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Synergistic effect of repulsive inhibition in synchronization of excitatory networks
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We show that the addition of pairwise repulsive inhibition to excitatory networks of bursting neurons induces
synchrony, in contrast to one’s expectations. Through stability analysis, we reveal the mechanism underlying
this purely synergistic phenomenon and demonstrate that it originates from the transition between different
types of bursting, caused by excitatory-inhibitory synaptic coupling. This effect is generic and observed in
different models of bursting neurons and fast synaptic interactions. We also find a universal scaling law for the
synchronization stability condition for large networks in terms of the number of excitatory and inhibitory inputs
each neuron receives, regardless of the network size and topology. This general law is in sharp contrast with
linearly coupled networks with positive (attractive) and negative (repulsive) coupling where the placement and
structure of negative connections heavily affect synchronization.
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I. INTRODUCTION

Synchrony has been broadly observed in pathological
brain states, especially during epilepsy and Parkinson’s
tremors [1,2]. Epilepsy is characterized by two behaviors,
short bursts of synchronized neuronal activity and long events
called seizures [2]. There has been much work on the
emergence of bursting rhythms in isolated and coupled neurons
[3–6]. Coupled bursting neurons can exhibit different forms
of synchrony: spike synchronization; burst synchronization,
when only the envelopes of the spikes synchronize; complete
synchrony; and antiphase bursting [7–9]. Excitatory and
inhibitory connections often play opposite roles in inducing
synchronization or antiphase bursting [7–22].

Fast nondelayed inhibition is known to promote pairwise
antiphase synchronization in purely inhibitory networks [13];
whereas fast excitation induces synchrony as long as the
coupling exceeds a threshold value [7–10]. Slow or time-
delayed inhibitory and excitatory synapses reverse their roles
such that slow or delayed inhibitory connections favor neural
synchrony [14–17]. At the same time, synchronization in a
pair of reciprocally coupled neurons with fast nondelayed
inhibitory neurons is typically unstable. More specifically,
it has been shown that fast nondelayed inhibition is always
repulsive in the two-coupled network of spiking (nonbursting)
cells [16], unless each cell has at least two slow intrinsic
variables [17]. Recently, it was shown that fast nondelayed
reciprocal inhibition can promote synchrony in some bursting
cells such as the leech heart interneuron model and Purkinje
neuron model, provided that the inhibitory connections are
weak and the initial conditions are chosen close enough, within
the spiking phase of bursting [18]. However, this synchronous
rhythm has a small basin of attraction and is fragile and largely
dominated by a much stronger coexisting antiphase bursting.

The network architecture also plays an important role in
synchronization of an inhibitory network. For example, it
was shown that even weak common inhibition of a bursting
network with strong repulsive inhibitory connections by an
external pacemaker neuron can induce synchronization within
the network. This common inhibition can win out over
the much (e.g., 100 times) stronger repulsive connections,
provided that the pacemaker’s duty cycle, the fraction of

the period during which the neuron bursts, is sufficiently
long [19]. Inhibitory connections also play various roles in
the emergence of synchronous and asynchronous rhythms in
neuronal motifs [20–24]. For example, the presence of a single
reciprocally connected pair provides dynamical relaying in
neuronal motifs that yields zero-lag synchrony despite long
conduction delays [23,24].

In this paper we report a counterintuitive find that fast
nondelayed repulsive inhibitory connections can robustly pro-
mote synchronization when added to an excitatory network of
square-wave bursting neurons. This synergistic effect is caused
by the ability of inhibition to effectively switch the type of
network behavior from square-wave [4] to plateau (“tapered”)
bursting [5,25]. Square-wave bursting [3] was named after its
shape during a burst which resembles a square wave. Plateau
(tapered) bursting is characterized by spikes of decreasing
size that turn into a plateau towards the end of the active
phase of bursting [5]. Square-wave bursters are difficult to
synchronize [7] and their spike synchronization requires strong
excitatory coupling, whereas plateau bursters with smaller
spikes are more prone to synchrony. The added inhibition
causes plateau bursting so weaker excitatory coupling is
sufficient to induce synchrony in the excitatory-inhibitory
network. This effect is generic and observed in different
models of bursting neurons. In this study, we choose the
Hindmarsh-Rose neuron model as an individual unit of the
network. It is important to emphasize that pairwise fast
nondelayed inhibition is always repulsive in networks of
Hindmarsh-Rose neurons, regardless of coupling strength and
initial conditions. Yet its addition lowers the synchronization
threshold much more significantly than strengthening the
present excitatory connections due to the combined action
of excitatory-inhibitory synaptic coupling and switching to
plateau bursting.

While many studies use reduced neuronal models such as
phase or relaxation oscillators where the spikes are ignored,
our results promote the use of the detailed biophysical models,
taking into account neuronal spikes and bursts. The discovered
synergistic effect is due to nonlinear interactions of spikes;
as a result, it is not observed in networks of the reduced
models. Yet, there is experimental evidence that the onset and
self-termination of seizures is accompanied by the transition
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between different types of network bursting activities [6,26]
where the spikes play an important role. Remarkably, the
transition to abnormal synchrony corresponds to switching
to plateaulike bursting [6].

