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We study the co-existence of stable patterns of synchrony in two coupled populations of identical

Kuramoto oscillators with inertia. The two populations have different sizes and can split into two

clusters where the oscillators synchronize within a cluster while there is a phase shift between the

dynamics of the two clusters. Due to the presence of inertia, which increases the dimensionality of

the oscillator dynamics, this phase shift can oscillate, inducing a breathing cluster pattern. We

derive analytical conditions for the co-existence of stable two-cluster patterns with constant and

oscillating phase shifts. We demonstrate that the dynamics, that governs the bistability of the phase

shifts, is described by a driven pendulum equation. We also discuss the implications of our stability

results to the stability of chimeras. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4961435]

Patterns of synchronized clusters are observed in many

networks, ranging from neuronal populations to power

grids. Despite significant interest among physicists and

applied mathematicians, the emergence and hysteretic

transitions between stable clusters in a network of identi-

cal oscillators have still not been fully understood. In par-

ticular, the celebrated Kuramoto model of identical

phase oscillators is known to exhibit multiple spatio-

temporal patterns, including co-existing clusters of syn-

chrony and chimera states in which some oscillators form

a synchronous cluster, while the others oscillate asyn-

chronously. Rigorous analysis of the stability of clusters

and chimeras in the finite-size Kuramoto model has

proved to be challenging, and most existing results are

numerical. In this paper, we contribute toward the rigor-

ous understanding of the emergence of stable clusters in

networks of identical Kuramoto oscillators with inertia.

We derive the conditions under which two patterns of

synchrony stably co-exist and demonstrate how inertia

affects the hysteretic transitions between the patterns.

Our stability results also shed light on the emergence of

transient and stable chimeras.

I. INTRODUCTION

Pattern synchronization has been shown to be central for

the functioning of a wide spectrum of biological and techno-

logical networks.1–7 Two important cooperative rhythms of

pattern dynamics are complete and cluster synchronization.

Complete synchronization, in which all oscillators evolve in

unison, and its dependence on network structure have

received a great deal of attention in the literature.8–12 Cluster

synchronization is observed when the network splits into

groups of coherent oscillators, but the dynamics between the

groups is asynchronous.13–23 The existence of clusters of

perfect synchrony in networks of identical oscillators is

strictly defined by intrinsic symmetries of the network.18,19

These symmetries are defined as permutations of the nodes

that preserve all internal dynamics and all couplings.20

Permissible cluster partitions in a given complex network

can be found via available combinatorial algorithms.22,23

Central questions in the study of cluster synchronization are

(i) under what conditions are the clusters stable? and (ii) do

the clusters defined by perfect symmetries persist under

parameter mismatch? These stability13,15,16,21 and persis-

tence17 questions have been addressed for different classes

of dynamical networks; yet, the full picture is far from being

complete.

The classical Kuramoto model is a network of 1D phase

oscillators with mean-field coupling.24–26 The oscillators are

assumed to be non-identical with different natural frequen-

cies, whose distribution is defined by a given probability

density function. The model has a coupling threshold such

that the oscillators, evolving incoherently for a weak cou-

pling, synchronize when the coupling exceeds the threshold.

Transitions from the incoherent state to various forms of par-

tial frequency synchronization, measured by an order param-

eter, have been studied in the Kuramoto model with different

regular and random coupling configurations (see a review

paper27 for more details). Historically, the emergence of

patterns of synchrony was studied in the Kuramoto model,

under the assumption of an infinitely large network size,

allowing for the mean field approximation. A breakthrough

in the rigorous study of the infinite-dimensional Kuramoto

model was made with the discovery of the Ott-Antonsen

ansatz29 which reduces the analysis of a restricted class of

phase states to low dimensional dynamics.28–30 Motivated

by real-world finite-size networks, the interest has now

shifted towards the analysis of finite-dimensional Kuramoto

models.31–35
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When oscillators in the classical Kuramoto model have

identical frequencies, the network has no coupling threshold

and complete synchronization is locally stable for any, arbi-

trarily weak coupling strength.27 This had been the main

obstacle in realizing that the identical oscillators can also

exhibit complex patterns of synchrony whose emergence

may be hidden by the stable synchronous state. This general

perception of somewhat uninspiring dynamics of identical

Kuramoto models has changed with the discovery of chimera

states36–39 in which structurally and dynamically identical

oscillators spontaneously break into groups where some

oscillators synchronize whereas the others remain incoher-

ent. There is now a vast literature on the study of chimera

states in the Kuramoto model as well as in other models of

biological and mechanical systems (see an extensive

review39 for more details and references). Most studies of

the stability of chimera states are numerical, with the excep-

tion of a few theoretical investigations, including the ones

performed for large40,41 and small networks42,43 of 1D phase

oscillators.

Inspired by the adaptive frequency model of firefly syn-

chronization44 where the oscillators are capable of adjusting

their natural frequencies, the classical Kuramoto model of

1D phase oscillators was extended to a model of 2D oscilla-

tors with inertia.45,46 This Kuramoto model with inertia was

shown to exhibit various synchronization transitions45–47 and

hysteristic phenomena,48 including intermittent chaotic chi-

meras49 and reentrant synchronous regimes.50 Existing ana-

lytical studies of the collective dynamics of the Kuramoto

model with inertia mainly aim at (i) the stability of complete

synchronization,51–53 (ii) bifurcations leading to its loss,54

and (iii) non-trivial phase transitions to synchrony in the

presence of noise.50

In this paper, we go further to analyze the co-existence

of stable patterns of synchrony in two symmetrically coupled

populations of identical Kuramoto oscillators with inertia.

We derive exact results on the stability of a two-cluster syn-

chronous state in which the population splits into two clus-

ters of synchronized oscillators, but there is no synchrony

between the clusters. We reduce the system, governing the

dynamics of the phase shift between the clusters, to the pen-

dulum equation.55 As a result, the phase shift between the

clusters can remain constant or can periodically rotate its

phase, depending on the choice of initial conditions. This

yields the bistability of patterns of synchrony where a pattern

with a constant inter-cluster phase shift stably co-exists with

a breathing pattern when the inter-cluster phase shift evolves

in time. Our stability analysis also addresses the emergence

of transient and stable chimeras.

