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Several modern footbridges around the world have experienced large lateral vibrations during

crowd loading events. The onset of large-amplitude bridge wobbling has generally been attributed

to crowd synchrony; although, its role in the initiation of wobbling has been challenged. To study

the contribution of a single pedestrian into overall, possibly unsynchronized, crowd dynamics, we

use a bio-mechanically inspired inverted pendulum model of human balance and analyze its

bi-directional interaction with a lively bridge. We first derive analytical estimates on the frequency

of pedestrian’s lateral gait in the absence of bridge motion. Then, through theory and numerics,

we demonstrate that pedestrian-bridge interactions can induce bistable lateral gaits such that

switching between the gaits can initiate large-amplitude wobbling. We also analyze the role of

stride frequency and the pedestrian’s mass in hysteretic transitions between the two types of wob-

bling. Our results support a claim that the overall foot force of pedestrians walking out of phase

can cause significant bridge vibrations. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4967725]

The infamous opening-day oscillations of the London

Millennium Bridge have significantly intensified interest

in the dynamics of pedestrian locomotion and its interac-

tions with lively bridges. Similar lateral wobbling of sev-

eral other bridges in France, Japan, Portugal, Singapore,

and Great Britain has also been documented. Although

some aspects of the impact of crowd loading on the initia-

tion of bridge wobbling have been clearly identified, the

full picture of how an individual pedestrian contributes

to collective lateral excitation of a bridge is far from

being complete. In this paper, we seek to close this gap by

analyzing the interaction of a single pedestrian with a

ground structure such as a bridge. Our analysis indicates

that this bi-directional interaction enables two distinct

lateral gaits. Both gaits can correspond to pedestrians

walking out of phase with the bridge, yet one gait produ-

ces significantly larger bridge oscillations than the other.

We show that both gaits can stably co-exist such that a

misstep can cause the pedestrian to switch gait, poten-

tially causing wilder bridge oscillations. We also show

that this bistability is controlled by the pedestrian mass,

where heavier pedestrians are more prone to switching to

the gait with stronger bridge wobbling. These results

may shed light onto a strategy of crossing a lightweight,

lively bridge with a heavy backpack. This is relevant to

mountaineers traversing metallic ladders across giant

crevasses on the Khumbu Icefall of Mount Everest, with

a convenience-over-safety dilemma of having the back-

pack on or sending it over the ropes separately. In this

regard, our study indicates that the extra weight may

cause an abrupt onset of ladder lateral vibrations.

I. INTRODUCTION

The phenomenon known as the sympathy of pendulum

clocks or Huygens’ synchronization is the first historical

example of collective behavior of mechanical oscillators.1 In

the Huygens’ setup, two pendulum clocks, hanging from a

wooden beam, showed an “odd” symmetry and ended up

oscillating in perfect anti-phase.2–4 As the clocks were oscil-

lating in opposite directions, their forces compensated for

each other, keeping the beam still. The pendulum clocks

with the same coupling structure can also oscillate in-phase,

inducing the anti-phase movement of the beam.3–5 In recent

years, collective behavior of mechanical oscillators has

become an important topic with various engineering applica-

tions (see this Focus issue for more details6).

Modern bridges are an important example of interacting

mechanical oscillators. In suspension bridges, suspension

and load-bearing elements are coupled by the bridge girder

such that all constituting parts can become oscillators in the

presence of wind. The most famous example of an oscillat-

ing suspension bridge is the Tacoma Narrows Bridge7–11

which collapsed in 1940 as a result of aerodynamics, even

though the exact cause still remains unclear; at least, a defi-

nite description that meets unanimous experts’ agreement

has not been reached.10,11 A more recent example of an

oscillating girder bridge is the Volga Bridge in the Russian

city of Volgograd which experienced long-wave resonance

vibrations in 2011 and was closed for expensive repairs.12

On foot bridges, pedestrians walking across a bridge interact

with the bridge and may cause bridge oscillations when the

frequency of the bridge falls into a critical frequency range

of pedestrian walking. While wind and crowd loading of
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bridges can have similar destabilizing effects,13 the

pedestrian-bridge interactions are bi-directional such that the

pedestrians can adapt their behavior to the oscillations of the

bridge.

The list of foot bridges, whose instability during a crowd

loading event has been documented, includes the Toda Park

Bridge,14 Solf�erino Bridge,15 the London Millennium

Bridge,16 the Maple Valley Great Suspension Bridge,17 the

Singapore Airport’s Changi Mezzanine Bridge,18 the Clifton

Suspension Bridge,19 and the Pedro e Inês Footbridge.20

The opening-day wobbling of the London Millennium

Bridge in 2000 remains the most known example of

pedestrian-induced oscillations which has attracted signifi-

cant public interest.21–23 A sudden onset of large-amplitude

lateral wobbling of the London Millennium Bridge occurred

when the number of pedestrians exceeded a critical value.16

The abrupt onset of wobbling has been attributed to the

phenomenon called synchronous lateral excitation or crowd

synchrony,16,24–28 although its role in the mechanism which

is responsible for the initial sudden onset of bridge wobbling

has been challenged.29,30

Recent papers26–28 used coupled phase oscillators as

simple models to explain how a synchronized crowd could

initiate the wobbling of the London Millennium Bridge.26–28

While phase oscillators account for the timing of pedestrian

foot placement, they ignore an important component of

pedestrian-bridge interaction: the impact of pedestrian foot

forces.

In our recent paper,31 we developed a bio-mechanically

inspired model of pedestrians’ response which captures the

key properties of pedestrian lateral balance and the resulting

foot forces on the bridge. This model is an extension of the

inverted pendulum model of human balance29,30 which had

been successfully used to analyze the whole body balance of

bipedal walking.32–34 The use of the inverted pendulum

models to describe pedestrian’s gaits allowed us to predict

the critical number of pedestrians required for the onset of

wobbling of the London Millennium Bridge remarkably

well.31 Our results support the traditional observation that

crowd synchrony was necessary for the London Millenium

Bridge to experience large-amplitude wobbling.31 Although,

the exact cause of the initial onset of wobbling at least in the

case of small amplitudes may be rooted into the ability of

pedestrians to adapt their gait and maintain lateral balance

while walking randomly.

