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This focus issue presents a collection of research papers from a broad spectrum of topics related to

the modeling, analysis, and control of mechanical oscillators and beyond. Examples covered in this

focus issue range from bridges and mechanical pendula to self-organizing networks of dynamic

agents, with application to robotics and animal grouping. This focus issue brings together applied

mathematicians, physicists, and engineers to address open questions on various theoretical and exper-

imental aspects of collective dynamics phenomena and their control. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4967727]

Collective behavior in mechanical systems was discovered

by the Dutch scientist Christiaan Huygens around 1665.1

In the Huygens’ setup, two pendulum clocks, hanging from

a wooden beam, showed an “odd” symmetry and ended up

oscillating in perfect anti-phase.
2–4

In recent years, collec-

tive dynamics has become an important topic with applica-

tions in a wide spectrum of biological and technological

networks, including multi-robot teams, complex mechani-

cal structures, and pedestrian bridges. This focus issue

aims at the largely unexplored area of mathematical analy-

sis and modeling of cooperative networks arising from dif-

ferent applications in mechanics and beyond. This highly

interdisciplinary issue presents new research contributions

which integrate knowledge from different disciplinary

areas in applied mathematics and engineering, including

stability theory, information theory, piecewise smooth and

stochastic dynamical systems and networks, graph theory,

classical mechanics, and bio-mechanics. We hope that this

collection will contribute to further igniting interest in col-

lective dynamics of mechanical oscillators and promoting

interdisciplinary collaborations.

I. INTRODUCTION

The idea of organizing this focus issue was inspired by a

successful two-part special session at the last 2015 SIAM

Conference on Applications of Dynamical Systems that saw

the participation of a large number of attendees and attracted

significant interest during the conference.

This focus issue presents analytical, computational, and

experimental studies toward an improved understanding of

collective dynamics. The theoretical questions addressed here

seek to clarify the relation between the dynamics of single

units, composing a complex system, and the overall collective

behavior. Such a collective response includes consensus in

networks of mobile multi-agent systems, global chaotic syn-

chronization of nonlinear oscillators, and the formation of

chimera states. Stochastic communication, time-delays, lim-

ited bandwidth, dynamic and structural heterogeneities, and

attacks on communication links are all investigated towards

realistic, practical descriptions of collective mechanical

systems.

Some of these theoretical constructs are demonstrated

through careful modeling of complex mechanical systems,

including metronomes, vibration machines, and bridges.

Across a range of physical scales from a small metronome to

a large bridge structure, a number of dynamical similarities

are observed in their emergent response. For example, revis-

iting the classical experiment of Huygens through modern

dynamical systems theory sheds light on the critical role of

coupling in the stability of various synchronous states.

Further insight into the striking complexity of collective

dynamics in mechanical systems is garnered through experi-

mental studies presented in this focus issue. Inverted bottle

oscillators, metronomes on a lightweight platform, two-rotor

vibration machines, and wobbling and aging bridges offer

powerful experimental settings to demonstrate collective

dynamics and unravel its physical underpinnings.

II. CONTRIBUTIONS TO THE FOCUS ISSUE

Jia et al.5 analyze the dynamics of single and coupled

inverted bottle oscillators, where each bottle oscillator is an

oscillating flow of water in an inverted bottle. A number of

novel phenomena are observed theoretically and experimen-

tally. In a laboratory setup, the authors demonstrate the

asymmetry and inhomogeneity of the single inverted bottle

oscillator, along with in-phase and anti-phase synchroniza-

tion and double frequency synchronization in the coupled

system of two non-identical oscillators.

Buscarino et al.6 study the interplay between synchroni-

zation and motion in a system of mobile agents. Motion is

described according to the Vicsek model, a widely known

model for self-propelled particles, and the dynamics is given

by chaotic oscillators which become coupled when the posi-

tions of the corresponding agents are at a distance less than

the interaction radius. The peculiar feature of this model is

the presence of a transition from disordered to ordered

motion as a function of its parameters. The authors exploit
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this characteristic to investigate how motion influences syn-

chronization in the population of mobile chaotic oscillators.