The layout of this paper is as follows. First, in Sec. II,

we present and discuss the network model. In Sec. III, we

study the existence of synchronous clusters and perform the

analysis that allows for describing the dynamics of the syn-

chronous clusters in terms of the limit sets of the pendulum

equation. We derive the conditions on the bistability of syn-

chronous dynamics which are explicit in the parameters of

the network model. In Sec. IV, we analyze the variational

equations for the stability of the synchronous cluster and

obtain the main stability results of this paper. In Sec. V, we

present a numerical example which supports our analytical

results. Finally, Section VI contains concluding remarks.

II. TWO-GROUP NETWORK: IDENTICAL ROTATORS,
DIFFERENT GROUP SIZES

Following previous studies in networks of Kuramoto

models without38,43 and with inertia,49 we consider a two-

group network of 2D rotators

m€hi þ _hi ¼xþ l
N þM

XN

j¼1

sin hj � hi � a
� �

þ �

N þM

XM

j¼1

sin uj � hi � a
� �

; i ¼ 1;…;N

m€uk þ _uk ¼xþ l
N þM

XM

j¼1

sin uj � uk � að Þ

þ �

N þM

XN

j¼1

sin hj � uk � a
� �

; k ¼ 1;…;M:

(1)

Here, the network is divided into two groups of oscillators of

sizes N and M, with all-to-all symmetrical coupling within and

between the two groups, such that the intragroup coupling

strength, l, is stronger than the intergroup coupling strength, �.

Variables hi and uk represent the phases of oscillators in the

first and second groups, respectively. The oscillators are

assumed to be identical, with identical frequency x, phase lag

a 2 [0, p/2) and inertia m. The model (1) is an extension of the

Abrams et al. chimera model,38,43 consisting of two groups of

1D phase oscillators with Kuramoto-Sakaguchi coupling.24,56

In the model (1), we use the 2D Kuramoto oscillator with iner-

tia as the individual cell model and consider non-equal group

sizes. These two properties will allow for deriving analytical

conditions on the stability of clusters of synchrony, exhibiting

two types of co-existing behavior where (i) the phase between

the synchronized clusters remains fixed and (ii) the phase

between the clusters oscillates.

By rescaling time s ¼ lt=ðN þMÞ and parameter

b ¼ lm=ðN þMÞ, and using a rotating frame of reference

Hi ¼ hi � xtþ c; Uk ¼ uk � xtþ c, where c is a constant,

we can cast the model (1) into a more compact form

b €Hi þ _Hi ¼
XN

j¼1

sin ðHj �Hi � aÞ

þc
XM

j¼1

sin ðUj �Hi � aÞ; i ¼ 1;…;N

b€Uk þ _Uk ¼
XM

j¼1

sin ðUj � Uk � aÞ

þ c
XN

j¼1

sin ðHj � Uk � aÞ; k ¼ 1;…;M; (2)

where c¼ �/l represents the ratio between the intra- and

intergroup couplings such that c 2 (0, 1).
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III. EXISTENCE OF SYNCHRONOUS CLUSTERS

A. Cluster partition

The connectivity matrix G of network (2) has a block

structure

G ¼ JN;N cJN;M

cJM;N JM;M

� �
; (3)

where JN,N, JM,M, JN,M, and JM,N are N�N, M�M, N�M,

and M�N all-ones matrices, respectively.

In general, clusters of perfect synchrony are determined

by a network decomposition into the disjoint subsets of oscil-

lators V ¼ V1 [… [ Vd; Vp \ Vq ¼1 defined by the equal-

ities of the oscillator states. If this cluster decomposition is

flow-invariant with respect to the vector field of the network

system, then the corresponding manifold D(d) is invariant

and defines d synchronous clusters. Synchronous clusters

exist if the graph vertices have a corresponding balanced col-

oring.18–20 Every cluster corresponds to a coloring in which

two oscillators have the same color if and only if their states

are completely synchronized. Oscillators colored in this way

create a coloring map. A coloring of the vertices is balanced,

if each oscillator of color i has the same number of inputs

from the oscillators of color j, for all i and j. A minimal

balanced coloring is a balanced coloring with the minimal

number of colors.

In the context of the network (2), a necessary condition

for oscillators to form a cluster is the equal row sum con-

straint. In fact, the first N rows of matrix G, corresponding to

the first group of oscillators, have row sums equal to Nþ cM.

The remaining M rows are defined by the connectivity of the

second group and equal to Mþ cN. As a result, the minimal

cluster partition has two colors. The corresponding cluster

synchronization manifold

Dð2Þ ¼ fH1 ¼ � � � ¼ HN ¼ H; _H1 ¼ � � � _HN ¼ _H;

U1 ¼ � � � ¼ UM ¼ U; _U1 ¼ � � � _UM ¼ _Ug (4)

defines two clusters of synchrony. As the two groups of oscil-

lators are formed by all symmetrical all-to-all networks, all

other combinations of cluster partitions within the two clusters

are also possible. This includes so-called chimeras,43 where

the first group of N oscillators is completely synchronized, and

all M oscillators from the second group are desynchronized;

this state is defined by the cluster synchronization manifold

DðM þ 1Þ ¼ fH1 ¼ � � � ¼ HN; _H1 ¼ � � � _HN; U1;…;UM;
_U1;…; _UMg. Note that complete synchronization is impossible

in the network (2) as N 6¼M and the equal row sum constraint

is not respected.

In the following, we will focus on the dynamics on the

two-cluster synchronization manifold D(2) and the condi-

tions of its transversal stability.