In this paper, we study this adaptation mechanism by

considering a single pedestrian walking on a lively bridge.

We discover that pedestrian-bridge interactions can make the

pedestrian walk with two distinct lateral gaits and be capable

of switching between the gaits. Notably, both gaits can be

out of phase with the bridge; however, one lateral gait is

closer to moving in the opposite direction of bridge swaying,

i.e., closer to anti-phase synchrony and, therefore, inducing

larger amplitude wobbling. We give an analytical insight

into the possible co-existence of two stable lateral gaits and

analyze the role of gait frequency and the pedestrian’s mass

in hysteretic transitions between the two types of wobbling.

Our results on the ability of a single pedestrian to initiate

bridge wobbling when switching from one gait to another

may give an additional insight into the initiation of wobbling

without crowd synchrony as previously observed on the

Singapore Airport’s Changi Mezzanine Bridge15 and the

Clifton Suspension Bridge.19 Both bridges wobbled during a

crowd event; however, the averaged frequency of pedes-

trians’ gaits was documented to be different from the bridge

frequency, and the pedestrian walking showed no visible

signs of synchrony.29

The layout of this paper is as follows. First, in Sec. II,

we present and discuss the pedestrian-bridge model. In Sec.

III, we study the dynamics of the pedestrian on a stationary

ground, i.e., with no bridge movement. For a set of matching

parameters, we derive exact equations for a unique stable

limit cycle that corresponds to the pedestrian’s lateral gait.

In the general case of pedestrian system parameters, we give

bounds on the existence of a stable limit cycle and its period.

In Sec. IV, we study the full model with bridge movement

and demonstrate that pedestrian-bridge interactions can

induce bistable lateral gaits. We give analytical insight into

the possibility of two bistable regimes of oscillations and

support our analytical results with numerics. We also study

hysteretic transitions between the gaits that can induce large-

amplitude wobbling. Finally, Section V contains concluding

remarks.

II. PEDESTRIAN-BRIDGE INTERACTION MODEL

We begin with the standard setup for modeling

pedestrian-bridge interactions.26,29–31 The model describes

pedestrian-induced lateral vibrations of the bridge by a mass-

spring-damper system (Fig. 1). The bridge of mass M can

move in the horizontal direction with the damping coefficient

d. The bridge motion is described by a damped linear oscilla-

tor, driven by side-to-side movement of a pedestrian. In our

setup,31 the pedestrian is represented by a self-sustained

FIG. 1. Mechanical model of pedestrian-bridge interactions. The bridge is

modeled by platform of mass M with one side attached to a rigid support via

an elastic spring and a damper. Pedestrian lateral movement is modeled by

an inverted pendulum of mass m with a massless leg of length L. x is the

lateral position of pedestrian’s center of mass. y accounts for lateral vibra-

tions of the bridge. p is the lateral displacement of the center of pressure

of the foot.
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oscillator, where the pedestrian’s gait and its adjustment to

the bridge motion are modeled by an inverted pendulum

model of human balance. The pedestrian-bridge model can

be cast into the following form:

€x þ f ðx; _xÞ ¼ �€y; €y þ 2h _y þ X2y ¼ �r€x; (1)

where x and y are horizontal movements of the center of

mass of the pedestrian and the bridge, respectively. The feed-

back term �€y accounts for an inertia force on the pedestrian

movement caused by the bridge movement. The pedestrian

exerts sideways force �r€x on the bridge. The response of the

pedestrian’s gait to the bridge’s oscillations and the gait

adjustment are controlled by function f ðx; _xÞ: Parameters h
and X are the damping and natural frequency of the bridge,

respectively. Parameter r ¼ m=ðM þ mÞ represents the

strength of pedestrian-bridge bi-directional interaction.

Function f ðx; _xÞ which determines a self-sustained oscil-

latory mechanism of the pedestrian gait was introduced in

Ref. 31 and has the form

f ðx; _xÞ ¼ k½ _x2 þ �2fa2 � ðx� p � ^sgn xÞ2g� _x
� x2ðx� p � ^sgn xÞ; (2)

where ^sgn x ¼ f�1 if x < 0; 1 if x � 0g. The hat over the

signum term indicates that in contrast to the standard signum

function, which is 0 at x ¼ 0; ^sgn x ¼ 1 at x ¼ 0: However,

when numerically studying the system (1)–(2), one may use

the conventional signum function as x always differs from 0

due to finite numerical precision. The presence of the signum

term in (2) accounts for reversing the direction of movement

of the pedestrian center mass x when the pedestrian shifts the

body’s weight from one foot to the other. In (2), k; �; a; p;
and x are parameters, where k corresponds to damping, �
and a control the self-excitatory mechanism of human walk-

ing, p is the horizontal displacement of the center of pressure

of the foot, and x ¼
ffiffiffiffiffiffiffiffi
g=L

p
with g being the acceleration due

to gravity and L being the distance from the center of mass

to the center of pressure.

Notice that this system is obtained from an approxima-

tion sin x � x when x=L� 1: See Ref. 29 for the derivation

of system (1)–(2) with k¼ 0 from the mechanical setup of

Fig. 1 and Newton’s second law.

It is important to emphasize that the model (1)–(2) takes

into account the role of the pedestrian footfall force and the

adaptation of pedestrian’s gait to bridge oscillations.

III. PEDESTRIAN MODEL: NO BRIDGE MOVEMENT

We begin by analyzing the pedestrian dynamics in sys-

tem (1)–(2) in the absence of bridge movement, i.e., €y ¼ 0:
Therefore, the equation of the pedestrian motion becomes

€xþ k½ _x2þ �2fa2�ðx� p � ^sgn xÞ2g� _x�x2ðx� p � ^sgn xÞ ¼ 0:

(3)

In the following, we prove the existence of a stable limit

cycle in system (3) and estimate its amplitude and period as

a function of parameters �; a; p; and x: In particular, we will

show that the period of pedestrian lateral gait, defined by

the stable limit cycle, may vary from very small, when the

pedestrian switches the body’s weight from one foot to the

other very quickly, to very large.

