps will
synchronize form = 1, . . . ,mcr

−1,wheremcr is the lowest integer
such that eλ(mcr) > 1, and will not synchronize for larger switch-
ing periods (Fig. 1(c)). Notably, such awindow of opportunitymust
encompass the fast switching limit,m = 1, and disconnected win-
dows are not feasible. For chaotic dynamics, we demonstrate that
both these constraints can be relaxed, with disconnected windows
of opportunity extending beyond the fast switching limit.

3.4. Stochastic synchronization for periodic and chaotic dynamics

Direct computation of the Lyapunov exponent as a limit of a
time series from Eq. (6) or (9) may be challenging or even not
feasible; for example, if F ′(x) is undefined on a finite set of points
x. Following the approach of [63], we replace the summation with
integration using Birkhoff’s ergodic theorem [69].

Toward this aim, we introduce ρ(x) as the probability density
function of the map F(x), defined on a set B and continuously dif-
ferentiable on B except for a finite number of points. We use such
a density as a proxy for the long-run behavior of the stochastic
system when applying Birkhoff’s theorem. The probability density
function of a generic map can be found analytically or numeri-
cally [70,71]. Thus, Eqs. (6), (7), and (9) can be written as

λst
l =


B
ln


(F ′(t) − dl)2


ρ(t)dt, (22a)

λ(m) =


B
ln


n

l=1

plYl(t,m)


ρ(t)dt, (22b)

λ(m) = m
n

l=1

plλst
l +


B
ln


n

l=1
plYl(t,m)

n
l=1

Y pl
l (t,m)

 ρ(t)dt. (22c)

Here, we have introduced the function of time and switching pe-
riod

Yl(t,m) =

m−1
i=0

(F ′(F i(t)) − dl)2, (23)

where F i(t) = [F ◦ F ◦ · · · ◦ F ] (t) is the composite function of or-
der i.

Equation set (22) can be used to explore the synchronizability
of an N-periodic trajectory s(Nk+ i) = si, where i = 0, 1, . . . ,N −

1, k ∈ Z+, and N ∈ Z+/{0}, by using the appropriate probability
density function [71] ρ(s) =

1
N

N−1
i=0 δ(s− si), where δ(·) denotes

the Dirac delta distribution. Specifically, from (22a) and (22b), we
establish

λ(m) =
1
N

N−1
i=0

ln
n

l=1

plYl(si,m), (24)

which reduces to the fixed point analysis presented in Section 3.3
for the case N = 1.

If the analytical expression of the probability density function
is known, the Lyapunov exponents can be found explicitly.
Appendix B specifically illustrates the application of Eq. (22b) to
coupled tent maps, which is one of the main results of this paper.
Numerical analysis can also benefit from the above formulation,
which obviates computational challenges related to uncertainties
in rounding variables in Eqs. (6), (7), and (9) for large values of k.
Thismaybe especially evident for large curvatures of the individual
map, which could result in sudden changes in the synchronization
dynamics.

4. The paradigm of the coupled sigmoid maps

Here, we illustrate our approach for the analysis of stochastic
synchronization of coupled chaotic maps by focusing on the
so-called sigmoid map S : [0, 1] → [0, 1], see further details
in Appendix A. The sigmoid map is a continuously differentiable
function, which can be used to proxy logistic and tent maps
with parameters 4 and 2, respectively, by varying a single control
parameter, see Appendix A.

Lyapunov exponents are computed from Eqs. (6) and (7) for
stochastically or statically coupled maps by using a nominal
trajectory s(k) generated by initializing a sigmoid map with
initial conditions, chosen randomly from the unit interval. In all
computations, the argument of the logarithm in (6) and (7) is
monitored at each time step to ensure it was above numerical
precision. All simulations are performed using MATLAB.

We should comment that the direct computation of the
Lyapunov exponent from the time series of the two coupled
maps poses further technical challenges [64], related to: (i) the
varying size of the invariant manifold as a function of the coupling
gain and the switching period; (ii) potential numerical overflow
for diverging trajectories; and (iii) false reading for trajectories
converging within numerical precision.