B. Dynamics on the cluster manifold

1. Transformation to the pendulum equation

The dynamics on the manifold D(2) is defined by the

following 4D system:

b €H þ _H ¼ �N sin aþ cM sinðU�H� aÞ
b€U þ _U ¼ �M sin aþ cN sinðH� U� aÞ (5)

obtained from the system (2) by omitting the subscripts i, j,
and k.

For convenience, we rotate the coordinate frame and

introduce new variables

x ¼ U�H
y ¼ Hþ jU; where j ¼ M=N < 1:

(6)

The addition of the factor j to the standard change of

basis for the difference and sum variables is not necessary;

however, it will make the sum variable y strictly decreasing,

therefore making the analysis simpler.

In terms of x and y, the system (5) can be rewritten as

follows:

b€x þ _x ¼ ðN �MÞ sin a� cðN sinðxþ aÞ þM sinðx� aÞÞ;
(7a)

b€y þ _y ¼ �ðN þ jMÞ sin aþ cMðsinðx� aÞ � sinðxþ aÞÞ:
(7b)

We use the following trigonometric formula to simplify

Equation (7a):

N sinðxþ aÞ þM sinðx� aÞ
¼ ððM þ NÞ cos aÞ sin xþ ððN �MÞ sin aÞ cos x

¼ R sinðxþ dÞ;

where R ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þM2 þ 2MN cos 2a
p

and the angle d is

introduced to make the expression more manageable, with

cos d ¼ NþM
R cos a and sin d ¼ N�M

R sin a, yielding tan d

¼ N�M
NþM tan a ¼ 1�j

1þj tan a. Similarly simplifying the right-hand

side of (7b), we turn the system (7a) and (7b) into the follow-

ing form:

b€x þ _x ¼ X� R sinðxþ dÞ; (8a)

b€y þ _y ¼ �ð~X þ 2cM cos xÞ sin a; (8b)

where X¼ðN�MÞsina; ~X¼N2þM2

N , and d¼arctan 1�j
1þjtana
� �

,

with j¼M/N.

The shift xþ d! x transforms the system (8a) and (8b)

into the form

b€x þ _x þ R sinðxÞ ¼ X; (9a)

b€y þ _y ¼ �ð~X þ 2cM cosðx� dÞÞ sin a: (9b)

Note that Equation (9a), governing the difference dynamics

between the clusters, does not depend of the sum variable y,

such that Equation (9a) drives Equation (9b). Remarkably,

Equation (9a) is the equation of a pendulum, with a constant

torque X,55 as well as the model of a shunted Josephson

junction.60 Its dynamics on the cylinder ðx mod2p; _x ¼ vÞ
are known to exhibit various interesting dynamical regimes,

including bistability where a stable equilibrium co-exists

with a stable limit cycle. Figure 1 illustrates the well-known
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stability diagram58,60 that indicates possible dynamics as a

function of bifurcation parameters X, R, and b. Two bifurca-

tion curves separate the stability diagram into three regions

of parameters. The curve X/R¼ 1 corresponds to a saddle-

node bifurcation of equilibria. The curve X/R¼T(h) with

h ¼ 1=
ffiffiffiffiffiffi
bR
p

is the Tricomi curve57 that indicates a homo-

clinic bifurcation of the saddle where the homoclinic orbit

encircles the cylinder and forms a saddle connection. The

two curves meet at h*� 1.22.55,59 While the closed-form

derivation of the Tricomi curve is not available, we suggest

the following nonlinear function T(h) as an approximation of

the Tricomi curve:

T hð Þ ¼ 4

p
h� 0:305h3 ¼ 4

p
ffiffiffiffiffiffi
bR
p � 0:305 bRð Þ�3=2: (10)

This approximation matches the numerically calculated

Tricomi curve remarkably well (see Fig. 1) and will be used

for the derivation of the bistability conditions of cluster syn-

chrony in Statement 1.

The three stability regions of parameters in the pendu-

lum equation (8a) are as follows.

a. Region I: A stable equilibrium.

X
R
<

T hð Þ; 0 < h < h�

1; h > h�:

(
(11)

In this region, system (8a) has two fixed points on the cylin-

der: a saddle at x ¼ p� arcsin X
R � d and a stable equilibrium

(node or focus) at

xe ¼ arcsin
X
R
� d: (12)

b. Region II: Co-existence.

T hð Þ < X
R
< 1; 0 < h < h�: (13)

Here, the stable equilibrium at xe co-exists with a stable limit

cycle which emerged from the homoclinic orbit of the saddle

at X/R¼ T(h). xc(t) denotes the x-coordinate of the stable

limit cycle. The attraction basins of the stable equilibrium

and the limit cycle are separated by a stable manifold of the

saddle (Fig. 1).

c. Region III: A globally stable limit cycle. For X
R > 1, sys-

tem (8a) only has a globally stable limit cycle as the saddle

and the stable node have disappeared via the saddle-node

bifurcation at X/R¼ 1. The stable limit cycle corresponds to

rotation around the cylinder.

Equation (8b) for the sums of the cluster coordinates is

driven in (8b) via x(t). Therefore, as long as ~X þ 2cM cos x
> 0, any solution of (8b) eventually satisfies _y < 0 and y(t)
monotonically decreases in time. In particular, the time-

dependent solution ðye; _yeÞ of (8b), corresponding to the

stable fixed point xe in (8a), is obtained by integrating (8b)

such that

ye ¼ �ð½ð~X þ 2Mc cos xeÞ sin a�tþ y0Þ; (14)

where y0 is a constant of integration. The solution ðyc; _ycÞ,
corresponding to the limit cycle xc in (8b), is not given

explicitly.

Thus, we can conclude that three distinct dynamics of

system (8a) in regions I–III yield the three dynamical regimes

on the cluster manifold D(2) in the network system (2).