It is shown that that the effect of motion depends on the cou-

pling strength; for some values of the coupling strength, the

authors observe that all the oscillators converge towards the

same trajectory when the motion is ordered. For other values

of the coupling strength, the opposite may occur, whereby

synchronization is promoted by disorder and inhibited by

ordered motion.

Liu et al.7 investigate a consensus problem for multi-

agent systems. Considering the limited bandwidth of a real

communication network, it is not practical to ensure the con-

tinuity of information transmission among neighboring

agents in a multi-agent system. The authors propose new

sampled-data-based algorithms for multi-agent systems with

a directed communication topology. Consensus without a

leader and containment with multiple leaders are studied,

respectively, for a group of harmonic oscillators. Differing

from existing algorithms, a remarkable advantage of the pro-

posed sampled-data-based algorithms is that the sampling

periods, communication topologies, and control gains are all

decoupled and can be separately designed, relaxing restric-

tions in controllers’ design.

Hoogeboom et al.8 examine synchronization of a set of

metronomes placed on a lightweight foam platform. While

synchronization of pendulum clocks was observed by

Christiaan Huygens in 1665, the phenomenon is still not

entirely understood. It is known that there exist multiple

types of limit behavior which are influenced by the coupling

between the clocks or metronomes; however, it is unclear

what determines the stability of these regimes. This paper

contributes to the understanding of Huygens’ synchroniza-

tion by performing numerical modeling and experiments

with two configurations of a set of metronomes. The configu-

rations are a row setup containing one-dimensional coupling

and a cross setup containing two-dimensional coupling.

Depending on the configuration and coupling between the

metronomes, that is, the platform parameters, in- and/or

anti-phase synchronized behavior is observed in the experi-

ments. It is numerically and experimentally demonstrated

that varying the coupling parameters for both configura-

tions has a significant influence on the stability of the syn-

chronized solutions.

Dong et al.9 study the vulnerability of a distributed

consensus seeking multi-agent system. Due to the open

nature of communication channels in networked multi-

agent systems, the network is vulnerable to various mali-

cious cyber attacks. The authors design a specific edge-

bound content modification cyber attack which compro-

mises the least number of communication links and renders

the consensus dynamics of multi-agent systems unstable.

The paper presents fast, distributed, model-free, and com-

putationally light attack detection schemes and proposes an

attack mitigation scheme.

Roy and Abaid10 address the problem of coordinating

multiple agents that interact and negotiate to reach an

agreement, over a dynamic, random communication net-

work. An important and interesting feature in this coordi-

nation problem is the existence of leadership by an

individual or subset of the group. The agents representing

the followers can communicate with any other agent,

whereas agents serving as leaders are restricted to interact

only with other leaders. The model incorporates the phe-

nomenon of numerosity, which limits the perceptual capac-

ity of the agents while allowing for shuffling with whom

each individual interacts at each time step. The authors

show that agents’ traits can be chosen for an engineered

system to maximize the convergence speed and that proto-

col speed is enhanced as the proportion of the leaders

increases in certain cases.

Blaha et al.11 put forward an experimental setup with

three platforms containing a fixed number of metronomes to

study the effects of network symmetries on the emergence of

chimera states. In particular, the authors consider 15 metro-

nomes per platform and observe that chimera states emerge

for a broad range of parameters, namely, the metronomes’

nominal frequency and the coupling strength between the

platforms. The study shows that populations with few oscil-

lators still exhibit chimera behavior although there is a mini-

mum size under which chimeras no longer emerge. Many

chimera states are also seen in the system when the coupling

between platforms is asymmetric.