The latter possibility should also be contemplated when
studying synchronization from the error dynamics rather than
the Lyapunov exponent [61] in the case of stochastic switching.
For large values of the switching period, it may be possible that
the error dynamics reaches values below numerical precision
in correspondence of a coupling gain which would support
synchronization in case of static coupling. As a result, the
two trajectories become identical for all times, irrespective of
the sequence of coupling gains. This possibility would lead to
incorrectly identifying windows of opportunity.

4.1. Statically coupled maps

As a first step, we investigate the synchronizability of statically
coupled maps in terms of the Lyapunov function for their
transverse dynamics in (7). Specifically, we evaluate Eq. (7) for
different values of the net coupling d⋆, ranging from −4 to 4, using
a step of 0.001. Simulations are run for 10,000 times steps, the first
10% of the data points are discarded, and the remaining 90% are
averaged to estimate the Lyapunov exponent.

Fig. 2 illustrates the dependence of the Lyapunov exponent on
the net coupling gain for different values of the control parameter
γ , ranging from 1 to 1000. As further elaborated in Appendix B,
the selected range of the control parameter γ spans the case of
logistic maps (γ = 1) and approximates the case of tent maps
(γ = 1000). Fig. 2(a) indicates the existence of disjoint intervals of
d⋆, where the Lyapunov exponent is negative and synchronization
is attained, similar to the tentmap [63]. The existence, location, and
extent of these intervals depend on the parameter γ . For γ = 1,
these intervals do not exist, indicating that logistic maps do not
synchronize for any selection of the coupling gains. As γ increases
to approximately 10, we observe the formation of two narrow
intervals where the maps synchronize.

Such intervals are generally not symmetric with respect to d⋆
=

0, except for the limit cases of the logistic and tent map, due to
the asymmetry in the probability density function, which is elu-
cidated in Appendix A. For the considered cases, we specifically
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Fig. 1. Stability analysis for fixed points. Lyapunov exponent for the stochastically coupled maps about a fixed point (20), where the net coupling switches between values
such that: (a) λst

l < 0 for l = 1, 2, . . . , n; (b) λ > 0; and (c) λ < 0 and eλ(1) < 1.
Fig. 2. Synchronizability of statically coupled maps. (a) Lyapunov exponent of the transverse dynamics of two statically coupled sigmoid maps as a function of the net
coupling d⋆ for different values of the parameter γ . For improved legibility, only values of the Lyapunov exponent larger than −4 are displayed. The dashed line identifies
the limit of synchronization λst

= 0; and (b) range of the net coupling gain d⋆ that is supporting synchronization of the statically coupled sigmoid maps, as a function of the
control parameter γ . The dashed line identifies the tent map solution [63].
find that the Lyapunov exponent is negative in the following ap-
proximate intervals for γ = 10, 100, and 1000, respectively:
(−2.72, −2.69) and (2.37, 2.82); (−2.20, −1.87) and (1.70,
2.35); and (−2.23, −1.75) and (1.72, 2.25). Fig. 2(a) also shows
that the range of the Lyapunov exponent in these intervals is a
function of the control parameter γ . Specifically, as γ increases we
widen the range of variation of the Lyapunov exponent, which be-
comes infinitely large as γ goes to infinity and the sigmoid map
approaches the tentmap. In this case, synchronizationmay be pos-
sible within a single time step.