2. Cluster phase shifts

a. Constant phase shift (region I). Governed by the

phases U and H, two clusters of synchrony have a constant

phase shift Ue – He¼ xe, where xe is the coordinate of the

stable equilibrium of the pendulum system (8a) and defined

in (12). It follows from (5) and (6) that the cluster phases at

xe are defined by

FIG. 1. Bifurcation diagram ðh; XRÞ. The saddle-node (green dashed) horizon-

tal line and the Tricomi (blue solid) curve T(h) divide the diagram into

regions I–III. The Tricomi curve, corresponding to a homoclinic bifurcation

of the saddle, is calculated numerically. Its nearly perfect analytical approxi-

mation X
R ¼ TðhÞ ¼ 4

p h� 0:305h3, used in the bistability condition (18), is

depicted by the red dashed line. (I–III). Schematic phase portraits. In (II),

the stable limit cycle xc(t) co-exists with the stable fixed point xe. The shaded

area is the basin of attraction of the fixed point xe.
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He ¼
ye � jxe

1þ j
; Ue ¼

ye þ xe

1þ j
¼ He þ xe; (15)

where ye is defined in (14).

As the phase shift is constant, the rotation frequencies of

the two clusters become equal and are defined, according to

the system (5), by

_H ¼ �N sin aþ cM sinðxe � aÞ ¼ _U

¼ �M sin a� cN sinðxe þ aÞ: (16)

b. Co-existence of constant and oscillating phase shifts

(region II). The co-existence of the stable equilibrium and

the limit cycle in system (8a) yields the bistability of the

cluster regimes. Here, the phase shift can remain constant at

xe or periodically oscillate such that U – H¼ xc(t), which is

governed by the stable limit cycle. The realization of one of

the cluster regimes depends on initial conditions.

c. Oscillating phase shift (region III). Defined by the

globally stable limit cycle in (8a), the phase difference

between the clusters, establishing from any conditions on the

cluster manifold M, periodically oscillates such that

Hc ¼
yc � jxc

1þ j
; Uc ¼

yc þ xc

1þ j
¼ Hc þ xc tð Þ : (17)

The bistability condition (13) can be expressed in terms

of the original parameters of the network system (2). This

leads to the following assertion.

Statement 1: The constant and oscillating phase shifts
x¼U � H between two clusters on the cluster manifold
D(N) in the network system (2) co-exist if

aTR ¼ arctan
1þ j
1� j

cT hð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cT hð Þ

� �2
q < a

< arctan
1þ j
1� j

cffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p ¼ a�; (18)

where j ¼ M=N; TðhÞ ¼ 4

p
ffiffiffiffi
bR
p � 0:305ðbRÞ�3=2, and R

¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þM2 þ 2MN cos 2a
p

. The left hand side of the
inequality (18) is defined by aTR which corresponds to the
Tricomi curve (11). The right hand side is determined by the
critical value a*, for which system (8a) undergoes the
saddle-node bifurcation at X

R ¼ 1, where X ¼ ðN �MÞ sin a.
Condition (18) can also be cast in the alternative, more com-
pact form

4

p
ffiffiffiffiffiffi
bR
p � 0:305 bRð Þ�3=2 <

X
R
< 1: (19)

In Section IV, we will derive conditions on the stability

of the clusters. In particular, we will combine the stability

conditions with the co-existence condition of Statement 1 to

determine the parameter regions of two co-existing stable

cluster regimes with constant and oscillating shifts. We will

also discuss conditions for the emergence of chimeras when

one cluster of oscillators remains stable while the other clus-

ter disintegrates.

IV. STABILITY OF CLUSTERS

Linearizing the network system (2) about the synchro-

nous cluster solution (4) ðH; _H;U; _UÞ, we obtain the varia-

tional equations for the local stability of the cluster manifold

D(2)

b€niþ _ni ¼�ðN cosaþ cM cosðxs� aÞÞni

þ cosa
XN

j¼1

njþ c cosðxs� aÞ
XM

j¼1

gj; i¼ 1;…;N

b€gk þ _gk ¼�ðM cosaþ cN cosðxsþ aÞÞgk

þ cosa
XM

j¼1

gjþ c cosðxsþ aÞ
XN

j¼1

nj; k ¼ 1;…;M:

(20)

Here, ni is an infinitesimal perturbation of the ith oscillator’s

synchronous solution in the larger N-cluster, and gk corre-

sponds to the smaller M-cluster. x is the cluster phase shift as

defined above. System (20) can be rewritten in the matrix

form

b €V þ _V ¼ AV; (21)

where vector V ¼ columnðn1;…; nN; g1;…; gMÞ. Matrix A is

the Jacobian

A ¼
cJN;N � ðNcþMc�ÞIN c�JN;M

cþJM;N cJM;M � ðMcþ NcþÞIM

 !
;

(22)

where c ¼ cos a; c� ¼ c cosðxs � aÞ; cþ ¼ c cosðxs þ aÞ, IN

and IM are identity matrices, and JN,N, JN,M, and JM,N are all-

ones matrices.

A. Stability along the cluster manifold

The (NþM)� (NþM) Jacobian A has equal zero-row

sums. Therefore, it contains one zero eigenvalue that corre-

sponds to Equation (8b), which governs the rotating frame

coordinate y on the cluster manifold D(2). An eigenvector

Vsyn ¼ columnðn;…; n|fflfflffl{zfflfflffl}
N

; g;…; g|fflfflffl{zfflfflffl}
M

Þ determines the direction

along the cluster manifold D(2). The corresponding

eigenvalue

ks ¼ �Ncþ �Mc�

¼ �cðN cosðxs þ aÞ þM cosðxs � aÞÞ; s ¼ e; c (23)

defines the stability of the fixed point x¼ xe or the limit cycle

x¼ xc(t) in the pendulum equation (8a) which governs the

dynamics of the cluster shift on the cluster manifold D(2).

Case I: Fixed point xe.

If the dynamics on the cluster manifold is governed by

the fixed point xe ¼ arcsin X
R � d (cf. (12)), the stability of
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the constant phase shift between the two clusters is defined

via the eigenvalue (23) such that

�ke ¼ cðN cosðxe þ aÞ þM cosðxe � aÞÞ > 0: (24)

This condition holds true as long as X
R < 1 and the stable

fixed point exists in region I (cf. Fig. 1).