Readers who are willing to accept the results of this

section without proof can proceed without loss of continuity

to the description of pedestrian-bridge bistable interactions

in Sec. IV.

A. Conservative case (k 5 0): A nonlinear center

In the absence of damping (k¼ 0), system (3) turns into

the conservative inverted pendulum model30

€x � x2ðx� p � ^sgn xÞ ¼ 0: (4)

This piecewise linear system is widely used in modeling

human balance from the biomechanics field.30,32–34 It has a

center fixed point at the origin and two saddles at x ¼ 6p
(see Fig. 2(a)). Each closed integral curve of the center fixed

point is composed of two symmetric parts for x> 0 and x< 0

which are glued at the discontinuity line x ¼ 0: As a result,

the curves acquire a diamond-like shape. The family of inte-

gral curves lies inside a domain formed by the separatrices

of the saddles. Each integral curve represents a periodic

lateral movement of the pedestrian. While this simple con-

servative model proves to adequately describe the role of

human balance,30 it suffers from a drawback that the ampli-

tude of the pedestrian’s lateral gait is entirely controlled by

the choice of the closed integral curve, associated with given

initial conditions. Therefore, the pedestrian cannot adjust the

lateral gait and walks at the gait which is dictated by the size

of the first step, even though this step happened to be too big

or too small. This issue becomes particularly important for

the dynamics and analysis of the pedestrian-bridge system

(1)–(2), and justifies the need of a structurally stable non-

conservative model such as model (3). As the construction of

(3) with k 6¼ 0 is based on the knowledge of the conservative

system (4), we perform a short analysis of system (4).

For convenience, system (4) can be cast into the form

_x ¼ u; _u ¼ x2ðx� p � ^sgn xÞ; (5)

where the levels of integral curves (conservative quantities)

are described by

u2 � x2ðx� p � ^sgn xÞ2 ¼ C: (6)

We are particularly interested in two values of C. C¼ 0

yields straight lines u � _x ¼ 6xðx� p � ^sgn xÞ that corre-

spond to the separatrices of the two saddles at x ¼ 6p: The

separatrices form a heteroclinic contour which corresponds

to an infinite-period solution. In this case, the time for the

pedestrian to switch weight from one leg to the other

becomes infinite. C ¼ �x2a2 corresponds to the equation

u2 � x2ðx� p � ^sgn xÞ2 þ x2a2 ¼ 0; (7)

which yields a closed dashed curve (see Fig. 2(a)) which will

be used later in the paper as the generating solution for a sta-

ble limit cycle in the non-conservative system (3) with
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k 6¼ 0. The maximum amplitude of the pedestrian lateral gait

corresponding to this level function is x ¼ p� a; therefore,

we assume that 0 < a < p throughout the paper. Negative

values of a would push the trajectory outside of the absorb-

ing domain (to the right from the saddle x¼ p) and make it

increase without bound. From the pedestrian’s perspective,

this would correspond to the loss of balance and a fall. A

more detailed analysis of the conservative model (4) and its

fit to experimentally measured values of pedestrian lateral

forces were reported in Refs. 29 and 30.

B. Non-conservative case: A stable limit cycle and its
period

When damping is present such that k 6¼ 0; system (3)

can display a stable limit cycle whose equations can be

derived in closed form in a specific case of � ¼ x: The

closed-form equation will allow us to calculate the period of

the limit cycle, and therefore, the period of the pedestrian lat-

eral gait. Below, we will perform this analysis, and then use

the knowledge of the system dynamics for � ¼ x to estimate

the amplitude and period of the limit cycle in the general

case of � 6¼ x where finding closed-form solutions is

problematic.

1. Case m5x: Exact equations for the limit cycle

Substituting � ¼ x into system (3) yields

_x ¼ u;

_u ¼ �k½ _x2 þx2fa2 � ðx� p � ^sgn xÞ2g�uþx2ðx� p � ^sgn xÞ:
(8)

Theorem 1. [Explicit equations for the limit cycle].

1. System (8) has a unique stable limit cycle with coordi-
nates x(t) and u(t) defined by

x ¼ ðp� a cosh xtÞ ^sgn x; u ¼ �a sinh xt � ^sgn x: (9)

2. This limit cycle has the period T ¼ 4s; where

s ¼ 1

x
ln p=aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=að Þ2 � 1

q� �
: (10)

The u- and x- amplitudes of the limit cycle are Â ¼ ax
sinh ðxsÞ and B̂ ¼ p� a; respectively.

Proof. We use the closed curve (7) from the conserva-

tive case as a Lyapunov function candidate V to prove the

uniqueness and stability of the limit cycle in system (8) in

the region of interest jxj < p. Therefore, we set

V ¼ u2 � x2ðx� p � ^sgn xÞ2 þ x2a2: (11)

Note that V¼ 0 when x and u satisfy condition (7). Within

the region of interest jxj < p; V is positive (negative) for x, u,

lying outside (inside) the closed level curve (7).

The derivative of V along the trajectories of system (8)

_V ¼ �2ku2V (12)

is negative (positive) definite when V is positive (negative).

Therefore, the trajectories of system (8) converge to the level

V¼ 0 (7) which represent a unique, stable limit cycle (see

Fig. 2(b)).

The differential equation corresponding to V ¼ 0 :

ð _xÞ2 ¼ x2ðx� p � ^sgn xÞ2 � x2a2 (13)

can be solved to obtain the explicit solution x ¼ ^sgn

ðp� a cosh xtÞ. Consequently, differentiation yields _x � u
¼ �a sinh xt � ^sgn x. This completes the proof of Part 1.