We use the stability analysis to reveal the general mecha-
nism of the induced synchronization and demonstrate that there
is an optimal balance between the excitatory and inhibitory
couplings that trigger synchronized bursting. These results are
applicable to synchronization in a pair of connected neurons
as well as to large networks with mixed excitatory-inhibitory
connections. We discover universal scaling laws for the onset
and loss of stable synchronization where the synchronization
conditions are fully controlled by the number of excitatory
and inhibitory inputs each neuron receives, regardless of the
network size and topology. The independence of the synchro-
nization conditions in purely excitatory networks of bursting
neurons from the details of network architecture, except for
the in-degree of each neuron, was reported in Ref. [9]. In
this work, we show that the inhibition-induced synchrony is
also controlled by the number of inhibition inputs to each
neuron; however, the scaling law for the synchrony loss differs
and involves a ratio of excitatory and inhibitory inputs. These
general laws drastically differ from those in linearly coupled
networks with positive (attractive) and negative (repulsive)
coupling where the synchronization conditions are controlled
by the structure of negative connections via the eigenvalues of
the corresponding Laplacian matrix [27–29].

The layout of this paper is as follows. First, in Sec. II, we
present and discuss the network model. In Sec. III, we report
the main effect observed in a two-cell network with excitatory
and inhibitory connections. We also discuss the details of
the transition from square-wave to plateau bursting which
is caused by the disappearance of a homoclinic bifurcation
that governs the type of synchronized bursting. In Sec. IV,
we derive the variational equations for the stability of the
synchronous solution and explain the main synchronization
mechanism. We also suggest the universal scaling laws for
the stability of synchronization in large networks. In Sec. V,
a brief discussion of the obtained results is given. Finally,
the Appendix gives additional support to the scaling law,
controlling the loss of synchrony caused by overly strong
inhibition.

II. THE MODEL AND PROBLEM STATEMENT

We consider a network of n bursting Hindmarsh-Rose
neuron models with excitatory and inhibitory connections:

ẋi = ax2
i − x3

i − yi − zi + gexc(Vexc − xi)
n∑

j=1

cij�(xj )

+ ginh(Vinh − xi)
n∑

j=1

dij�(xj ),

ẏi = (a + α)x2
i − yi, żi = μ(bxi + c − zi), (1)

i,j = 1, . . . ,n.

Here x represents the membrane potential, and variables y

and z take into account the transport of ions across the
membrane through fast and slow ion channels, respectively.

The fast synaptic coupling is modeled by the sigmoidal
function �(xj ) = 1/[1 + exp{−λ(xj − �s)}] [11] with the
synaptic threshold �s = −0.25 [9]. The reversal potentials
Vexc = 2 > xi(t) and Vinh = −2 < xi(t) for any xi and any t,

i.e., the synapses are excitatory and inhibitory, respectively.
Hereafter, the parameters are chosen and fixed as follows:
a = 2.8, α = 1.6, λ = 10, c = 5, b = 9, μ = 0.001 [9,10].
The connectivity matrices C = (cij ) and D = (dij ) define the
structure of excitatory and inhibitory connections, respec-
tively; both mutual and unidirectional coupling are allowed.
gexc and ginh are the corresponding synaptic strengths. It is
required that all row-sums of C and D are equal to kexc and kinh,
the property that implies a network where each cell has kexc

inputs from excitatory neurons and kinh from inhibitory ones.
This constraint is chosen to ensure the existence of complete
synchrony and to allow the use of the stability conditions to
reveal the synchronization mechanism. Note that the dynamics
of completely synchronized neurons differs from that of an
isolated cell and is governed by the self-connected system:

ẋ = ax2 − x3 − y − z + kexc gexc(Vexc − x)�(x)

+ kinh ginh(Vinh − x)�(x),
(2)

ẏ = (a + α)x2 − y, ż = μ(bx + c − z).

This property is a key ingredient of the synergistic effect
reported in this paper.

III. TWO-CELL NETWORK: INHIBITION-INDUCED
SYNCHRONIZATION

We start off with the simplest network where two cells (1)
are symmetrically coupled through both excitatory and in-
hibitory connections with kexc = 1 and kinh = 1. From a
neuroscientist’s perspective, such a network can be viewed
as the interaction between two excitatory neurons with direct
excitatory and tertiary synapses [30] where the latter excites
the presynaptic terminal of an inhibitory interneuron, allowing
inhibition of the other excitatory cell (see Fig. 1) [31]. For
delayed synapses, however, the dynamics might look different.
From a physicist’s perspective, this is a network of two pulse-
coupled oscillators with attractive and repulsive connections.

FIG. 1. (Color online) (Left) Possible interactions between two
excitatory neurons 1 and 2 with direct excitatory and tertiary synapses.
The tertiary synapses mediate inhibition by exciting the presynaptic
terminals of inhibitory interneurons at their somas. This network
can be viewed as a pair of neurons effectively coupled through both
excitatory and inhibitory connections (right). Excitatory (inhibitory)
connections are depicted by arrows (circles). The dynamics of the
two-cell network is studied in Fig. 2.
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We use this two-cell network to demonstrate the synergistic
effect and clearly describe its stability mechanism. We will
then show that the same results carry over to larger networks
whose architecture always supports Dale’s law [32] such that
synaptic (outgoing) connections from a neuron to other cells
are either all excitatory or inhibitory.