Case II: Limit cycle xc(t).
In this case, the eigenvalue kc is defined by the time-

varying phase shift xc(t). The stability of the limit cycle is

defined by the variational equation

b€f þ _f � kcðtÞf ¼ 0; (25)

written for the perturbations f to the limit cycle of system (7a).

The stability of the cycle in Equation (25) is defined by the

Lyapunov characteristic exponents. One of the exponents is

zero and corresponds to the direction along the limit cycle,

whereas the other is negative as the divergence of the vector

field of (7a) is negative, divFðx ¼ v; _vÞ ¼ �1=b < 0.

Therefore, the limit cycle xc is stable and determines the stabil-

ity of the synchronous solution on the cluster manifold D(2).

B. Transversal stability

To demonstrate that the synchronous clusters can stably

appear in the network (2), we shall prove the transversal sta-

bility of the cluster manifold D(2). We introduce the differ-

ence variables

ui ¼ ni � niþ1; i ¼ 1;…;N � 1

wk ¼ gk � gkþ1; k ¼ 1;…;M � 1; (26)

whose convergence to zero will imply the transversal stabil-

ity of D(2). Subtracting the (iþ 1)-th [(kþ 1)-th] equation

from the ith [kth] equation in system (21) and (22), we obtain

the variational equations for the transversal stability

b€ui þ _ui þ q1ui ¼ 0; i ¼ 1;…;N � 1; (27a)

b€wi þ _wi þ q2wi ¼ 0; i ¼ 1;…;M � 1; (27b)

where

q1 ¼ NcþMc� ¼ N cos aþ cM cosðxs � aÞ; (28a)

q2 ¼ Ncþ þMc ¼ Nc cosðxs þ aÞ þM cos a: (28b)

Here, q1 and q2 are eigenvalues of the Jacobian A in (22)

which have multiplicities N � 1 and M � 1, respectively.

Note that Equations (28a) and (28b) are uncoupled. The

analysis of the stability equations (28a) and (28b) leads to

the following assertions.

Theorem 1. [Stability of the cluster solution with a con-

stant phase shift].

Let the parameters satisfy the condition X/R< 1, then
the cluster solution (4) ðH; _H;U; _UÞ with the constant phase
shift xe is locally stable to transversal perturbations iff

a < acr; (29)

where the critical value acr is the solution of the equation

q2 ¼ c cosðxe þ aÞ þ j cos a ¼ 0: (30)

Here, c 2 (0, 1) is the coupling ratio, xe is defined via (12),

j¼M/N, and a 2 [0, a*), where a� ¼ arctan 1þj
1�j

cffiffiffiffiffiffiffiffi
1�c2
p (see

(18)). Positive values of q2 correspond to a< acr and define
the stability of the cluster solution.

Proof. The condition X/R< 1 implies that the pendulum

equation (8a), governing the dynamics of the phase shift x on

the cluster manifold D(2), has a stable equilibrium point

xe ¼ arcsin X
R � d (see Fig. 1). Therefore, functions (28a) and

(28b), q1 and q2, must be evaluated at xe. The stability of the

variational system (27a) and (27b) is guaranteed iff

q1 ¼ cos aþ cj cosðxe � aÞ > 0; (31a)

q2 ¼ c cosðxe þ aÞ þ j cos a > 0: (31b)

This is due to the fact that q1,2> 0 is required for the real

parts of the roots of the characteristic equations bs2þ sþ q1,2

¼ 0 for (27a) and (27b) to be negative. Note that cos a > 0

and cosðxe � aÞ > 0 for a 2 [0, p/2) in (31a), and therefore

q1> 0.

The phase shift xe is a monotonically increasing function

of a. Therefore, the function q2 monotonically decreases and

can become negative when increasing a. As a result, there is

a critical value acr for which q2 becomes 0. Finding acr

amounts to solving q2 ¼ c cosðxe þ aÞ þ j cos a ¼ 0. While

this equation cannot be solved for a in closed form, acr can

be directly calculated for given values of N, M, and c. This

concludes the proof. �

Corollary 1. [Sufficient condition]. If the relative size of
the two clusters j¼M/N satisfies the following sufficient
condition

j < 1� 2c2; (32)

then the cluster solution ðH; _H;U; _UÞ is locally stable to
transversal perturbations for any a 2 [0, a*).

Proof. The maximum value of acr is bounded by a* that

corresponds to the saddle-node bifurcation of the fixed point

xe at X/R¼ 1. Therefore, this bound gives the constraints on

c and j that can be calculated from

q2 ¼ c cosðxe þ a�Þ þ j cos a� > 0: (33)

As xeða�Þ ¼ p=2� arcsinc ¼ p=2� arctan cffiffiffiffiffiffiffiffi
1�c2
p , we get

cosðxe þ a�Þ ¼ sinðarcsinc� a�Þ ¼ c cos a� �
ffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
sin a�.

Therefore, the condition (33) can be rewritten as follows:

q2 ¼ ðc2 þ jÞ cos a� � c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
sin a� > 0: (34)

It further transforms into

tan a� <
c2 þ j

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p : (35)

At the same time tan a� ¼ 1þj
1�j

cffiffiffiffiffiffiffiffi
1�c2
p (see Statement 1), there-

fore, condition (35) becomes
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1þ j
1� j

cffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p <
c2 þ j

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p (36)

and yields the sufficient condition j< 1 � 2c2. This con-

cludes the proof of Corollary 1. �

Figure 2 illustrates the conditions of Theorem 1 for

q2> 0 and demonstrates that the stable cluster with a con-

stant shift exists in a wide region of parameters a, c, j.

Notice that acr, which separates the stability and instability

regions, coincides with a* for a significant (lower) part of

the curve a* (see Fig. 2(b)). Hence, in this region of a 2 [0,

1.26056) and c 2 [0, 0.3275), the cluster with a constant

shift, defined by the stable fixed point xe of Equation (7a),

remains stable as long as it exists. For values c� 0.3275, the

cluster becomes unstable at acr< a* and remains unstable

until it ceases to exist at a* (see the dark blue instability

region in Fig. 2(b)).