FIG. 2. Schematic phase portraits for the inverted pendulum model (3) with-

out bridge movement. (a) Conservative system with k ¼ 0: Red lines indi-

cate closed integral curves of the center fixed point at the origin. The dashed

line corresponds to the generating solution for the limit cycle in the non-

conservative system with � ¼ x: (b) Non-conservative system with k 6¼ 0

and � ¼ x: The red closed curve corresponds to the stable limit cycle and

the zero level of Lyapunov function V (cf. (8)). (c) The general case of non-

conservative system with k 6¼ 0 and � 6¼ x: Illustration of Theorem 2. The

attracting annulus, depicted in gray, is bounded by two levels of the

Lyapunov function, V ¼ a1 and V ¼ a2: The trajectories enter the annulus

and approach the stable limit cycle.
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Given the explicit equations of limit cycle (9), the calcu-

lation of its period T is straightforward. For t ¼ 0; x ¼ p� a
and _x ¼ 0. In one quarter s of period T, the coordinates

become

x ¼ 0; _x ¼ ax sinh ðxsÞ: (14)

Solving the initial value problem (14) yields (10). As s corre-

sponds to the time that the limit cycle spends in the fourth

quadrant of the (x, u) plane, the period of the limit cycles is

T ¼ 4s (see Fig. 2(b)). Substituting (10) into the u-equation

of (9) gives the value of Â: The maximum value of x is

achieved at t¼ 0 and defines amplitude B̂ ¼ p� a: �

Remark 1.1. As (10) suggests, the period of the limit

cycle T is controlled by parameters x; p; and a, but is most

sensitive to the ratio p/a. The period becomes zero (infinite)

for a¼ p (a¼ 0). Therefore, the non-conservative system (3)

is capable of describing a full range of pedestrian lateral

stride frequencies, from zero to infinite.

2. Case m 6¼ x: Estimates for the limit cycle period

For convenience, system (3) can also be rewritten in the

form

_x ¼ u

_u ¼ �k½ _x2 þ �2fa2 � ðx� p � ^sgn xÞ2g�uþx2ðx� p � ^sgn xÞ:
(15)

In contrast to the previous case where � ¼ x; we are unable

to obtain the explicit equations for the limit cycle. However,

we shall prove its existence and stability.

Theorem 2. [Bounds for the limit cycle].

System (15) has a stable limit cycle which lies in the
annulus R ¼ fa1 < V < a2g; where V is defined in (11) and
a1 ¼ minfx2ðp2 � a2Þ; �2ðp2 � a2Þg and a2 ¼ maxfx2ðp2

�a2Þ; �2ðp2 � a2Þg.
Proof. We use the Lyapunov function V, defined in (11),

as a directing function for the system (15). Its derivative

along the trajectories of system (15) is defined as follows:

_V=2 ¼ u _u � x2ðx� p � ^sgn xÞ _x
¼ �kðu2 þ �2½a2 � ðx� p � ^sgn xÞ2�Þu2: (16)

The derivative _V is zero on the piecewise smooth ellipse

E :fu2þ�2½a2�ðx�p � ^sgnxÞ2�¼0g and is negative (positive)

outside (inside) the ellipse E. To relate a sign of _V to the lev-

els of the directing function V, we need to determine two lev-

els of V which inscribe and circumscribe the ellipse E. The

level V ¼ a1; where a1 ¼ minfx2ðp2 � a2Þ; �2ðp2 � a2Þg;
yields an ellipse that is inscribed within E. The level V ¼ a2;
where a2 ¼ maxfx2ðp2 � a2Þ; �2ðp2 � a2Þg; corresponds

to an ellipse that is circumscribed about the ellipse E.

Therefore, the derivative _V on the level V ¼ a1 (V ¼ a2)

is either positive (negative) or becomes zero at the intersec-

tion points with the ellipse E. Hence, the annulus R¼fa1<V
<a2g; bounded by these two level curves, attracts the trajec-

tories of (15) within the region of interest jxj<p, and con-

tains a stable limit. �

Remark 2.1. For definiteness, assume that � > x: Then,

the level of directing function V ¼ a1 ¼ x2ðp2 � a2Þ, and

therefore, it corresponds to the limit cycle in the system (8),

defined via the Lyapunov function (11). The period of this

limit cycle is defined via (10). At the same time, the level

V ¼ a2 ¼ �2ðp2 � a2Þ corresponds to the limit cycle in the

system (8) where x is replaced with �: Therefore, its period

is determined by T ¼ 4
� ln p=aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=aÞ2 � 1

q� �
: As

Theorem 2 proves, the limit cycle of system (15) with � 6¼ x
lies between the two levels; therefore, its period can be

approximated by the period of the limit cycle in the system

(8) with the mean value ðxþ �Þ=2 :

T ¼ 8

xþ � ln p=aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=að Þ2 � 1

q� �
: (17)

Figure 3 shows the limit cycle of system (15) with � 6¼ x
along with its acceleration time series.

IV. PEDESTRIAN-BRIDGE INTERACTIONS

Previous studies of the pedestrian-bridge system (1)–(2),

where the pedestrian movement is described by the conser-

vative inverted pendulum (2) with k ¼ 0; derived approxi-

mate solutions for the pedestrian dynamics. This was done

by assuming that the effect of a single pedestrian on the

dynamics of a heavy bridge is fairly small; therefore, the

bridge movement can be approximated by a simple harmonic

solution with the natural bridge frequency X and a time lag

from the beginning of the first step on the right foot to the

start of the following bridge vibration cycle.29 This assump-

tion significantly simplifies the problem and reduces the

analysis of the four-dimensional system (1)–(2) to the two

FIG. 3. Individual pedestrian model (3) with no bridge motion: numerics.

The limit cycle and its acceleration time series. Parameters k¼ 1, x ¼ 0:7,

p¼ 2, a ¼ 1; and � ¼ 0:66:
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dimensional equation for the pedestrian dynamics, driven by

a sinusoidal external signal with frequency X. This practical,

engineering approach yields approximations for pedestrian

foot placement position consistent with the experimental

data.29 The use of a series solution with the fundamental fre-

quency of the limit cycle in the isolated pedestrian system

with no bridge motion as an external drive of the bridge

equation may also give reasonable approximations within

some range of parameters. However, these approaches,

aimed at decoupling the dynamics of the pedestrian and the

bridge, do not account for bi-directional interactions, and

therefore cannot predict nonlinear effects due to the complex

dynamics of the full four-dimensional system (1)–(2),

including the bistability of pedestrian gaits.