The role of γ on synchronizability is further illustrated in
Fig. 2(b), where we depict the dependence of these intervals
on the control parameter γ , which varies with a step of 1 for
γ ∈ [1, 10], 10 for [10, 100], and 100 for [100, 1000]. Fig. 2
suggests that synchronization becomes feasible for γ = 6, and
that until γ = 9 only positive values of the net coupling gains
ensure synchronization. As γ further increases, we observe that
the intervals converge to theoretical predictions from the tentmap,
that is, (−

√
5, −

√
3)∪ (

√
3,

√
5). In these intervals, the Lyapunov

exponent for the tent map is given by [63]2

λst
= ln |2 − d⋆

| + ln |2 + d⋆
|. (25)

4.2. Stochastically coupled maps

To elucidate synchronizability of stochastically coupled sigmoid
maps, we assume that the net coupling gain d takes values d1 and
d2 with corresponding probabilities p1 and p2 = 1 − p1. This
assumption is only intended to ease the illustration of our results,
which are applicable to switching on an arbitrary finite sample
space D. The numerical computation of the Lyapunov exponent in
(6) is performed for different values of d2 from −4 to 4 with a step

2 Note that Eq. (25) differs from equation (4.13) in [63] in a factor of 2 which is
due to our analysis of mean square error dynamics.
of 0.01 and m from 1 to 25 with a step of 1. The probability p1 is
held fixed to 0.5 and the net coupling gain d1 to−1.90. Further, we
consider the same four different values of γ as in Fig. 2.

This wide parameter selection allows for exploring the
connection between the stability of synchronization for static
coupling and the resulting stochastic synchronization.We consider
different cases, where stochastic switching is implemented on
coupling gains which could individually support or hamper
synchronization for statically coupled maps. Specifically, we
contemplate the case in which: none (case I), one (case II), or both
(case III) of the coupling gains yield synchronization. Simulations
are run for 103

× m times steps, the first 10% of the data points
are discarded, and the remaining 90% are averaged to estimate the
Lyapunov exponent.

Fig. 3 demonstrates the dependence of the Lyapunov exponent
onm and d2 and the selected values of γ , including the logisticmap
(γ = 1) and the tent map approximation (γ = 1000). Therein, the
dashed contour identifies the combination of m and d2 for which
the Lyapunov exponent is zero and synchronization initiates. The
solid lines depict the values of d2 for which the effective Lyapunov
exponent is zero and synchronization may begin to be feasible
based on the necessary condition in Proposition 1. The effective
Lyapunov exponent is analytically calculated from the static
Lyapunov exponents depicted in Fig. 2 for any value of d2 and γ .
Fig. 4 illustrates the interplay between stochastic synchronization
and the stability of synchronization for static coupling, grouped
into cases I, II, and III. The possible combinations are identified
through different colors, where darker colors (blue and green)
mark windows of opportunity and lighter colors (yellow, orange,
and red) correspond to asynchronous states.

For γ = 1, the Lyapunov exponent of the statically coupled
logistic maps is positive for any value of the coupling gain
(Fig. 2), which corresponds to case I where the switching is
implemented between two configurations that would not support
synchronization. As a result, there is no value of m which affords
synchronization of the coupled logistic maps as shown in Figs. 3(a)
and 4(a).
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(a) γ = 1, d1 = −1.90, p1 = 0.5. (b) γ = 10, d1 = −1.90, p1 = 0.5.

(c) γ = 100, d1 = −1.90, p1 = 0.5. (d) γ = 1000, d1 = −1.90, p1 = 0.5.

Fig. 3. Synchronizability of stochastically coupled maps. Lyapunov exponent of two stochastically coupled sigmoid maps, where the net coupling is switching with equal
probability between d1 = −1.90 and d2 at a period m. Each subfigure refers to a specific value of the control parameter γ , which is varied to elucidate the response of the
sigmoid map (γ = 1) from the logistic to the tent map approximation (γ = 1000). The color bar illustrates the range of Lyapunov exponents attained for each value of γ .
The dashed line identifies the values of d2 andm for which the Lyapunov exponent is zero; the regions within such contours correspond to negative values of the Lyapunov
exponent and thus stochastic synchronization. The solid lines refer to the values of d2 and m for which the effective Lyapunov exponent is zero, calculated analytically
from statically coupled sigmoid maps. The vertical bands identified by such solid lines correspond to regions where stochastic synchronization is feasible, as predicted by
Proposition 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
For γ = 10, we encompass both cases I and II, depending on
the value of d2, since3 λst