Remark 1. If the size of the cluster groups is equal so

N¼M, then cluster synchronization turns into complete syn-

chronization with phase shift xe¼ 0. As a result, the stability

condition (29) in Theorem 1 holds true for any a 2 [0, a*),

so complete synchronization is always (locally) stable. In

regard to Fig. 2(a), the corresponding horizontal cut at

j¼M/N¼ 1 contains no unstable region, and q2> 0 for any

a 2 [0, a*) (this top cut is not shown for a better visibility of

lower cuts j 2 [0.1, 0.9]).

Remark 2. If c¼ j, then acr from the stability condition

(29) can be explicitly calculated and equals acr¼ p/2� xe/2.

This follows from Equation (30) where c can be replaced by

j ¼ M
N . Therefore, Equation (30) simplifies to cosðxe þ aÞ

þcos a ¼ 2 cos xeþa
2

cos xe�a
2
¼ 0 which holds true if

a¼ acr¼p/2� xe/2.

Remark 3. [Relation to the stability of chimeras]. When

condition (29) is violated such that the function q2< 0, the

two-cluster pattern loses its stability (see Fig. 2). As it fol-

lows from the variational equations (27a) and (27b), the sta-

bility of the N-cluster of synchronous oscillators ðH; _HÞ is

determined by the condition q1> 0 which holds true for any

a 2 [0, p/2), independent from the sign of q2. Therefore,

when q2 changes sign from positive to negative, the trivial

fixed point of the variation equations (27a) and (27b), which

corresponds to the cluster manifold, becomes a saddle. This

saddle point has a stable manifold of dimension 2NþM and

an unstable manifold of dimension M, where the 2N stable

directions correspond to the variables of the first N

oscillators and are defined by the condition q1> 0. At the

same time, the M unstable directions are determined by the

condition q2< 0, which implies transversal instability of the

M variables of the oscillators from the second cluster. A trajec-

tory, starting close to the stable manifold of the saddle point

may remain close to it, giving rise to a transient chimera,

where the first cluster persists for a some fairly long amount of

time, especially in a large network. This argument comes from

the rigorous conditions on the stability/instability of the cluster

solution (4) ðH; _H;U; _UÞ whose stability along the cluster

manifold D(2) is proven. At the same time, a rigorous proof of

the stability of a non-transient chimera state DðM þ 1Þ ¼
fH1 ¼ � � � ¼ HN; _H1 ¼ � � � _HN; U1;…;UM; _U1;…; _UMg via

the stability of the first cluster oscillators’ variables remains

elusive. This is due to the fact that the stability of the chimera

state solution along the chimera manifold D(Mþ 1) cannot be

rigorously assessed via the 2D equation for the dynamics of

the phase shift (8a) but must be proven through the full

2� (Mþ 1) system, similar to (5), where U is replaced with

U1,…, UM. Although, our numerical simulations indicate the

emergence of non-transient chimeras (see Fig. 5), where the N-

cluster never disintegrates and remains stable.

Theorem 2. [Stability of the breathing cluster solution]

(sufficient conditions). Let the parameters satisfy the condi-
tion: X/R> T(h) (see Fig. 1) such that the system (8a) has a
stable limit cycle which determines the oscillating phase shift
xc(t) between two clusters. Then, the cluster solution (4)
ðH; _H;U; _UÞ with the phase shift xc in the network system
(2) is locally stable to transversal perturbations if

j cos a > c; (37a)

1� 4bNðk cos a� cÞ > 0: (37b)

Proof. As in the proof of Theorem 1, we should find

parameter regions for the stability of the variational equa-

tions (27a) and (27b). In contrast to the previous case of the

constant phase shift xe, the oscillating phase shift xc(t) makes

q1 and q2 time-varying periodic functions, and therefore, the

variational equations (27a) and (27b) contain time-varying

coefficients. While the precise bounds on the stability of

(27a) and (27b) can be numerically assessed via the calcula-

tion of the Lyapunov exponents, we derive analytical esti-

mates as follows. As in the case of the constant phase shift

xe, the necessary condition for the stability of (27a) and

(27b) is q1(xc(t))> 0 and q2(xc(t))> 0. In this case, these two

FIG. 2. Illustration of the stability con-

dition q2 ¼ c cosðxe þ aÞ þ j cos a > 0

in Theorem 1. Yellow (light) regions

are defined by q2> 0 and correspond to

the stable cluster with a constant shift.

Instability regions with q2< 0 are

depicted in dark blue. The cluster with

a constant shift does not exist in white

regions. (a). 3D diagram with 2D cuts

at various discrete j¼M/N. (b). 2D cut

at j¼ 0.8. The curve a* separates the

regions of existence (yellow/blue) and

non-existence (white). Point A corre-

sponds to the parameters used in Fig. 4.
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inequalities must be fulfilled for any time instant during the

period of the cycle xc(t). The condition q1 ¼ N cos aþ
cM cosðxcðtÞ � aÞ > 0 can be estimated via the worst-case

stability scenario where cosðxcðtÞ � aÞ ¼ �1. That is,

q1ðxcðtÞÞ > 08t if cos a > jc. Similarly, we get the bound

on q2ðxcðtÞÞ > 0 8t if cos a > c=j. As j< 1, the condition

for q2 also guarantees the condition for q1. This gives bound

(37a).