A. Bistability of gaits: Analytical estimates

Our primary goal is to determine conditions on the

parameters of the pedestrian-bridge system (1)–(2) that yield

the co-existence of two limit cycles that correspond to dis-

tinct pedestrian lateral gaits. These two gaits are induced by

pedestrian-bridge interactions and correspond to two regimes

of wobbling with different amplitudes.

We follow the ideas proposed in our previous work on

crowd dynamics31 and seek solutions of system (1)–(2) that

generate bistable wobbling. In our previous analytical study,

we used Van-der-Pol-type models to describe pedestrians’

gait and found harmonic periodic solutions that induce

crowd synchrony and significant wobbling. However, the

analysis of the interaction of the current piecewise-smooth

pedestrian-bridge model (1)–(2) with “glued” solutions is

much more challenging. As a result, we are unable to find

closed-form solutions for both x and y, yet manage to give a

qualitative argument for the possibility of bistable regimes.

Obviously, such a complicated nonlinear system with

switching right-hand sides (1)–(2) is not expected to be ana-

lytically tractable. However, our choice of the specific self-

sustained oscillatory mechanism defined via f ðx; _xÞ (2)

allows us to conduct the assumed solutions through the “eye

of the needle” of model (1)–(2) and obtain co-existence

conditions.

Towards this goal, we will use an alternate form of

pedestrian-bridge model (1)–(2)

€x þ k½ _x2 þ �2fa2 � ðx� p � ^sgn xg2Þ� _x
� x2ðx� p � ^sgn xÞ ¼ �l€y;

€y þ 2h _y þ X2
0y ¼ �l€x;

(18)

obtained by setting y ¼ lynew and r ¼ l2 in (1)–(2). By

abuse of notation, we use the same symbol y for ynew in (18).

A potential benefit of using the alternate form (18) is that

setting l to zero decouples both x- and y- equations and sep-

arates the dynamics of the pedestrian and the bridge.

As our analysis presented in Sec. III indicates, the limit

cycle in the pedestrian model in the absence of bridge move-

ment is composed of two symmetric parts which are defined

by hyperbolic cosine and sine functions. Therefore, we also

seek solutions of pedestrian-bridge model (18) in the form of

the hyperbolic functions. The solution for the pedestrian

movement x(t) can be glued from one for x(t)> 0 and its

symmetric counterpart for x(t)< 0 as the pedestrian switches

body weight from one leg to the other when x(t) crosses 0.

x(t) switching also affects the bridge movement y(t) and

makes its solution piecewise smooth. However, two disconti-

nuity points at which two parts of the y-solution join together

do not lie on the discontinuity line x ¼ 0:
Motivated by the form of solutions (9) in the pedestrian

oscillator system (3) with no bridge movement, we use the

following approximations of periodic solutions in the

pedestrian-bridge system (18):

x¼ ðp�Bcosh�tÞ ^sgn x; _x ¼�B� sinh�t ^sgn x;

y¼ c�Acoshð�tþuÞ � ^sgn x; _y ¼�A� sinhð�tþuÞ � ^sgn x;

(19)

FIG. 4. Comparison of the analytical estimates [(a) and (b)] for the coexist-

ing limit cycles to their numerically generated counterparts (c). (a)-(b)

Theory: Solid (dashed) lines indicate the x- and y-solutions (40) with A > 0;
B > 0; c > 0 ðA < 0; B < 0; c < 0Þ. Points P and Q correspond to one

complete cycle of x-solutions. (c). Numerics: Continued from points P and

Q, trajectories converge to two distinct limit cycles, depicted by black and

blue (gray). The arrows schematically indicate the direction of convergence.

Parameters k ¼ 0:1; x ¼ 0:7, p¼ 0.3, a¼ 0.2, � ¼ 0:67, l ¼ 0:11, h¼ 0.1,

and X ¼ 1:
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where �t1 	 t 	 t1 with time instant t1 (t2) corresponding to

crossing the vertical line x¼ 0 such that _x > 0 ( _x < 0). With

this choice of symmetric times �t1 and t1; the time t¼ 0 cor-

responds to the crossing of the horizontal line _x ¼ 0 for

x> 0 (see Fig. 4(a)). A;B; c, and u are parameters whose

values are to be determined. The discontinuity line x¼ 0 in

the ðx; _xÞ plane corresponds to the discontinuity line

_y ¼ �y=b (20)

in the ðy; _yÞ plane, where the parameter b is to be determined.

While the x-solution of system (19) is represented by a

closed curve in the ðx; _xÞ plane, the y-solution contains two

discontinuous parts (see Fig. 4(b)) and cannot correspond to

a limit cycle. As a result, the solutions (19) on the time inter-

val ½�t1; t1� are parts of a transient solution that converges to

a limit cycle as the system (18) has an absorbing domain and

the origin is unstable. Even though it is transient, we will use

solution (19) as a proxy for a limit cycle and show that there

is a set of parameters of (18) that yields two co-existing

solutions. We will use this argument as a qualitative justifi-

cation for the appearance of bistable lateral gaits and bridge

wobbling. We will also support this prediction by numerical

simulations.

It is important to emphasize that the parameter �;
appearing in (19) as the argument of hyperbolic cosine func-

tion, is not the frequency of oscillations, as would be in the

case of the cosine function. Similarly to the limit cycle in

the non-conservative system (15) with no bridge movement,

the frequency of oscillations, approximated by solutions

(19), is essentially controlled by the parameters A and B and

may range from zero to infinite (cf. Theorem 2).