1 ≈ 1.14 and λst
2 can be negative, as

shown in Fig. 2.When applying our necessary condition, we cannot
dismiss the possibility of stochastic synchronization, whereby we
could attain a negative effective Lyapunov exponent for d2 between
2.67 and 2.72, as shown in Fig. 3(b). However, the maps do not
stochastically synchronize, since the Lyapunov exponent of the
stochastically coupled maps is positive for all m = 1, 2, . . . , 25,
as displayed in Figs. 3(b) and 4(b).

For γ = 100 and γ = 1000, we encompass cases II and
III, depending on the value of d2, since λst

1 is negative (λst
1 ≈

−0.10 for γ = 100 and λst
1 ≈ −0.78 for γ = 1000). For

both values of γ , we find two intervals of d2 where the effective
Lyapunov exponent, analytically calculated through Proposition 1,
is negative. Specifically, it is negative when (−2.22, −1.85) and
(1.66, 2.37) for γ = 100, and (−2.47, −1.39) and (1.32, 2.51)
for γ = 1000, as shown in Fig. 3(c) and (d). Regions of stochastic
synchronization are located within these intervals as shown in
Fig. 3(c) and (d). For γ = 100, the effective Lyapunov exponent
provides a very close estimate of the region of synchronization in
the vicinity for negative values of d2.

As illustrated in Fig. 4(c) and (d), synchronization may be at-
tained by switching between a coupling gain which supports syn-
chronization and another which does not, as described by case
II. This is particularly evident for γ = 1000, where we ob-
serve two thin triangular regions depicted in green where the in-
stability of one of the coupling configurations does not hamper

3 To reduce the effect of numerical oscillations, values of the Lyapunov exponent
in Fig. 2 are estimated by local least square fitting.
stochastic synchronization. For example, fast switching at m = 1
ensures synchronization for d2 between approximately −2.31 and
−1.67, which contains the range where λst

2 is negative, that is,
(−2.23, −1.75).

Numerical results in Fig. 4(c) and (d) also indicate that case
III, where each coupling configuration would independently lead
to synchronization, does not guarantee stochastic stability of syn-
chronization for any choice of the switching period. Specifically,
for d2 > 0, the region of stochastic synchronization has a wedge-
like shape, for which synchronizationmay only be possible for suf-
ficiently large values of m. Notably, the wedges do not touch the
m = 1 axis, whereby the stochastic Lyapunov exponents are found
to be always positive for m less than 5 and 3 for γ = 100 and
γ = 1000, respectively. Thus, fast switching between two cou-
pling gains that would individually support synchronization does
not produce stochastic synchronization. By increasing the value of
m, we confirm our intuition that slowly switching in case III would
favor stochastic synchronization, whereby we would trap the tra-
jectory in a static coupling configuration which supports synchro-
nization. By hypothesizing uniform stability of the synchronization
manifold for each of the individual values of the net coupling gains,
this claim could be proved in the context of the theory of dwell
time [68].4

Increasing the value of m in the numerical simulations to
illustrate the role of slow switching is not feasible, due to the
excessive lengths of the time series and resulting challenges in

4 While the stability of fixed points could be properly addressed by using dwell
time theory, chaotic dynamics pose further challenges associatedwith the existence
of a common Lyapunov function.