Dudkowski et al.12 address the emergence of chimeras

in coupled externally excited bistable oscillators, including

mechanical oscillators. In particular, the authors analyze the

influence of failure of external excitations due the fatigue of

motors in physical mechanical oscillators on the stability of

chimera states. Transitions between various types of chime-

ras as a function of the number of oscillators whose excita-

tion is switched off are also reported in this study.

Chicoli and Paley13 present a probabilistic information

transmission model for individuals within a group. There are

a variety of benefits to living in groups, many of which are

conferred through information sharing between individuals.

Useful information may include the location of a food source

or the presence of a predator. One striking example of this

benefit is the escape of a shoal of fish away from a potential

threat. Fish that are unable to detect a threat directly may still

respond rapidly by observing the movements of their neigh-

bors. While differences in shoaling behavior have been

observed in fish, it is unclear how the degree of alignment

between individuals affects the response to predation. The

authors model information spreading and the resulting

escape response, demonstrating that the alignment of the

group does affect the escape response. The model may be of

general use in studying emergency planning, where panic

spreads through a group.

Koh and Sipahi14 investigate a multi-robot coordination

problem which is influenced by communication/activation

delays. In the presence of delays, there exists a certain delay

margin which destabilizes the system. This margin depends

strongly on agents’ dynamics and the agent network. The

authors study the role of three key elements, namely, the

delay margin, network graph, and a distance threshold condi-

tioning two agents’ connectivity. They show that when the

collective dynamics is unstable under this delay, its states

can be naturally bounded, even for arbitrarily large threshold

values, preventing agents to disperse indefinitely. This
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mechanism can push the system to recover stability in a self-

regulating manner, mainly induced by network separation

and enhanced delay margin.

Fradkov et al.15 address the classical control problem of

how to move a mechanical system from any initial state to

any final state by means of controlling a force of small inten-

sity. The authors study the control problem of start-up and

passage through resonance in a two-rotor vibration machine.

In this setup, the main practical problem is the generation of

useful oscillations and the suppression of harmful ones. They

show that the application of a feedback control makes pas-

sage through lower resonance feasible, with smaller con-

trol intensity compared with passage through resonance

under a constant control torque. Particular attention is paid

to the case where constant control torques do not allow the

rotors to even start their rotation, such that the applied

feedback control helps the rotors overcome gravity and ini-

tiate rotation.

Lombana and di Bernardo16 study the problem of

achieving synchronization in networks of nonlinear units

coupled by dynamic diffusive terms. The authors consider

two types of coupling consisting of a static linear term and a

dynamic term, which can be either the integral or derivative

of the sum of the mismatches between the states of neigh-

bouring agents. The resulting dynamic coupling strategy is a

distributed proportional-integral or proportional-derivative

law that is shown to be effective in improving network syn-

chronization, for example, when the dynamics at the nodes

are nonidentical. The approach is verified via a set of repre-

sentative examples including networks of nonlinear mechan-

ical systems.

Ambegedara et al.17 study noninvasive damage detec-

tion of highway bridges. The authors consider information-

theoretic measures, including entropy and mutual informa-

tion which require minimal assumptions regarding the spe-

cific location, material, and age of the bridge. The data used

in this study are time series collected on spatially distributed

sensors from a controlled damage experiment performed on

a local bridge in upstate New York. In particular, the authors

demonstrate that the spatial nearest-neighbor interactions as

measured by mutual information tend to become weaker as

more damage is present. This is consistent with the intuition

that less force and energy pass between adjacent sites as the

bridge is “loosened” due to the removal of bolts.

Belykh et al.18 investigate the dynamics of pedestrian

lateral locomotion and its interaction with a bridge, demon-

strating that this bi-directional interaction enables two dis-

tinct lateral gaits. Both gaits can stably co-exist such that a

misstep can cause the pedestrian to switch gait, potentially

causing wilder bridge oscillations. The authors show that

this bistability is controlled by the pedestrian mass, where

heavier pedestrians are more prone to switching to the gait

with stronger bridge wobbling. These observations may offer

guidance for choosing the best strategy for a hiker with a

heavy backpack to traverse light rope hanging bridges in the

Himalayas, where a heavier hiker might want to send the

backpack over the ropes separately to reduce the risk of the

abrupt onset of large bridge swaying.