We will take the following steps to show that there are

two different sets of solutions (19), corresponding to the

same set of parameters of system (18) and different pedes-

trian gaits. We will first relate the parameters b and u; by

calculating times t1 and �t1 and comparing the corre-

sponding solutions yðt1Þ and yð�t1Þ: We will then substi-

tute the solutions (19) into the pedestrian-bridge system

(18) to determine permissible values of parameters

A;B; c;u; b and their relation to the parameters of the

pedestrian-bridge system. As a result, we will derive two

balance equations for finding the unknown parameters

A;B; c;u; b: As the solutions (19) contain hyperbolic func-

tions, the balance equations also contain hyperbolic sine

and cosine functions and can be resolved by applying the

hyperbolic trigonometric identity. This will yield a rela-

tion between the squares of parameters A and B and, con-

sequently, induce positive and negative permissible values

of A, B, and c. Thus, two combinations of the positive

and negative values A, B, and c will generate two different

solutions (19).

We start by making the first step. It follows from (19)

that the times t1 and �t1 taken by the solution to reach

the discontinuity line x¼ 0 can be calculated from cosh �t1

¼ p=B such that

t1 ¼
1

�
cosh �1 p=Bð Þ: (21)

Therefore, substituting the y-equation of (19) with t¼ t1
and t ¼ �t1 into (20) gives the following two equations:

�b�A sinh ð�t1 þ uÞ þ c� A cosh ð�t1 þ uÞ ¼ 0;

�b�A sinh ð��t1 þ uÞ þ c� A cosh ð��t1 þ uÞ ¼ 0:
(22)

It follows from (20) and (22) that

b ¼ � 1

�
tanh u; c ¼ A cosh �t1= cosh u ¼ Ap= B cosh u½ �:

(23)

We shall now demonstrate that equations (19) can

indeed be solutions of the pedestrian-bridge system (18).

Substituting (19) into the x- equation of (18) yields

k� a2 � B2ð ÞBþ lAs

� �
sinh �t

þ 1� x2

�2

� �
Bþ lAc

� �
cosh �t ¼ 0; (24)

where Ac ¼ A cosh u and As ¼ A sinh u:
To make the analysis of the y-equation in (19) more man-

ageable, we shift the variables y! y� c in the pedestrian-

bridge system (18) and then substitute solutions (19) into (18).

Thus, we obtain the following equation

½ð�2 þ X2ÞAs þ 2h�Ac� sinh �t

þ ½2h�As þ ð�2 þ X2ÞAc þ l�2B� cosh �t ¼ 0: (25)

To make equations (24) and (25) identities, we set the coeffi-

cients of the hyperbolic cosine and sine functions equal to 0.

Therefore, it follows from (24) that

k� a2 � B2ð ÞBþ lAs ¼ 0;

1� x2

�2

� �
Bþ lAc ¼ 0;

(26)

and equation (25) yields

ð�2 þ X2ÞAs þ 2h�Ac ¼ 0;

2h�As þ ð�2 þ X2ÞAc ¼ �l�2B:
(27)

Thus, the balance equations (26) and (27) can be viewed as

“amplitude-phase” equations finding the unknown parame-

ters A;B; c;u, and b: The quotes are used to indicate that

none of the parameters A;B; c;u; b alone determines the

actual amplitude and phase of the x or y-oscillations (cf. sys-

tem (19)).

Using the Kronecker method to solve the system (27)

for As and Ac; we obtain

As ¼
1

D

0 2h�

�l�2B �2 þ X2

				
				 ¼ 2lh�3B=D;

Ac ¼
1

D
�2 þ X2 0

2h� �lB�2

					
					 ¼ �l�2 �2 þ X2ð ÞB=D;

(28)

where
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D ¼ ð�2 � 2h� þ X2Þð�2 þ 2h� þ X2Þ: (29)

Thus, we can calculate the unknown phase u in the solu-

tion (19) from (28) as follows:

tan u ¼ As

Ac
¼ �2h�= �2 þ X2ð Þ;

u ¼ �tanh�1 2h�= �2 þ X2ð Þ
� �

:

(30)

At the same time, solving system (26) for As and Ac

gives

As ¼ k� B2 � a2ð ÞB=l; Ac ¼
x2

�2
� 1

� �
B=l: (31)

Therefore, the phase u can also be calculated from (31) as

follows:

tan u ¼ As

Ac
¼ k� B2 � a2ð Þ

. x2

�2
� 1

� �
: (32)

Equating the right-hand sides of equations (30) and (32), we

obtain the value for the square of the amplitude coefficient B
which is explicitly expressed via the parameters of the

pedestrian-bridge system (18)

B2 ¼ a2 � 2h
x2

�2
� 1

� �

k �2 þ X2ð Þ½ �: (33)

The hyperbolic trigonometric identity cosh 2u� sinh 2u ¼ 1

yields A2 ¼ A2
c �A2

s : Therefore, from (28), we obtain

A2 ¼ l2�4B2=D: (34)

For this condition to be true, the quantity D must be positive.

Hence, we have the following constraint on the parameters

of the pedestrian-bridge system (18)

D ¼ ð�2 � 2h� þ X2Þð�2 þ 2h� þ X2Þ > 0: (35)

Substituting (33) into (34) gives the explicit value for the

square of the amplitude coefficient A

A2 ¼ l2�4 a2 � 2h
x2

�2
� 1

� �.
kD �2 þ X2ð Þ½ �

� �

D: (36)

To fully determine the solutions (19) and the position of the

discontinuity line _y ¼ �y=b; we shall now calculate the

remaining unknown constants c;u; and b:
We use (23) to calculate c: Towards this goal, we need

to calculate A/B from (34). This yields

A=B ¼ 6l�2=
ffiffiffiffi
D
p

: (37)

It follows from (28) that

A cosh u=B ¼ �l�2ð�2 þ X2Þ=D: (38)

Comparing (37) and (38) gives

cosh u ¼
ffiffiffiffi
D
p

=ð�2 þ X2Þ:

Substituting this value and (37) into (23) yields the explicit

formula for c :

c ¼ 6l�2ð�2 þ X2Þp=D: (39)

Collecting the conditions on A;B; c;u; and b, we arrive at

the following statement:

Theorem 3. [Co-existence of solutions].