Figure 2 reveals that there is a broad interval of inhibitory
strengths over which the repulsive inhibition compliments
attractive excitation in promoting neural synchrony. Notice
that the onset of spike (complete) synchronization through
boundary E1 is accompanied by or close to the transition from
square-wave to plateau bursting, indicated by the curve HB.
The two curves practically coincide up to the values of gexc ≈
0.8 such that a significant reduction of the synchronization
threshold for gexc as much as 10 times, observed at the
lower values of gexc is governed by this transition between
the two types of bursting. This transition occurs in both the
purely excitatory [Fig. 2(b)] and mixed excitatory-inhibitory
connections [Fig. 2(c)]. The addition of inhibition to the
purely excitatory network, whose synchrony requires a much
stronger coupling, makes the cells switch to plateau bursting
with smaller spikes which can be synchronized by the weaker
excitatory coupling. The blue (dark) synchronization region,
bounded by curves E1 and E2, corresponds to synchronized
bursting and indicates a synergistic balance between the
excitation and inhibition. Overly strong inhibition destroys
synchrony (through boundary E2) and leads to antiphase
bursting, as expected [Fig. 2(d)].

The key component of the synergistic mechanism is
the ability of inhibition to induce plateau bursting via the
disappearance of a homoclinic bifurcation (HB) in the two-
dimensional (2D) fast subsystem (μ = 0) of system (2) that
governs the type of synchronized bursting. Figure 3 illustrates
the bifurcation mechanism of this transition from square-wave
to plateau bursting. According to the Izhikevich classifica-
tion [5], square-wave bursting corresponds to fold-homoclinic
bursting where the burst termination is determined by a
homoclinic loop to a saddle in the fast subsystem. Increasing
synaptic coupling in the self-coupled system (2), whether
excitatory or inhibitory, eventually leads to the disappearance
of this homoclinic bifurcation and induces plateau bursting
(fold-fold bursting in the Izhikevich classification). This can
be achieved by strong excitation [see Fig. 2(b)] or by weaker
inhibition [see Fig. 2(c)]. The fast (x,y) subsystem of the
self-coupled system (2) has the nullcline z = h(x) ≡ −αx2 −
x3 + gexc(Vexc − x)�(x) + ginh(Vinh − x)�(x). The excitatory
(inhibitory) coupling moves the nullcline z = h(x) to the right
(left) (see Fig. 3). Remarkably, a small shift of the right branch
of z = h(x) towards the synaptic threshold x = �s (to the
left) caused by weaker inhibition effectively decreases the
divergence inside the limit cycle of the fast system, forming
the spiking manifold. This causes the limit cycle to shrink
in size and makes the homoclinic orbit disappear. At the
same time, a much larger amount of excitation is necessary
to shift the right branch of z = h(x) to a far-right region
where the divergence is small enough for a similar switch
from square-wave to plateau bursting via the disappearance of
the homoclinic orbit (see the HB curve in Fig. 2(top); the curve
is calculated using the bifurcation analysis software CONTENT

[33]).

FIG. 2. (Color online) Synchronization in the two-cell net-
work (1) as a function of excitation (gexc) and inhibiton (ginh).
Top panel: The color bar indicates the voltage difference |x1 − x2|,
averaged over the last three bursting periods. The blue (dark)
zone (c) corresponds to the zero voltage difference (complete
synchronization), appearing from random initial conditions. Observe
the effect when a small increase of inhibition from 0 dramatically
lowers the synchronization threshold from 1.28 to 0.11. Note that
the inhibition desynchronizes the cells in the absence of excitation
(gexc = 0), independently from the coupling strength and initial
conditions. Bifurcation curve HB (white dotted line) corresponds to
the transition to synchronized plateau bursting. Bottom panel: Burst
synchronization. The color bar indicates the phase difference between
the bursts, �φ = φ1 − φ2, averaged over the last three bursting
periods. The normalized phase 0 � φi � 1 of the ith bursting cell
(i = 1,2) is initiated and reset every cycle at the beginning of the
burst. The normalized phase difference �φ ranges from 0 [burst
synchrony, blue (dark gray) color] to 0.5 [antiphase bursting, red
(light gray) color]. Notice a similar effect of burst synchronization,
induced by repulsive inhibition.
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FIG. 3. (Color online) Transition from square-wave to plateau
bursting in the self-coupled system (2), controlling the type of
synchronous bursting. Top: Square-wave burster in the uncoupled
network (1). The right branch of the fast nullcline z = h(x) contains
two points AH1 and AH2 corresponding to supercritical Andronov-
Hopf bifurcations. A limit cycle of the fast system (μ = 0) is
born from the Andronov-Hopf bifurcation AH2 and grows in size
as z increases. This family of limit cycles constitutes the spiking
manifold which terminates at the homoclininc bifurcation HB of the
saddle point of the fast system, located on the middle branch of
z = h(x). The red (dotted) curve schematically indicates the route
for bursting trajectories. The plane x = �s displays the synaptic
threshold. Bottom: Plateau bursting induced by the combination
of excitatory and inhibitory coupling (gexc = 0.6 and ginh = 0.25),
corresponding to point (c) in Fig. 2. The added inhibition leads to
the disappearance of the homoclinic bifurcation such that the spiking
manifold extends further up and disappears as the limit cycle shrinks
to zero amplitude and disappears via the reverse Andronov-Hopf
bifurcation AH1.