III. OPEN QUESTIONS AND FUTURE CHALLENGES

The area of collective behavior in mechanical systems is

rich with open problems and challenges. We hope that this

focus issue will encourage and motivate junior readers to

approach this exciting field of research. We believe that the

contributions collected here, together with other recent special

issues on evolving networks19 and patterns of network syn-

chronization,20 address some of the existing critical questions.

However, many more questions remain open across theoretical

and experimental research. For example, models of communi-

cation networks should address spatio-temporal correlation

between the states and activation of network links, toward an

improved understanding of data drop-out and agents’ mobility.

With respect to multi-robot teams, these models are critical for

predicting the performance of the system in structured and

unstructured environments, where communication is influ-

enced by both the configuration of the team and presence of

obstructions. Just as noise and uncertainty may influence com-

munication, they may affect individual dynamics, resulting in

unpredicted heterogeneities. Whether these heterogeneities

strengthen or weaken the collective dynamics of the system

remains an elusive question.

Beyond modeling, another theoretical aspect that is fer-

tile with important problems is the control of collective

dynamics to engineer coordinated motions via localized con-

trol actions. Coordinated motions may include global syn-

chronization patterns and chimera states, generated by

tailored control actions on network connections and individ-

ual units’ dynamics. For mechanical systems, there may be a

non-trivial trade-off between performance and energy expen-

diture, which is further exacerbated by partial observability

and under-actuation. This is particularly relevant to multi-

robot teams where limited battery life, sensory payload, and

mechanical design may challenge the synthesis of decentral-

ized control algorithms.

One of the application domains for modeling and control

of networked mechanical systems is at the interface between

engineering and biology. Therein, intensive research is being

pursued to investigate hybrid systems consisting of human-

made engineering artifacts that interact with natural, living

organisms. For example, recent efforts have indicated the

possibility of influencing collective behavior of animal

groups through biologically inspired robots.21–23 The poten-

tial integration of biologically inspired robots in laboratory

and field experiments has been demonstrated in a number of

species, spanning from insects to mammals. The design of

control strategies is, however, in its infancy, due to the com-

plexity of animal response which strains the use of existing

strategies that are often grounded by accurate knowledge of

the networked units. New data-driven strategies are likely

needed to address this issue, perhaps tapping into different

research fields, such as machine learning and behavioral con-

trol. Another relevant example of a hybrid system, presented

in this focus issue, is constituted by bi-directional interac-

tions of walkers with a pedestrian bridge.18 Similar to animal

grouping, understanding the response of the pedestrian

bridge will require new insight into the mathematical analy-

sis of human collective behavior.
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While experimental research is rapidly progressing, a

number of practical challenges are responsible for the con-

siderable gap between theory and experiments. On a com-

puter, one can simulate arbitrarily large coupled systems

with identical properties and a precise communication net-

work. However, practicality dictates the size of the system

and its tolerance, limiting the validation of theoretical results

to relatively small-scale systems with constrained interac-

tions. For example, it may be difficult to systematically and

experimentally study the role of the network topology in the

collective dynamics of mechanical systems, including metro-

nomes and inverted bottle oscillators discussed in this focus

issue. Perhaps, another interesting area of research could

entail the design of new small-scale, customizable mechani-

cal oscillators for performing controlled laboratory experi-

ments. While the work presented in this focus issue11

addresses some of these elements, more investigations are

needed. Another challenge is the measurement of large scale

dynamics and subsequent identification of model parameters

from noisy data of the collective response. This problem is

touched upon in this focus issue in regard to damage identifi-

cation in highway bridges.17
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