While bound (37a) alone would be sufficient if q1 and q2

were constant, increasing b can destabilize the variational

equations (27a) and (27b) with periodically varying coeffi-

cients. The destabilizing contribution of b can be assessed

via a simple criterion that the discriminants Dq1;q2
of the cor-

responding characteristic equations bs2 þ sþ q1;2ðxcðtÞÞ ¼ 0

are positive.61 In simple words, this sufficient condition

implies that as long as the origin remains a stable node fixed

point of variational equations (27a) and (27b) for any fixed

instant of time and never turns into a degenerate node or a

focus, the variational equations (27a) and (27b) with time-

varying parameters are stable. For the worst case of

cosðxcðtÞ þ aÞ ¼ �1, the condition on Dq2
¼ 1� 4bq2 > 0

yields bound (37b). This bound also includes the bound for

Dq1
> 0. �

Remark 4. The use of the worst-case stability approxi-

mation cosðxcðtÞ þ aÞ ¼ �1 yields a very conservative range

of values j, c, and a. It implies that the trivial fixed point of

the variational equations (27a) and (27b) with time-varying

coefficients is stable for any value of xc(t). In reality, this

does not have to be the case as long as its overall stability

over the period of the limit cycle xc(t) is preserved such that

its Lyapunov exponents remain negative. As a result, the suf-

ficient conditions (37a) and (37b) should be considered as a

proof of concept, giving an analytical proof for the stability

and feasibility of a breathing cluster in the network system

(2) (see Fig. 3 for the comparison with the numerically

assessed region of stability).

Statement 2 [Bistability conditions]: Combining the
co-existence condition (18) of Statement 1 with the stability
criteria of Theorems 1 and 2, yields sufficient conditions
on the co-existence of two stable patterns of synchrony
with constant and oscillating phase shifts between two
clusters.

In the following, we provide a numerical example of

these bistable regimes and hysteretic transitions between

them in a small network (2).

V. NUMERICAL EXAMPLE

As the emergence of stable clusters and chimeras is eas-

ier to demonstrate in large Kuramoto networks without38,43

and with inertia,49 where the dynamics is close to its mean-

field approximation, we knowingly choose the harder case of

a small network (2) with N¼ 5 and M¼ 4 as our numerical

example. Along with j¼M/N¼ 0.8, we fix parameter

c¼ 0.45 and study the dynamics of clusters as a function of

a and b.

Figure 3 demonstrates how inertia b affects hysteretic

transitions between the co-existing clusters. When inertia is

small (b¼ 0.1), the network is mono-stable such that the

breathing cluster emerges after the cluster with a constant

shift disintegrates. Our simulations for b¼ 2 and b¼ 20 indi-

cate that inertia promotes bistability and extends the range of

a where the two clusters stably co-exist. Notice that the clus-

ter with a constant shift loses its stability at a* which corre-

sponds to a saddle-node bifurcation of the fixed point in the

pendulum equation (8a) (see Fig. 2). Therefore, this cluster

is stable as long as it exists. When a decreases, the breathing

cluster loses its stability at ac which coincides with aTR,

where the limit cycle xc(t) merges into a homoclinic loop

of the saddle and disappears with further decrease of a

FIG. 3. Hysteretic transitions as a function of a and b. The cluster with a

constant shift is indicated by the zero derivative of phase shift h _xsi. Non-

zero averaged derivative h _xsi indicates the breathing cluster with an oscillat-

ing shift. The red dashed (blue solid) line corresponds to the direction of

increasing (decreasing) a. b¼ 0.1: The clusters do not co-exist. b¼ 2:

Clusters co-exist in the region (ac, a*). Point av corresponds to the co-

existence of the cluster with a constant shift and a stable chimera depicted in

Fig. 5. b¼ 20: Increased inertia b enlarges the bistability region. The range

[ac¼ 0.5537, a*¼ 1.3273] matches the analytical condition of Statement 1.

The thin vertical light stripe corresponds to the sufficient condition of

Theorem 2.
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(cf. condition (18) in Statement 1). Therefore, similarly to

the cluster with a constant shift, the breathing cluster remains

stable as long as it is present. The values ac¼ 1.3312 for

b¼ 2 and ac¼ 0.5537 for b¼ 20 match the values of the ana-

lytical bound (18) of Theorem 1 remarkably well. As a result,

the co-existence range of a, predicted in Statement 1, coin-

cides with the actual bistability range, observed in Fig. 3.

We have also verified the sufficient conditions of

Theorem 2 in the worst case of large inertia (b¼ 20). The

sufficient conditions (37a) and (37b) for the stability of the

breathing cluster yield a narrow region 0.9700< a< 0.9733

which is depicted by the light thin stripe in Fig. 3. While

being very conservative, this region lies inside the bistability

region. In accordance with (37b), this region becomes less

conservative and enlarges when b decreases.

Figure 4 gives a more detailed description of the

co-existing stable clusters with a constant and periodically

oscillating phase shifts for a¼ p/3 and b¼ 20 (cf. point A in

Fig. 2(b)). In Fig. 4(a), we present a snapshot of the estab-

lished cluster pattern. The oscillators in the first five- and

second four-oscillator groups synchronize within the two

clusters, and there is always a phase shift between the two

synchronized groups. Depending on the initial conditions,

the network exhibits either the two-cluster pattern with a

constant inter-cluster phase shift or a breathing two-cluster

pattern where the phase shift oscillates. While the static

snapshot of Fig. 4(a) does not allow for identifying the

dynamics of the phase shift, it actually corresponds to the

breathing cluster with the oscillating phase shift xc, (red

waveform depicted in Fig. 4(b)). Figure 4(b) indicates the

bistability of the two patterns of synchrony starting from ran-

dom non-equal initial conditions close to the cluster solution.

Figure 4(c) shows the co-existence of the two dynamics for

the phase shifts, similar to the qualitative phase portrait

of Fig. 1. To explicitly define the phase shift x between the

clusters, in Fig. 4(c), we set all initial conditions for the

oscillators in the first five-oscillator cluster to zero, and for

the oscillators in the second four-oscillator cluster to the

same set of values x; _x. Thus, the initial difference between

the cluster variable determines the initial phase shift x. Note

that different initial conditions (points A and B) induce dif-

ferent phase shifts.