Switching to synchronized plateau bursting also shifts
the plateau part of the burst to the right from the synaptic
threshold (see Fig. 3). Due to the choice of the synaptic
sigmoidal function �(xj ) in (1), the coupling between the
cells remains continuous during this part of the burst while
being pulsatile in the first half of the burst where the spikes
cross the synaptic threshold �s. This might not be the case
in cortical networks where the coupling is always pulsatile.
Figure 2(e) indicates the region between the stability boundary
E1, corresponding to the onset of induced synchrony, and the
HB curve, indicating the transition to synchronized plateau
bursting. This region corresponds to synchronized square-
wave bursting where all the spikes cross the synaptic threshold
�s, making the coupling pulsatile for all times. We have also

performed numerical simulations of the network (1) with the
sigmoidal function �(xj ), replaced by the Heaviside function
H (xj ), representing realistic fast pulse coupling. The obtained
stability diagrams are similar to the ones of Fig. 2 with a
slight expansion of the left stability zone bounded by E1
along the x and y axes, up to the synchronization coupling
threshold gexc = 1.35 in the purely excitatory network [cf.
the synchronization threshold gexc = 1.28 in the network with
the sigmoidal function �(xj )]. This increase in the coupling
comes from the fact that the Heaviside-type pulse coupling has
a weaker impact, compared to the sigmoidal-type coupling. As
a result, larger values of gexc and ginh are required to achieve
the same effect.

IV. STABILITY MECHANISM

A. Two-cell network

To explain the synchronization mechanism, we use the sta-
bility equations for the infinitesimal transverse perturbations
ξ12 = x1 − x2, η12 = y1 − y2, ζ12 = z1 − z2 [9]:

ξ̇12 = (2ax − 3x2)ξ12 − η12 − ζ12 − �(x) ξ12,
(3)

η̇12 = 2(a + α)xξ12 − η12, ζ̇12 = μ(bξ12 − ζ12),

where �(x) = S1 + S2, S1 = (gexc + ginh)�(x), and S2 =
[gexc(Vexc − x) + ginh(Vinh − x)]�′

x(x). Here x(t) is the syn-
chronous solution defined via the self-coupled system (2) and
�′

x(x) is the partial derivative of �(x) with respect to x. The
stability of the zero equilibrium {ξ12 = 0, η12 = 0, ζ12 = 0} of
the linearized system (3) corresponds to the stability of the syn-
chronous solution in the original network. The function �(x)
represents the contribution of the excitatory and inhibitory
coupling; it favors the stability of synchronization when it
becomes positive and has a destabilizing impact when it is
negative [9]. More specifically, the coupling term −�(x) ξ12

aims at stabilizing the zero equilibrium of system (3) when it
is positive and tends to destabilize the zero equilibrium when
it is negative.

The two terms S1 and S2, composing �(x), heavily depend
on whether the voltage x(t) exceeds the synaptic threshold
�s. The first term S1 contains the sigmoidal synaptic function
�(x) and becomes significant for x(t) � �s . Once turned on,
the term S1 > 0 makes �(x) > 0 for x(t) � �s (see Fig. 4) and
favors the stability for both excitatory and inhibitory coupling
as gexc + ginh > 0.

The second term, S2, can change sign; the term due to
the excitatory coupling gexc(Vexc − x) is positive and therefore
attractive, whereas the inhibitory one ginh(Vinh − x) is negative
and repulsive. It contains the derivative �′

x(x) which has a
peak around �s and rapidly decaying tails [in the case of the
Heaviside function H (xi), �′

x(x) turns into the δ function].
Therefore, the term S2 switches and remains on for the values
of x, close to the threshold �s when the spikes cross the
threshold. It becomes decisive for the overall sign of �(x) in
a region around the threshold �s, giving a distinct bell shape
to �(x) (see Fig. 4).

When x(t) drops below the threshold �s, the cells are
practically uncoupled. Our Lyapunov-function-based analysis
of synchronization in excitatory networks [9,10] suggests that
the spikes are the most unstable part of the synchronous
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FIG. 4. (Color online) Stability function �(x) for synchronized
bursting. Panels (a), (b), (c), and (d) correspond to the points (a), (b),
(c), and (d) in Fig. 2. (a) gexc = 0.6, ginh = 0: Unstable square-wave
synchronous bursting [brown (gray)] and the fast nullcline h(x) of
the self-coupled system, together with �(x) superimposed on its
own scale. The impact of �(x) subthreshold where the coupling
is insignificant (to the left from the threshold �s). (b) gexc = 1.28,

ginh = 0: The increased excitation makes the impact of �(x) stronger;
more importantly, it changes the type of synchronous bursting. Notice
that the spikes have shifted to the right and moved to the region
where the strong coupling is present. (c) gexc = 0.6, ginh = 0.25:
The red (upper) curve represents the contribution of the excitatory
coupling �exc = gexc�(x) + gexc(Vexc − x)�′

x(x), the green (light
gray) curve corresponds to that of the inhibitory coupling �inh =
ginh�(x) + ginh(Vinh − x)�′

x(x), and the thick black line indicates the
combined curve �(x) = �exc + �inh. Adding the inhibition decreases
the impact of �(x) [cf. with (a) where �(x) equals �exc in (c)]. At
the same time, it induces plateau bursting, with the spikes in the
region above the threshold, where the coupling is sufficiently strong
to synchronize them. (d) gexc = 0.6, ginh = 0.9: Strong inhibition
destabilizes synchronous plateau bursting. �(x) has a drop in the
region, covering the upper knee of the nullcline. As a result, the cells
diverge when slowly crawling up this part of the nullcline. Note that
synchronous plateau bursting of the self-coupled system is unstable
and does not represent the dynamics observed in the network; the cells
become locked into antiphase square-wave bursting [cf. Fig. 2(d)].