O. Golovneva et al. / Physica D 340 (2017) 1–13 9
Fig. 4. Interplay between synchronization in stochastically and statically coupled maps as in Fig. 3. The stochastic stability of the synchronization manifold for each pair
d2 and m is ascertained from the sign of the Lyapunov exponent in Fig. 3. The partition into cases I, II, and III is based on the sign of the Lyapunov exponent in Fig. 2,
corresponding to the net couplings d1 and d2 . The regions are colored as follows: red (case I); orange (case II without stochastic synchronization); yellow (case III without
stochastic synchronization); green (case II with stochastic synchronization); and blue (case III with stochastic synchronization). White coloring identifies pairs of d2 and m,
for which synchronization cannot be precisely assessed due to oscillations in the Lyapunov exponent within ±0.025. Note that case I prevents the possibility of stochastic
synchronization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
estimating the Lyapunov exponents. To address this issue and offer
further validation for our claims, we focus on the case γ →

∞, which corresponds to the tent map as further elaborated in
Appendix A. Not only does the analytical treatment of the tentmap
address the issue of numerical overflow for long trajectories, but
also it enables a closed-form solution of the stochastic Lyapunov
exponents. Such an analytical result is critical for accurately
resolving the transition between the regions shown in Fig. 4,
which can be only approximately predicted through numerical
computations.

A closed-formexpression for the Lyapunov exponent of coupled
tent maps can be derived from Eq. (22b) using the probability
density function ρ(t) = 1, see Appendix B for a precise derivation,

λ(m) =
1
2m

m
i=0

m
i


ln


n

l=1

pl(2 − dl)2(m−i)(2 + dl)2i


. (26)

We comment that for large m the binomial coefficient grows as
2m/

√
m according to Stirling’s formula, which ensures that the

summation is well behaved in the slow switching limit [72]. We
further note that for zero net coupling gains, the stochastic Lya-
punov exponent becomes 2m ln 2. This is consistent with Eq. (25),
by considering the time re-scaling in Eq. (3).

Fig. 5(a) extends the results presented in Fig. 3(d) by an or-
der of magnitude in m through Eq. (26) specialized to binary
switching. The effective Lyapunov exponent is directly computed
from Eq. (25), which for the select parameters, p1 = p2 = 0.5
and d1 = −1.9, is negative in the following intervals for d2:
−


4 +

1
0.39 , −


4 −

1
0.39


∪


4 −

1
0.39 ,


4 +

1
0.39


. Analytical

results are in excellent agreement with numerical predictions for
γ = 1000, offering compelling evidence for the accuracy of the
proposed closed-form expression and the validity of our compu-
tational approach to estimate Lyapunov exponents. Importantly,
analytical results for large periods in Fig. 5(b) confirm that slow
switching in case III favors stochastic synchronization,wherebywe
observe that the blue regions vertically extends beyond m = 25
as numerically shown in Fig. 4(d). Fig. 5(b) also confirms the ex-
istence of a thin green zone surrounding the blue bands, where
synchronization is stable even though one of the coupling gains
does not support synchronization (case II). For example, in the
case of fast switching, m = 1, these regions are (−2.33, −2.24)
and (−1.73, −1.64) from the closed-form expressions in Eqs. (25)
and (26).

The analytical solution in Eq. (26) allows for shedding further
light on the possibility of synchronizing coupled maps in case
II. Specifically, we consider switching between coupling gains
d1 = −1.9999 and d2 = 1.7, which are associated with λst

1 =

−7.82 (strongly stable synchronization) and λst
2 = 0.10 (weakly

unstable synchronization). We systematically vary the probability
of switching p1 from 0.6, so that when the coupled maps spend
most of the time with the coupling gain that would support
synchronization. In this case, the effective Lyapunov exponent is
always negative, and synchronizationmay be attained everywhere
in the parameter space.

Surprisingly, under fast switching conditions, synchronization
is not attained if p1 / 1 as shown in Fig. 6. Although the maps
spend most of the time in a configuration that would strongly
support synchronization, the sporadic (p2 ≈ 0) occurrence of
a coupling gain which would lead to weak instability hampers
stochastic synchronization under fast switching. Increasing the
switching period, synchronization may be attained for p1 > 0.995
(see the ‘‘Pinocchio nose’’ in Fig. 6(b)). For 0.753 < p1 < 0.795, we
observe a single window of opportunity, whereby synchronization
is achieved in a single interval around m = 10. For 0.795 < p1 <

0.824, a secondwindow of opportunity emerges for smaller values
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(a) d1 = −1.9, p1 = 0.5. (b) d1 = −1.9, p1 = 0.5.