FIG. 4. (a). Snapshot of the synchro-

nized two-cluster pattern in the network

(2) for a¼p/3 and b¼ 20. Initial con-

ditions are chosen close to the cluster

manifold and correspond to the breath-

ing cluster pattern. (b). Corresponding

time series of the co-existing phase

shifts xe and xc(t), robustly appearing

from non-identical random initiation

conditions, close to the cluster mani-

fold. (c). Co-existence of the constant

(xe) and oscillating phase shifts (xc(t)),
determined by the fixed point (depicted

in white) and the stable limit cycle

(depicted in red), respectively. Initial

conditions are chosen on the cluster

manifold. Trajectories starting from

initial conditions A and B converge to

different attractors (the fixed point and

limit cycle). Basins of attraction of the

fixed point and the limit cycle are

shown in black and white, respectively.

FIG. 5. (a). Snapshot of a chimera state

in the network (2) for a¼ av¼p/3,

b¼ 2. (b). Time-series of the phase dif-

ferences between the oscillators in the

second cluster. The oscillating phase

differences indicate the absence of

pairwise synchrony in the second clus-

ter, therefore showing a stable chimera.
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Figure 5 shows that the breathing cluster can turn into a

stable breathing chimera where the first cluster of N oscilla-

tors remains locally stable, while the second cluster of M
oscillators loses its stability. This stable chimera co-exists

with the cluster with a constant phase shift (see the corre-

sponding point av in Fig. 3). While we have consistently

explored the range of bistability between the two clusters of

synchrony both analytically and numerically, we have not

performed an exhaustive search for stable chimeras in the

bistability region [ac, a*] (cf. Fig. 3). Finding conditions on

the co-existence of both stable clusters and stable chimeras

is a subject of future study.

VI. CONCLUSIONS

Rigorous analysis of the stability of cluster synchroniza-

tion in complex networks of identical oscillators with sym-

metries has been shown to be challenging. It is typically

limited to a restricted types of coupling and network topolo-

gies. This is due to the fact that the system, which determines

the stability of a given multi-cluster decomposition, is

high-dimensional, non-reducible, and often asymmetric. The

Laplacian (diffusive) coupling with zero-row sum connectiv-

ity matrices seems to be the most difficult case for identify-

ing cluster decompositions and proving their stability.13–17

This is, in particular, due to complete synchronization, which

is always present in unweighted, but possibly heterogeneous

Laplacian networks, such that its stability often prevents the

observation of co-existing stable clusters. In light of this,

non-diffusive networks, such as pulse-coupled neuronal net-

works,11,22 where heterogeneous node degrees, defined by

different numbers of inputs received by each cell, makes

complete synchronization impossible.21 This creates distinct

groups of cells with equal node degree. The equal node

degree constraint is a necessary condition for cells to be in

the same synchronous cluster. Together with the requirement

of balanced coloring,18–20 this constraint determines the exis-

tence of clusters of perfect symmetry and allows for effec-

tively identifying cluster decompositions, even in large

complex networks, via the combinatorial algorithms.22,23

In this paper, we have studied the stability of clusters in

two coupled populations of identical Kuramoto oscillators

with inertia. This network is essentially the two-population

Kuramoto model,37,38 proposed as a simple model of chime-

ras.37 The new important modifications, which are vital for

bistability of cluster patterns in our network, are (i) non-

equal population sizes and (ii) the addition of inertia to the

oscillator equation. Property (i) makes the existence of com-

plete synchronization impossible such that a two-cluster

pattern is the minimal cluster partition in this two-population

network, although other multi-cluster partitions are also

possible. Property (ii) increases the dimensionality of the

intrinsic oscillator dynamics and creates a possibility for

bistability of cluster patterns.

We have rigorously analyzed the dynamical properties

and stability of the two-cluster pattern where the population

splits into two synchronized groups, but there is always a

phase shift between the groups. We have explicitly demon-

strated that the dynamics of the phase shift can be bistable

such that a constant phase shift co-exists with a time-varying

shift which periodically changes from 0 to 2p. As a result, a

two-cluster pattern with a constant shift co-exists with a

breathing two-cluster pattern with an oscillating phase shift.

We have derived the stability conditions for the stability of

the cluster patterns. Due to the simple structure of the two-

population network, the stability conditions for the variables,

corresponding to the first and second populations, are inde-

pendent. Therefore, the instability of synchrony within one

group does not immediately imply the instability within the

other group. In more rigorous terms, the cluster solution

becomes a saddle such that stable transversal directions

correspond to the first (larger) group of oscillators whereas

unstable transversal directions correspond to the oscillators

from the second (smaller) group. The stability result can be

interpreted in terms of multidimensional clusters and chime-

ras. In large networks, high-dimensional stable manifolds of

this saddle state may retain a close trajectory for a consider-

able amount of time, giving rise to transient chimeras.39 It

can also lead to the emergence of stable multi-cluster states,

where the oscillators in the smaller population split into sub-

groups. Our numerical simulations, not reported in this

paper, indicate these stable clusters, defined by high-

dimensional cluster manifolds which are embedded into each

other and contain the two-cluster manifold as a minimum

cluster solution. Rigorous study of the transition from lower

dimensional to high-dimensional cluster regimes, governed

by the symmetry-induced embedding hierarchy13 and

accompanied by multistability of patterns of synchrony is a

subject of future study.

In a more speculative way, the fulfilment of the transver-

sal stability condition of the first cluster variables, while the

transversal stability condition for the second cluster is

violated, can be interpreted as a proof of a stable chimera.

While the emergence of stable chimeras in the two-

population network is confirmed by our numerical simula-

tions, for this proof to be completely rigorous, one has to

demonstrate the stability of the chimera solution in the longi-

tudinal direction. This proof would require the analysis of

the high-dimensional system that governs the dynamics of

the chimera solution. In the case of the two-cluster solution,

studied in this paper, this system is two-dimensional and

allows for a rigorous analysis of its solutions. Our results,

concerning small networks of phase oscillators, also support

the recent observation that a network does not have to be

large to exhibit stable chimeras.43
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