solution such that their stabilization via the synaptic coupling
yields complete synchronization. The above-threshold part
of the synchronous solution lies in the stability zone as the
coupling function �(x) > 0 for any combination of gexc and
ginh. Therefore, this part of the solution can be stabilized by
making the coupling stronger. At the same time, the subthresh-
old part of the synchronous spikes is difficult to stabilize as
the contribution of the term S2 rapidly decays to zero below
from the threshold. Moreover, only excitatory coupling can
stabilize the synchronous trajectory in the subthreshold region
as it yields the positive peak of the bell-shaped curve �(x) [see
Fig. 4(a)]. The addition of inhibition lowers this peak and can

make it negative [see Fig. 4(d)], making the region around
the threshold less stable. Figures 4(a) and 4(b) show that
increasing �(x) (via increasing gexc) induces synchrony in the
purely excitatory network. However, it requires fairly strong
excitation to stabilize the synchronous solution, especially
its subthreshold part. Figure 4(c) demonstrates that adding
the inhibition has a twofold effect. It lowers the stabilizing
impact of �(x) around and below the synaptic threshold;
however, it helps switching the type of synchronous bursting
via (2), making the spikes shorter and moving them towards
the stability region, controlled by the synchronizing term S1.

Increasing inhibition typically switches synchronous square-
wave bursting to plateau bursting which places the spikes of
synchronous bursting into the stability (above-threshold) re-
gion that can be, in turn, effectively stabilized by the excitatory
coupling via S1. Therefore, the combination of gexc + ginh

synergistically induces synchronized bursting within a wide
region of parameters gexc and ginh. Its right stability boundary
E2 (cf. Fig. 2) corresponds to synchrony loss and is defined by
the mutual arrangements between the graphs of �(x) and the
nullcline h(x) [Fig. 4(d)]. This happens when the upper knee
of h(x) falls inside the instability zone where �(x) is negative
[cf. Fig. 4(d)]. The Appendix contains an additional argument
for predicting the slope of boundary E2. This estimate gexc =
0.78 ginh (see the Appendix) coincides remarkably well with
the numerically calculated boundary E2 in Fig. 2.

It is important to restate that the dynamics and type of
synchronous bursting x(t) are controlled by the self-coupled
system (2) and depend on both gexc and ginh. This property
allows the inhibition to induce plateau bursting in the self-
coupled system (2). The synchronous bursting observed in
the self-coupled system (2) does not necessarily represent the
emergent network dynamics. This synchronous solution can be
unstable, especially when ginh is overly strong as in Fig. 4(d).
Therefore, the network generates a different stable rhythm;
this is typically antiphase square-wave bursting as in Fig. 2(d)
(cf. the two insets for consistency).

While the onset of inhibition-induced synchronization is
typically governed by the transition from square-wave to
plateau bursting, the addition of inhibition can also induce
synchronized square-wave bursting in a smaller region of
parameters [Fig. 2(e)]. However, the synchronization mech-
anism is essentially the same; the inhibition decreases the
subthreshold part of the spikes, without changing the type of
bursting, and thus facilitates synchronization, although fairly
strong excitation is required, making the synergistic effect less
pronounced.

B. Larger networks: The scaling laws

The discovered inhibition-induced synchronization phe-
nomenon is also present in larger networks of square-wave
bursters (1). We demonstrate that the structure of the added
inhibitory connections is not important and only the number
of inhibitory inputs controls the onset of synchronization,
independent from all other details of their network topology. In
the context of complex dynamical networks, this unexpected
result indicates the drastically different roles of network
topology in synchronization of linearly [28,29] and synap-
tically coupled networks with attractive and repulsive
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FIG. 5. (Color online) Stability diagrams for network synchronization, similarly to that of Fig. 2. The color bar indicates the mean voltage
difference

∑n−1
i=1

∑n

j>i
2

n(n−1) (xi − xj ), calculated and averaged over the last three bursting periods. Notice the nearly identical diagrams for
pairs of 10-cell irregular and 5-cell regular networks with kexc = 4 and kinh = 4 (left pair) and kexc = 2 and kinh = 4 (right pair). Excitatory
(inhibitory) connections are depicted by arrows (circles). Excitatory (inhibitory) neurons in the 10-cell irregular networks [with only outgoing
excitatory (inhibitory) connections] are denoted by light (dark) circles. The height and width of the left instability zone, adjacent to the gexc axis
and corresponding to desynchronized square-wave bursting, are inversely proportional to kexc and kinh, respectively (also compare with Fig. 2).