Fig. 5. Analytical demonstration of slow switching synchronization. (a) Lyapunov exponent of two stochastically tent maps, where the net coupling is switching with equal
probability between d1 = −1.9 and d2 at a periodm, analytically computed from Eq. (26). The color bar illustrates the range of Lyapunov exponents attained for each value
of γ ; for clarity, we have saturated the color bar at 210. The dashed line identifies the values of d2 and m for which the Lyapunov exponent is zero; the regions within such
contours correspond to negative values of the Lyapunov exponent and thus stochastic synchronization. The solid lines refer to the values of d2 andm for which the effective
Lyapunov exponent is zero. The vertical bands identified by such solid lines correspond to regions where stochastic synchronization is feasible, as predicted by Proposition 1.
(b) Interplay between synchronization in stochastically and statically coupled tent maps. The partition into cases I, II, and III is based on the sign of the Lyapunov exponent
in Eq. (25), corresponding to the net couplings d1 and d2 . The regions are colored as follows: orange (case II without stochastic synchronization); yellow (case III without
stochastic synchronization); green (case II with stochastic synchronization); and blue (case III with stochastic synchronization). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
(a) d1 = −1.9999, d2 = 1.7. (b) d1 = −1.9999, d2 = 1.7.

Fig. 6. Analytical demonstration of emergence of windows of opportunity. (a) Lyapunov exponent of two stochastically tent maps as a function of the switching probability
p1 and the period m, analytically computed from Eq. (26) with d1 = −1.9999 and d2 = 1.7. The color bar illustrates the range of Lyapunov exponents attained for each
value of γ . The dashed line identifies the values of d2 and m for which the Lyapunov exponent is zero; the regions within such contours correspond to negative values of
the Lyapunov exponent and thus stochastic synchronization. (b) Interplay between synchronization in stochastically and statically coupled tent maps. For the select values
of the net couplings, λst

1 = −7.82 and λst
2 = 0.10, which correspond to case II. The regions are colored as follows: orange (case II without stochastic synchronization) and

green (case II with stochastic synchronization). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
ofm around 5. The two windows ultimately merge for p1 > 0.824
in a larger window that grows in size as p1 approaches 1.

While the details of themechanisms for the appearance of win-
dows of opportunity in stochastically switching networks are yet
to be clarified, it is tenable to hypothesize that this effect is re-
lated to the dynamic stabilization of an unstable state. From a me-
chanics perspective, this can be loosely explained by an analogy
to the dynamics of Kapitza’s pendulum. Kapitza’s pendulum is a
rigid pendulum in which the pivot point vibrates in a vertical di-
rection, up and down [73]. Stochastic vibrations of the suspension
are known to stabilize Kapitza’s pendulum in an upright vertical
position, which corresponds to an otherwise unstable equilibrium
in the absence of suspension vibrations. By this analogy, stochastic
switching between stable and unstable configurations can be pro-
posed to perform a similar stabilizing role.

5. Conclusions

While the study of synchronization in evolving dynamical
networks has been recently gaining significant momentum, the
vast majority of rigorous mathematical investigations focus on
the case of fast switching network topology as compared to the
individual, intrinsic, node dynamics. In this paper, we have made a
first step toward understanding synchronization in stochastically
switching networks of coupled maps beyond the fast switching
limit.

To isolate the delicate mechanisms underpinning stochastic
synchronization, we have considered two coupled maps with
independent identically distributed stochastic switching and
studied the stability of synchronization as a function of the
switching period. We have studied the stochastic stability of the
transverse dynamics using the notion of mean square stability,
establishing a mathematically-tractable form for the Lyapunov
exponent of the error dynamics. We have demonstrated the
computation of the stochastic Lyapunov exponent from the
knowledge of the probability density function. A necessary
condition for stochastic synchronization has been established,
aggregating the Lyapunov exponents associated with each static
coupling configuration into an effective Lyapunov exponent for the
stochastic dynamics. We have focused on the sigmoid map, which
bridges the logistic and tent maps as a function of a single control
parameter. For tent maps, we have established a closed-form
expression for the stochastic Lyapunov exponent, which helps
with dissecting the contribution of the coupling gains, switching
probabilities, and switching period on stochastic synchronization.

