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Synchronization in On-Off Stochastic Networks:
Windows of Opportunity

Russell Jeter and Igor Belykh, Member, IEEE

Abstract—We study dynamical networks whose topology and
intrinsic parameters stochastically change, on a time scale that
ranges from fast to slow. When switching is fast, the stochastic
network synchronizes as long as synchronization in the averaged
network, obtained by replacing the random variables by their
mean, becomes stable. We apply a recently developed general
theory of blinking systems to prove global stability of synchro-
nization in the fast switching limit. We use a network of Lorenz
systems to derive explicit probabilistic bounds on the switching
frequency sufficient for the network to synchronize almost surely
and globally. Going beyond fast switching, we consider networks
of Rossler and Duffing oscillators and reveal unexpected windows
of intermediate switching frequencies in which synchronization in
the switching network becomes stable even though it is unstable
in the averaged/fast-switching network.

Index Terms—Nonlinear oscillators, stochastic processes, syn-
chronization.

I. INTRODUCTION

XAMPLES OF dynamical networks include Internet

routers, power grids, genetic networks, ecological
networks, neuronal networks, and communication/social net-
works [1]-[3]. A great deal of attention has been focused on
examining the interconnectedness of the dynamical properties
of the individual nodes and those of the network topology
[1]-[4]. Specifically, researchers have studied the interplay
between these network characteristics as they apply to causing
synchronization within the network, as synchronization is
a key property among both biological and technological
networks (see, for example, [5]-[17]). Most studies have
looked at networks whose connections are static; only very
recently researchers have considered networks with topology
that evolves in time based on a deterministic or stochastic rule
[18]-[49]. These networks belong to a wide class of evolving
dynamical networks whose nonlinear dynamics and control
are a hot research topic due to their potential in a variety
of emerging applications (see a review paper [50] and the
references therein).
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In many realistic networks, collections of nodes that are
organized into a network interact only sporadically via on-off
connections. Examples include stochastically switched en-
gineering networks and circuits, such as power converters
[51], [52] and packet switched networks such as the In-
ternet. Blinking networks that were introduced in [20], [21],
are particularly relevant models for such sporadically inter-
acting systems. These networks are composed of oscilla-
tors with connections that switch on and off randomly; the
switching time is fast, with respect to the characteristic time
of the individual oscillator. Different types of synchronization
in blinking networks were studied in [20], [28], [30]-[34].
Beyond network synchronization, rigorous theory for the be-
havior of stochastically switching networks that blink rapidly
was developed in [42], [43]. In particular, this theory allows
for deriving explicit bounds that connect the probability of
converging towards an attractor of a multistable blinking net-
work, the switching frequency, and the chosen initial condi-
tions [44].

The purpose of this paper is two-fold. First, we review and
promote the general theory of blinking networks [42], [43] and
show how its general theorems on probabilistic convergence
can be applied to synchronization in dynamical networks of
concrete periodic or chaotic oscillators (Sections I and III). In
particular, we consider a network of chaotic Lorenz systems
with both stochastically switching connections and intrinsic
parameters and derive bounds on the switching frequency and
the time sufficient to converge globally and surely to approxi-
mate synchronization (Section III). Remarkably, these bounds
are explicit in the parameters of the blinking network. We
also demonstrate how the probability of stable synchroniza-
tion scales with the switching frequency beyond the conser-
vative bounds. Second, we focus on synchronization of net-
works with non-fast switching connections (Section IV). We
show the advantages of slower switching over fast switching
by means of prototypical examples such as networks of i)
chaotic Rossler systems; ii) non-autonomous Duffing oscilla-
tors in which slow switching provides opportunities for net-
work synchronization while fast switching does not. More
specifically, the network switches between topologies where
synchronization is unstable, with its averaged network also
being unstable for synchronization. Yet there is a window
of “opportunity” in which an intermediate, not-fast switching
frequency causes synchronization in the unstable network to
stabilize. We also reveal this unexpected behavior in period-
ically switched dynamical networks with additional windows
of opportunity.
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II. THE STOCHASTIC NETWORK MODEL

Introduced in [20], the blinking network consists N oscil-
lators interconnected pairwise via a stochastic communication
network:

dx;
dt

N
=F; (Xz‘,SAi(t))‘FEZSij(t)P(Xj -x), (1)

where x;(t) € R? is the state of oscillator i, F; RY —
R? describes the oscillators' individual dynamics, ¢ > 0 is
the coupling strength. The d x d matrix P determines which
variables couple the oscillators, s;;(¢) are the elements of the
time-varying connectivity (Laplacian) matrix G(¢). To define
the functions s;; we divide the time axis into intervals of length
7; we then assume s;;(t) to be binary signals that take the value
1 with probability p and the value 0 with probability 1 —p in each
time interval. The existence of an edge from vertex ¢ to vertex j
is determined randomly and independently of other edges with
probability p;; € [0, 1]. Expressed in words, every switch in the
network is operated independently, according to a similar prob-
ability law, and each switch opens and closes in different time
intervals independently. All possible edges s;; = s;; are al-
lowed to switch on and off so that the communication network
G(t) is constant during each time interval [k, (k + 1)7) and
represents an Erdos-Rényi graph of N vertices. Fig. 1 gives an
example of a “blinking” graph. The generalization of all the re-
sults of the paper to more complex switching topologies [1], [2]
and directed graphs [30] is straightforward. In the model (1),
we have also introduced stochasticity into one of the intrinsic
system parameters, such that it switches between two values ac-
cording to the same stochastic rule §;(¢) (though with an inde-
pendent switching frequency and sequence). This stochastic in-
trinsic parameter accounts for internal fluctuations in the circuit.
As aresult, the randomly switching oscillators are non-identical
and complete synchronization between the oscillators is impos-
sible. Thus, we have chosen to tackle a more difficult problem
of proving the stability of approximate synchronization in this
switching network with stochastic intrinsic parameters, rather
than considering identical oscillators. However, all the results
of this paper are directly applicable to networks with identical
oscillators. This can be done by setting the mismatch parameter
a = 0 in the network of Lorenz oscillators (2) (Section III) and
applying more restrictive Theorem 11.1 from [43].