connections. Figure 5 shows that the size of the left desyn-
chronization zone, bounded by the gexc axis and boundary E1
(cf. Fig. 2), scales down vertically and horizontally by kexc and
kinh times, respectively. As a result, the stability boundaries E1
for the onset of synchrony are nearly identical for networks
of different sizes and topologies, provided that kexc and kinh

are uniform for each cell. In support of this claim, we have
analyzed a series of different regular and random networks (1)
with uniform numbers of excitatory (kexc) and inhibitory (kinh)
synapses per neuron. For all simulated networks, numerical
results are consistent with the scaling law above. Figure 5
demonstrates two representative pairs of networks yielding
the largest and smallest regions of inhibition-induced syn-
chronization for all possible network topologies (1) with the
given number of excitatory and inhibitory inputs. Figure 6
summarizes the numerical simulations of different networks
with different topologies and shows how the synchroniza-
tion effect of added inhibition scales with the size of the
network.

To show that the scaling laws carry over to larger networks
with random coupling matrices, we have simulated a 100-cell
random network where each cell receives four excitatory
kexc = 4 and four inhibitory kinh = 4 connections (Fig. 7).
The network consists of 80 excitatory and 20 inhibitory cells
such that the excitatory (inhibitory) cells only have excitatory
(inhibitory) outgoing connections, thereby abiding by Dale’s
law. Both excitatory and inhibitory coupling strengths are
mismatched by adding �gijq to gexc and ginh for each existing
connection (i,j ). The mismatch parameter �gij is expressed as
a percentage of gexc and ginh and kept equal to 5%; the values
of the parameter q are chosen randomly from the interval
(−1, 1) for each excitatory and inhibitory connection (i,j ),
yielding a 10% maximum mismatch. The stability diagram
supports the scaling law and has a structure similar to the two
left diagrams in Fig. 5, all corresponding to different network
topologies with the uniform number of connections kexc = 4
and kinh = 4.

To target realistic biological networks with nonuniform
numbers of excitatory and inhibitory inputs per neuron, we

have simulated a 100-cell network, similar to that of Fig. 7, but
with an average number of inputs kexc = 4 and kinh = 4. This
heterogeneous network has been generated from the network
topology of Fig. 7 with kexc = 4, kinh = 4, and nonmismatched
gexc and ginh by randomly choosing a pair of cells and changing
their in-degrees of the excitatory and inhibitory inputs by
subtracting one incoming connection of each type from one
cell and adding these connections to the other cell. As a result,
one half of the cells have kexc = 3 and kinh = 3, while the
other half have kexc = 5 and kinh = 5, yielding the average
kexc = 4 and kinh = 4. This effective mismatch between the
overall strength of the incoming connections to each neuron
is larger than the 10% maximum mismatch used in the
previous example (Fig. 7); however, the stability diagram
for approximate synchronization is quite similar to Fig. 7,
except for the appearance of a more irregular structure of the
synchronization stability zone due to the increased coupling
mismatch. Increasing the heterogeneity mismatch between the
connections even further shall eventually make approximate
spike synchronization impossible; however, we expect induced
burst synchronization to persist.

To explain the scaling law, we shall return to the transversal
variational equations (3) written for n − 1 difference
variables ξij = xi − xj , ηij = yi − yj , ζij = zi − zj , and
i,j = 1, . . . ,n. The equations for the purely excitatory
networks were given in Ref. [9] where an analog of the master
stability function [27] for synaptically coupled networks (1)
was used to analyze the stability of the most unstable
transverse mode. Unfortunately, the master stability function
cannot be applied to mixed excitatory-inhibitory networks in
general as it requires simultaneous diagonalization of both the
excitatory (C) and inhibitory (D) connectivity matrices. This
is impossible in general unless the two matrices commute [34].
In the latter case, the stability equation for the most unstable
transverse synchronous mode is Eq. (3) with a new stability
function �new(x) = (kexcgexc + kinhginh)�(x) − gexc(Vexc −
x)�′

x(x)(kexc + γ exc
2 ) − ginh(Vinh − x)�′

x(x)(kinh + γ inh
2 ),

where γ exc
2 and γ inh

2 are the second largest eigenvalues of
the (commuting) Laplacian connectivity matrices for the
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FIG. 6. (Color online) Ratio of the synchronization threshold
in an excitatory network without inhibition and the minimum
synchronization threshold achieved by adding inhibition, as a function
of the network size n, for different values of kexc and kinh. The ratio of
the synchronization threshold reduction, induced by added inhibition
is as large as 12 for the two-cell network (compare with Fig. 2).
The four curves represent four types of network topology: rings
of cells with local excitatory and inhibitory connections (kexc = 2
and kinh = 2); all-to-all networks with both global excitatory and
inhibitory connections (kexc = n − 1 and kinh = n − 1); networks
with global excitatory and local inhibitory connections (kexc = n − 1
and kinh = 2); and rings of cells with local excitatory and all-to-all
inhibitory connections (kexc = 2 and kinh = n − 1). Notice that the
addition of global inhibition to a locally coupled excitatory network
(local excitation-global inhibition) yields the smallest reduction in
the synchronization threshold for n > 3 (lowest line) and therefore
has the worst synchronization properties. At the same time, the
addition of local inhibition to the same locally coupled excitatory
network yields the highest reduction ratio for n > 3 (top line) and
indicates a nontrivial synergistic effect of the combined inhibitory and
excitatory topologies. Also observe that global inhibition promotes
synchronization more significantly than local inhibition when added
to a globally coupled excitatory network, as the global excitation-
global inhibition configuration has a higher synchronization threshold
reduction ratio (second line from the top) compared to that of the
global excitation-local inhibition configuration (third line from the
top).