1. The functions, approximating periodic oscillations in
the pedestrian-bridge system (18),

x ¼ ðp� B cosh �tÞ ^sgn x;

y ¼ c� A cosh ð�tþ uÞ � ^sgn x;
(40)

are solutions of the pedestrian-bridge system (18) on the
interval �t1 	 t 	 t1; where t1 ¼ 1

� cosh �1ðp=BÞ if

A¼6l�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�2h

x2

�2
�1

� �.
kD �2þX2ð Þ½ �

� �.
D

s
;

B¼6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�2h

x2

�2
�1

� �

k �2þX2ð Þ½ �

s
;

c¼6l�2 �2þX2ð Þp=D;

(41)

u ¼ �tanh�1½2h�=ð�2 þ X2Þ�; and

D ¼ ð�2 � 2h� þ X2Þð�2 þ 2h� þ X2Þ > 0:
(42)

The discontinuity line at which the y� solutions switch
is defined by _y ¼ �y=b; where b ¼ � 1

� tanhu ¼ 2h=
ð�2 þ X2Þ:

2. Two different combinations of parameters, ðA > 0;
B > 0; c > 0Þ and ðA < 0;B < 0; c < 0Þ with the choice of
the corresponding sign in the conditions (41), yield two sets
of co-existing solutions ðxðtÞ; yðtÞÞ that define two distinct
lateral movements of the pedestrian (via x(t)) and two types
of bridge wobbling (via y(t)).

Proof. The conditions (41) on A, B, and c come from

formulas (36), (33), and (39), respectively. The time t1 that it

takes the solution to reach the discontinuity line x¼ 0 is

given in (21). The conditions (42) on u and D are given in

(30) and (29). The slope of the discontinuity line _y ¼ �y=b
is defined via (23). �

Remark 3.1. While six possible combinations of positive

and negative values of A;B; c yield permissible solutions

(40), only two combinations ðA > 0; B > 0; c > 0Þ and

ðA < 0; B < 0; c < 0Þ generate solutions of practical inter-

est. Other combinations either yield solutions that do not

belong to the absorbing domain or coincide with the ones

given by the two combinations.

Remark 3.2. The condition (42), D > 0; gives a range of

permissible values of parameters �; h; and X that make c2 > 0

via (39) and therefore allow the co-existence of two solutions.

It also follows from conditions (41) that permissible values of

A and B exist if the discriminants are non-negative such that

a2 > 2h x2

�2 � 1
� �

=½kð�2 þ X2Þ:
Remark 3.3. The equations (40) do not explicitly use the

equation for the discontinuity line _y ¼ �y=b: However, the

introduction of the discontinuity line and its formula explicit
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in the parameters of the pedestrian-bridge system (18) is use-

ful for illustrative purposes.

While the statement of Theorem 3 is completely rigor-

ous, it only gives the conditions on the co-existence of tran-

sient solutions which can correspond to the co-existence of

two limit cycles. Therefore, this result can be considered as a

qualitative indicator for the possible co-existence of two sta-

ble limit cycles, corresponding to two bistable pedestrian lat-

eral gaits and two different lateral oscillations of the bridge.

To support this qualitative prediction, we plot two analytical

solutions (40) with ðA> 0; B> 0; c> 0Þ and ðA< 0; B< 0;
c< 0Þ in Figs. 4(a) and 4(b), and numerically continue these

solutions from points P and Q. As Fig. 4(c) indicates, the tra-

jectories starting from points P and Q on two analytical

curves do converge to two different stable limit cycles,

although the numerically computed limit cycles are smaller

than the analytical estimates. These two limit cycles corre-

spond to two co-existing pedestrian gaits which are both in

anti-phase with bridge oscillations (Fig. 5).

B. Numerics: Basins of attraction and hysteretic
transitions

In Fig. 4(c), we have used a set of parameters generating

two co-existing gaits which are both in anti-phase with the

bridge. In the following, we use a different set of parameters

to demonstrate the co-existence of two pedestrian gaits such

that one is close to in-phase with the bridge movement

whereas the other is out-of-phase. Figure 6 shows two differ-

ent projections of co-existing limit cycles. The limit cycle,

depicted in black in Fig. 6, is characterized by the pedestrian

balancing out-of-phase with the bridge oscillations. The limit

cycle, depicted in blue (gray), corresponds to the pedestrian

lateral movement closely following the bridge oscillations.

Notice that the out-of-phase gait (black) induces large-

amplitude wobbling whereas the in-phase gait only yields

small amplitudes of bridge oscillations, even though the

amplitude of the in-phase gait is larger (Fig. 7).

FIG. 5. Time-series corresponding to the limit cycles of Fig. 4(c). Solid

black (dashed blue) lines indicate the time series generated by the large

(small) limit cycle of Fig. 4(c). Note that both pedestrian gaits x(t) are in

anti-phase with the bridge movement y(t), yet one gait produces larger

bridge oscillations than the other.

FIG. 6. Co-existence of two limit cycles, corresponding to two distinct gaits.

The blue (gray) limit cycle corresponds to an in-phase gait with the bridge

movement and induces low-amplitude wobbling. The black limit cycle cor-

responds to an out-of-phase movement which causes large-amplitude bridge

oscillations. Parameters k¼ 1, x ¼ 0:7, p¼ 2, a ¼ 1; � ¼ 0:66; l ¼ 0:11;
h ¼ 0:05; and X ¼ 1:

FIG. 7. Time-series corresponding to the limit cycles of Fig. 6. The pedes-

trian gait xðtÞ; which oscillates nearly in-phase with bridge wobbling y(t)
(dashed blue), co-exists with the out-of-phase gait and larger bridge oscilla-

tions (solid black).
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The convergence to the two different limit cycles in Fig.

6 depends on both the system parameters and initial condi-

tions. Figure 8 shows the long-term behavior of the system

for various initial x and y values (with _x ¼ 0:01 and _y ¼ 0).

The blue (dark) region corresponds to a set of initial condi-

tions (x, y) for the onset of the in-phase gait and low-

amplitude wobbling (cf. Fig. 6). The yellow (light) region

indicates a set of initial conditions that yield the out-of-phase

gait. The yellow region is significantly smaller, which sug-

gests that the onset of the in-phase gait is more probable.