We have demonstrated the central role of non-fast switching,
which may provide opportunity for stochastic synchronization
in a range of switching periods where fast switching fails to
synchronize the maps. More specifically, non-fast switching may
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Fig. 7. Sigmoid map (a) and its derivative (b) for different values of γ .
promote synchronization of maps whose coupling alternates
between one configuration where synchronization is unstable and
another where synchronization is stable (case II). These windows
of opportunity for the selection of the switching period may be
disconnected and located away from the fast switching limit,
where the coupling is allowed to change at each time step.

In contrast to one’s expectations, fast switching may not even
be successful in synchronizing maps that are coupled by switching
between two configurations that would support synchronization
(case III). However, a sufficiently slow switching that allows the
maps to spend more time in one of the two stable synchronization
states will induce stochastic synchronization. The emergence
of a lower limit for the switching period to ensure stochastic
synchronization is highly non-trivial. On the other hand, the
stabilization of synchronization by slow switching in the dwell
time limit should be expected, as the maps will spend the time
necessary to synchronize in one of the stable configurations, before
being re-wired to the other stable configuration.

The proposed necessary condition demonstrates that switch-
ing between two unstable states (case I) cannot stabilize synchro-
nization for any switching frequencies, in contrast with networks
of continuous-time oscillators where windows of opportunity ap-
pear as a result of switching between two unstable (saddle) states.
These windows of opportunity for synchronization in continuous-
time Rössler and Duffing oscillators [61] and tritrophic Rosen-
zweig–MacArthur food-chain models [40] were reported earlier,
but the derivation of explicit conditions for the emergence of these
windows in the continuous-time case is more challenging and re-
mains a subject of future study.

Not only will the continuous-time setting challenge the use
of a power expansion in the mean square stability analysis, but
also it will increase the dimensionality of the problem. The latter
research direction should also be pursued when expanding the
framework to large networks, where the relationship between
the eigenstructures of the switching Laplacian graphs will likely
play a major role. Focusing on a discrete-time setting and scalar
maps has enabled us to undertake a first, necessary step toward
the prediction and quantification of windows of opportunity for
stochastic synchronization beyond fast switching.
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Appendix A. Sigmoid map

The sigmoid map is described by the following equation:

S(x) =
−γ x

2 − ln(1 + e−γ (x−0.5)) + ln(1 + e0.5γ )

−
γ

4 − ln 2 + ln(1 + eγ /2)
, (27a)
where γ is a parameter that controls the shape of themap. Themap
is constructed to be an endomorphism in the unit interval. Fig. 7
shows the sigmoid map and its first derivative for a few selected
values of the parameter γ .

For values of γ on the order of 1, the first derivative of S is
approximately linear, similar to a logistic map with parameter
equal to 4, see for example [71]. As γ increases, the curvature of S in
the vicinity of x = 0.5 increases, and the map approaches the tent
map with parameter equal to 2, see for example [71]. Specifically,
in the limit γ → ∞, the sigmoid map can be approximated by the
tent map with parameter equal to 2
2x, x 6 0.5
2(1 − x), x > 0.5 (28)

and in the limit γ → 1 we recover

4x(1 − x), (29)

the logistic map with parameter equal to 4.
From the time series of the sigmoid map for different values of

γ , we can estimate the probability density functionρ(x) associated
with the chaotic dynamics. The positive Lyapunov exponents for
each of these cases can be obtained from Fig. 2(a) for d⋆

= 0.
From simulation data over 100000 time steps and binning with
a bin size of 0.05, we obtain the probability density functions in
Fig. 8. Therein, we also report closed form results for the tent
(ρ(x) = 1) and the logistic map (ρ(x) = 1/(π

√
x(1 − x))), see

for example [71]. Numerical results confirm analytical predictions
for γ = 1 and indicate close agreement between the sigmoid map
and the tent map for γ = 1000. For intermediate values of γ , we
observe a nonsymmetric probability density function with respect
to x = 0.5.