excitatory and inhibitory networks, CL = C − kexcI and
DL = D − kinhI, respectively. The first term in �new(x)
accounts for the number and strength of excitatory and
inhibitory inputs. The last two terms, containing the partial
derivative �′

x and the networks structure via γ exc
2 and γ inh

2 , only
matter for the stability or instability of synchronization in the
region of x(t), close to the synaptic threshold �s, similarly to
the two-cell network case. The shift of the nullcline h(x) and
switching from square-wave to synchronous plateau bursting
are governed by kexcgexc and kinhginh via the self-coupled
system (2). As a result, the spikes of the synchronous bursting
solution leave the bell-shaped zone [similarly to Fig. 4(c)]
such that the contribution of the last two terms in �new(x)
becomes insignificant for synchronization. This yields the
scaling law when the minimum strength of added inhibition

FIG. 7. (Color online) Top: Induced synchronization in a 100-
cell randomly generated network with uniform kexc = 4 and kinh = 4.

Bottom: The network has 80 excitatory [red (light gray)] and 20
inhibitory [blue (dark gray)] cells. The excitatory connections are
marked by red (light gray) arrowed lines; the inhibitory coupling is
indicated by blue (dark gray) arrows. Both excitatory and inhibitory
coupling strengths are heterogeneous, with randomly distributed
mismatch up to 10%. The color bar indicates the mean voltage
difference as in Fig. 5. The stability diagram is similar to those of
the two left diagrams in Fig. 5, corresponding to the 5- and 10-cell
networks with kexc = 4 and kinh = 4. Complete spike synchronization
is impossible in this mismatched network; however, an approximate
synchronization with small voltage differences (offsets between the
spikes) is robustly present. Various shades of blue (black) and the
nonhomogeneous structure of the synchronization stability zone
correspond to slight voltage offsets due to the parameter mismatch.

g∗
inh, sufficient to induce plateau-bursting synchrony, is

inversely proportional to kinh, regardless of the network
size and structure (compare, for example, g∗

inh ≈ 0.14 in
the two-cell network of Fig. 2 and g∗

inh ≈ 0.035 = 0.14/4
in the networks of Fig. 5 with kinh = 4, all calculated at
the level gexc = 0.2). Notice that the five-cell networks of
Fig. 5 correspond to the commuting excitatory and inhibitory
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connectivity matrices: global excitation–global inhibition
and local excitation–global inhibition. In the case where the
connectivity matrices do not commute (the 10-cell networks
of Fig. 5 and the 100-cell network of Fig. 7), the eigenvalues
of the connectivity matrices cannot be used and the stability
function �new(x) cannot be derived. A modification of the
connection graph method [35] that uses graph theoretical
reasoning instead of the spectrum of the connectivity matrices
can be used to write down a set of similar stability functions.
However, the stability argument is essentially the same, the
induced synchronization is governed by the transition to
plateau bursting that is, in turn, controlled by the self-coupled
system. Consequently, the same scaling law for the inverse
dependence of the induced synchronization threshold on
gexc and kinh also holds for realistic noncommuting coupling
configurations. Our results also indicate that the loss of stable
synchrony via the right (inclined) boundary (similarly to
boundary E2 in Fig. 2) is governed by a simple condition
gexc = α kinh

kexc
ginh, where α is a scaling factor, uniform for

different topologies with the same ratio kinh/kexc. As in the
two-cell network yielding the slope gexc = 0.78 ginh, this
condition is determined by the shift of the nullcline h(x)
such that the upper knee of h(x) moves close to the synaptic
threshold �s and falls into the instability zone [as in Fig. 4(c)].

V. CONCLUSIONS

We have discovered the synergistic effect of combined
attractive excitation and repulsive inhibition in promoting
bursting synchrony. Remarkably, the addition of the inhibitory
coupling lowers the synchronization threshold much more
significantly than strengthening the present excitatory connec-
tions. The effect is generic and observed in other Hodgkin-
Huxley-type models of square-wave bursting cells [36],
including Sherman models [37] with Vexc = 10 mV, Vinh =
−75 mV, �s = −40 mV [36]. The effect is also independent
of the choice of the synaptic interaction model, ranging
from the instantaneous pulsatile coupling to a fast dynamical
synapse [15]. While fast nondelayed inhibition can lead to the
coexistence of synchronous and antiphase bursting in some
bursting models [18] when the coupling is weak, typically
comparable to the small intrinsic parameter of the individual
neuron, a significant synergistic effect is only observed in
a range of coupling where the inhibition is purely repulsive
and strong to change the type of bursting. Our preliminary
results show that inhibition also promotes burst synchrony
in realistic networks with a highly heterogeneous structure
of connections, where spike or approximate synchrony is
impossible. Our study has potential implications for under-
standing the emergence of abnormal synchrony in epileptic
brain networks. An epileptic patient is normally (i.e., except
for during a seizure) in a desynchronized state which might
correspond to the instability region to the left of the E1 border
in Fig. 2. Our results suggest that promoting presumably
desynchronizing inhibition in an attempt to prevent the pa-
tient’s seizures can have a counterproductive effect and induce
abnormal synchronous firing in the excitatory-inhibitory brain
network. Brain networks have been also shown to evolve their
functional topology during epileptic seizures [2]. In light of
this, our results on the role of network connectivity, identifying