However, the out-of-phase gait and the corresponding large-

amplitude wobbling can appear from initial conditions close

to the in-phase movement (note two narrow horizontal areas

of the yellow basin of attraction whose tips are close to the

diagonal line where both the pedestrian and the bridge start

moving in phase). Hence, a small misstep may cause the in-

phase gait to switch to the out-of-phase movement and

induce potentially dangerous wobbling.

In addition to the dependence on initial conditions, the

bridge-pedestrian system (18) can exhibit hysteretic behavior

as one of the two stable limit cycles ceases to exist. Figure 9

illustrates this hysteretic transition as a function of parameter

�. According to the estimate (17) on the period of the pedes-

trian gait with no bridge motion, increasing � increases the

stride frequency of pedestrian walking. Therefore, we inter-

pret � as a control parameter for the gait frequency and study

how the co-existence conditions change when � varies. As

Fig. 9 indicates, increasing � from 0.6 leads to the emergence

of small amplitude wobbling at point D and the disappearance

of large-amplitude wobbling at point C such that the two types

of wobbling co-exist in the region of � between points D and

C. Sweeping parameter � from 0.6 to 0.7 and back yields the

hysteretic curve of Fig. 9.

Figure 10 indicates that the bistability of two lateral

gaits is also controlled by the pedestrian mass m such that

increasing m leads to the emergence of the out-of-phase gait

which co-exists with the in-phase gait. Therefore, heavier

pedestrians are at higher risk of switching to the out-of-phase

gait and, subsequently, initiating large-amplitude wobbling.

These observations may offer guidance for choosing a best

strategy for a hiker with a heavy backpack to traverse light

rope hanging bridges in the Himalayas, where a heavier

hiker might want to send the backpack over the ropes sepa-

rately to reduce the risk of the abrupt onset of large bridge

swaying. This might also be relevant to climbers crossing

metallic ladders across giant crevasses when attempting to

summit the Mount Everest.

FIG. 8. Basin of attraction for two co-existing limit cycles. Yellow (light

gray) corresponds to a set of initial conditions (x0, y0) for the convergence to

the out-of-phase limit cycle (the black limit cycle of Fig. 6), and while blue

(dark gray) indicates the convergence to the in-phase limit cycle (the blue

limit cycle of Fig. 6). The 3-D diagram also displays the maximum ampli-

tude of the established regime of wobbling. Notice the large amplitude wob-

bling, corresponding to the yellow basin of attraction of the out-of-phase

cycle. Other initial conditions: _x ¼ 0:01 and _y ¼ 0. Parameters as in Fig. 6.

FIG. 9. Hysteretic transitions and bistability of wobbling as a function of �.

As � increases (blue, solid curve), the system converges to the out-of-phase

limit cycle, as the initial conditions are kept close to the limit cycle. At point

C (� � 0:67), the out-of-phase limit cycle disappears, and the system

switches to the in-phase limit cycle. For decreasing � (black, dashed curve),

the system remains in the basin of attraction for the in-phase limit cycle,

until point D (� � 0:63) where the in-phase limit cycle disappears. Note that

the dashed curve does not merge into point D, but ends abruptly, even

though the gap is very small and visibly indistinguishable. Parameters as in

Fig. 6, except for varying �.

FIG. 10. Role of pedestrian mass m in the initiation of large-amplitude wob-

bling. Curves and notations are similar to Fig. 9. Notice that exceeding

m � 62 induces the bistability of gaits, with a potential risk of large wob-

bling. Increasing pedestrian mass m> 87 inevitably induces large bridge

oscillations. A hiker of mass m¼ 70 carrying a backpack with m¼ 20 may

reduce the danger of large wobbling by traversing the bridge without the

backpack on. This drops the overall mass from 90 to 70 and pushes the sys-

tem into the bistable regime where the hiker might traverse the bridge with

the in-phase gait. However, if the bridge already experiences large wob-

bling, decreasing the hiker load below m¼ 87 by removing a backpack will

not necessarily cause the wobbling to dissipate due to the hysteretic effect.

Parameters as in Fig. 6, except for varying l ¼
ffiffi
r
p
; where r ¼ m=ðM þ mÞ

with bridge mass M¼ 5, 650.
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V. CONCLUSIONS

The list of modern pedestrian bridges, which showed

instability due to crowd loading, is fairly long.29 There are

several views on what may trigger bridge wobbling, ranging

from crowd synchrony16,24–28 to a non-synchrony cause due

to the asymmetry of the pedestrian-bridge behavior, with the

lateral force increasing if the bridge moves away from the

mass, but decreasing if the bridge moves towards it.29,30

In this paper, we have sought to address this question by

studying the dynamics of pedestrian lateral locomotion and its

interaction with a bridge. To isolate the effect of crowd load-

ing, we have limited our attention to one single pedestrian on

the bridge. We have used an inverted pendulum model of

human balance to study changes in the pedestrian gait which

are imposed by the bridge movement. However, this is a bi-

directional interaction such that bridge oscillations are in turn

controlled by the pedestrian movement. We first analyzed the

dynamics theoretically and our analysis predicted that the

pedestrian can stably exhibit two distinct lateral gaits, induc-

ing two types of wobbling. We then verified this prediction

numerically and revealed a variety of rich dynamics, induced

by pedestrian-bridge interactions, including the co-existence

of (i) in-phase and out-of-phase gaits; (ii) two out-of-phase

gaits, and hysteretic transitions between them. We have shown

that switching between the gaits can induce large-amplitude

wobbling of the bridge. Our study suggests that potentially

unsynchronized crowd dynamics, when each pedestrian can

walk with two bistable lateral gaits, promise to lead to behav-

ior that so far has not been adequately explained.

Our analytical study of the dynamics of the individual

pedestrian with and without bridge motion contributes to the

theory of non-smooth oscillators. Our theory may help engi-

neers to (i) better understand the role of one pedestrian in ini-

tiation bridge wobbling, (ii) estimate a range of unsafe

frequencies due to human responses to pedestrian bridge

motion, and (iii) design robust bridges and other complex

mechanical structures.
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