Appendix B. Lyapunov exponent for stochastically coupled tent
maps

Here, we present the derivation of the closed-form expression
for the Lyapunov exponent of the stochastically coupled tent maps
(26). By using the probability density function ρ(x) = 1, Eq. (22b)
becomes

λ(m) =

 1

0
ln


n

l=1

plYl(t,m)


dt, (30)

where F is given by Eq. (28) and Yl(t,m) is defined in (23).
For convenience, we introduce the 2m subintervals of [0, 1] of
length 1

2m : τ1 =

0, 1

2m

, τ2 =


1
2m , 1

2m−1


, . . . , τ2m−1 =

2m−1
2m−1 , 2m−1

2m


, τ2m =


2m−1
2m , 1


. These subintervals constitute a

partition of the unit interval up to a set of measure zero, where
Y l(t,m) is not uniquely defined as detailed below.

For each of these subintervals, we can determine the sequence
of composite functions that is needed for calculating Yl(t,m) in the
following way. For t ∈ τ1 we find F 0(t) = t < 1

2m . This quantity is
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(a) γ = 1. (b) γ = 10.

(c) γ = 100. (d) γ = 1000.

Fig. 8. Asymmetric ergodic behavior of the sigmoid map. Probability density functions of the sigmoid map (27a) for different values of the control parameter γ : (a) γ = 1,
(b) γ = 10, (c) γ = 100, and (d) γ = 1000. Probability density function of the tent and logistic maps are shown as dot-dashed and dashed lines, respectively.
less than 0.5, thereby from (26), we find F 1(t) = 2F 0(t), which is,
in turn, less than 2 1

2m . The latter quantity is again less than 0.5 and
the argument above can be iterated for any composite function up
to the (m−1)th order. As a result, within τ1, F ′(F i(t))will be equal
to 2 for i = 0, 1, . . . ,m − 1, and Yl(t,m) reduces to (2 − dl)2m.

Following a similar line of argument, we can study the sequence
of composite functions for t ∈ τ2. In this case, we find F i(t) < 0.5
for i = 0, 1, . . . ,m − 2 and Fm−1(t) > 0.5. Thus, F ′(F i(t)) will be
equal to 2 for i = 0, 1, . . . ,m − 2 and −2 for i = m − 1, which
imply that Yl(t,m) = (2 − dl)2(m−1)(2 + dl)2. Note that this value
is different from the value attained in τ1, confirming that Yl(t,m)
jumps between two contiguous subintervals.

By carrying out this procedure for all of the considered 2m

subintervals, we find that Yl(t,m) is constant in each subinterval
and equal to one of the following values: Y (0,m)

l = (2 −

dl)2m, Y (1,m)
l = (2 − dl)2(m−1)(2 + dl)2, . . . , Y

(i,m)
l = (2 −

dl)2(m−i)(2 + dl)2i, . . . , Y
(m,m)
l = (2 + dl)2m. Each of these values

occurs
m

i


times, corresponding to the number of possible ways

to obtain (2 − dl)2i(2 + dl)2(m−i) from the product of m quantities
each taking values in {(2 − dl)2, (2 + dl)2}.

By partitioning the integral in Eq. (30) in 2m integrals over
τ1, . . . , τ2m , we obtain

λ(m) =

2m
i=1


τi

ln


n

l=1

plYl(t,m)


dt

=
1
2m

m
i=0

m
i


ln


n

l=1

plY
(i,m)
l


, (31)

which implies Eq. (26).
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