network topologies with the highest and lowest resilience
of abnormal synchronized bursting, can give insights into
how seizures self-terminate and into how to control epileptic
networks. Outside neuroscience, negative pairwise repulsive
interactions were previously shown to have a positive effect on
synchronization in linearly coupled networks, where negative
interactions by themselves tend to destabilize synchronous
states but can compensate for other instabilities [29]. However,
this intriguing phenomenon, where the structure of negative
connections heavily affects the synchronization, conceptually
differs from the one reported in this study. Apart from
synchronization, a counterintuitive role of inhibition was
reported in Ref. [38], demonstrating that the addition of
inhibitory nodes to an excitatory network of 1D discrete-time
oscillators causes self-sustaining dynamics.
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APPENDIX: SLOPE OF SYNCHRONY
LOSS BOUNDARY E2

This Appendix provides additional support for explaining
synchrony loss, caused by overly strong inhibition via the
stability boundary E2 (see Fig. 2). In addition to the stability
argument based on the variational equations (see Sec. IV), we
use a more straightforward approach to predict the slope of the
boundary E2 in the two-cell network.

The network equations (1) can be written for the two-cell
network as follows:

ẋi = ax2
i − x3

i − yi − zi + gexc(Vexc − xi)�(xj )

+ ginh(Vinh − xi)�(xj ),

ẏi = (a + α)x2
i − yi, (A1)

żi = μ(bxi + c − zi), i,j = 1,2.

Note that the combined action of two excitatory and inhibitory
synapses essentially amounts to that of one synaptic connec-
tion with strength gsyn and synaptic reversal potential Esyn.

The corresponding system reads:

ẋi = ax2
i − x3

i − yi − zi + gsyn(Esyn − xi)�(xj ),

ẏi = (a + α)x2
i − yi, (A2)

żi = μ(bxi + c − zi), i,j = 1,2.

The synaptic reversal potential Esyn changes in the range
[−2, 2], allowing us to vary the type of the connection from
purely inhibitory when Esyn = −2 < xi for all xi(t), to purely
excitatory when Esyn = 2 > xi(t). In this setting, changing
the coupling strengths gexc and ginh in the network (A1)
with fixed Vexc = 2 and Vinh = −2 is equivalent to changing
the values of gsyn and Esyn in the network (A2). Figure 8
shows robust synchronization in an interval of gsyn and Esyn.
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FIG. 8. (Color online) Role of Esyn in synchronization of the two-
cell network (A1). The stability diagram and color coding are similar
to those of Fig. 2. Decreasing the reversal potential Esyn from 2 first
dramatically lowers the synchronization threshold. Dropping Esyn

below −0.25 makes the connection essentially inhibitory such that
synchronization cannot be achieved for any value of gsyn: Note the
vertically rising stability boundary around Esyn = −0.25.

Here the left stability boundary, indicating the drop of the
synchronization threshold from 1.28 with decreasing Esyn

from 2, corresponds to the boundary E1 in Fig. 2. The
vertical stability boundary for synchrony loss at Esyn = −0.25
corresponds to the boundary E2 in Fig. 2. The origin of
this almost vertically rising boundary, starting roughly at

Esyn = −0.25 is of no mystery if one realizes that this is also
the synaptic threshold �s = −0.25. It is not a coincidence
that these two values appear equal. Note that the synaptic
connection becomes purely inhibitory when xi(t) exceeds the
reversal potential Esyn. Therefore, the part of the synchronous
solution lying above Esyn (mainly, the above-threshold part of
the spikes) cannot be robustly stabilized. At the same time,
when xi(t) is below Esyn, the synapse is excitatory. As Fig. 2
suggests, when Esyn is chosen as low as �s, the excitatory
action of the synapse is nonexistent as the synapse is practically
off below the synaptic threshold �s.

This is the key observation for predicting the slope of the
stability boundary E2 in the original network (1). We return
to the network (1) and notice that for the overall impact of the
excitatory and inhibitory connections to be robustly synchro-
nizing, the overall input to the i-th cell, gexc(Vexc − xi)�(xj ) −
ginh(Vinh − xi)�(xj ), must remain positive. Rewriting this
condition yields gexcVexc+ginhVinh

gexc+ginh
− xj > 0, as �(xj ) � 0. Notice

that the first term plays a role of the reversal potential Esyn in
the network (A2). Therefore, according to Fig. 8, gexcVexc+ginhVinh

gexc+ginh

cannot exceed Esyn ≈ �s = −0.25 for synchronization to
remain stable. This yields the following condition on the
stability boundary gexc = �s−Vinh

Vexc−�s
ginh, written in terms of the

parameters of the original network (1). Plugging in the values
of the parameters Vinh = −2, Vexc = 2, and �s = −0.25,

one gets gexc = 0.78ginh. This condition predicts the slope
of the boundary line E2 remarkably well. This argument also
carries over to larger networks and supports the scaling law
for synchrony loss: gexc = α kinh

kexc
ginh.
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