The switching network (1) is a relevant model for stochas-
tically changing networks such as information processing cel-
lular neural networks [21], epidemiological networks [28], [48],
and mobile ad-hoc networks [47]. For example, independent
and identically distributed (i.i.d.) stochastic switching of packet
networks communicating through the Internet comes from the
fact that network links have to share the available communi-
cation time slots with many other packets belonging to other
communication processes and the congestion of the links by
the other packets can also occur independently. As far as net-
work synchronization is concerned, local computer clocks, that
are required to be synchronized throughout the network, are
a representative example. Clock synchronization is achieved
by sending information about each other computer's time as
packets through the communication network [20]. The local
clocks are typically implemented by an uncompensated quartz
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Fig. 1. (Top) Two subsequent instances of the switching network. Probability
of switchings p = 0.5, the switching time step 7 = 0.1. (bottom): The cor-
responding averaged network where the switching connections of strength &
are replaced with static all-to-all connections of strength pe, representing their
mean value.

oscillator. As a result, the clocks can be unstable/inaccurate and
need to receive synchronizing signals, that aim to reduce the
timing errors. These signals must be sufficiently frequent to
guarantee sufficient precision of synchronization between the
clocks. At the same time, the communication network must not
be overloaded by the administrative signals. This is a compro-
mise between the precision of synchronization and the traffic
load on the network. Remarkably, this blinking network ad-
ministration can provide precise functioning of a network com-
posing of imprecise elements. It also indicates the importance
of optimal switching frequencies that ensure this compromise.
In the following, we will explore the dependence of network
synchronization on different stochastic switching rates.

III. FAST SWITCHING: LORENZ OSCILLATORS

If switching is fast compared to the oscillator's intrinsic time
scale, it is natural to expect the switching system (1) to follow
the averaged system, which is obtained from taking the expec-
tation of all of the stochastic variables s;;(¢) and §;(¢). This
amounts to replacing the non-zero entries of G(i # j) and the
intrinsic parameter §;(¢) with the switching probability p. We
denote this averaged system ®, as in [42]-[44]. Conceptually,
for the coupling, this equates to connections between nodes that
are always present, but that are weaker than “on” connections
(as a connection in ¢ has coupling ps and an “on” connection
in F has coupling ¢) (see Fig. 1).

The relation between the dynamics of the stochastically
blinking network and its averaged analog is a non-trivial
problem and a substantial contribution to its solution has been
made in the previous work [20], [21], [28], [29], [42]-[44].
While averaging is a classical technique in the study of non-
linear oscillators, averaging for blinking systems needs some
special mathematical techniques for obtaining rigorous con-
vergence proofs. Such techniques have been developed for
synchronization of blinking networks of chaotic dynamical
systems [20] and for the convergence of the blinking network to
an attractor [21], [42]-[44]. It was proven in different contexts
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[20], [28], that switching networks (1) of coupled identical
oscillators can synchronize even if the network is insufficiently
coupled to support synchronization at every instant of time.

A complete rigorous theory for the behavior of stochastically
switching networks that blink rapidly was developed very re-
cently in [42], [43]. There are four distinct classes of switching
dynamical networks. Two properties differentiate them: single
or multiple attractors of the averaged system and their invari-
ance or non-invariance under the dynamics of the switching
system. In particular, in the most general case where the av-
eraged network is multistable, the trajectory of the switching
network may converge to the desired attractor with high proba-
bility or may escape towards another attractor with small prob-
ability. This general theory [42], [43] allows deriving explicit
bounds for these probabilities (see its application to a multi-
stable switching oscillator in [44]).

A. Rigorous Bounds

In this section, we apply this rigorous theory to network syn-
chronization and demonstrate what bounds on the dynamics of
the switching network must be satisfied to guarantee the con-
vergence to stable synchrony. We use the Lorenz oscillator as
an individual unit, comprising the network (1). The network (1)
of z-coupled Lorenz oscillators with stochastic coupling and a
stochastic intrinsic parameter is given as follows:

ok :U(yi - ﬂ»z) "F&‘ZS,‘j(t)(:L'j — le)

:l;/i =Z; ([1 + a§z(t)] r— Zz) — Y

'é'i =Ty — bZi, (2)
wherei = 1,2,..., N and a is an additional positive parameter,
forcing the main parameter r to switch between two values r and

(1 + a)r. The corresponding averaged system & reads:

N
Iy =0y —x;) +ep Z(CLJ — &)
i=1

Ui =i (r* —zi) —yi
Z = xiy; — bz, 3)
where r* = (1 + pa)r. Synchronization in the averaged net-
work (3) with all-to-all connections of strength pe is defined by
the invariant manifold M = {z; = 2, = ... = zx,y1 =
Y2 = ... = YN,41 = Z3 = ... = zy}. It is important to
emphasize that this synchronization solution does not exist in
the stochastically switching network (2) due to the presence of
the intrinsic parameter a, bringing stochastically changing pa-
rameter mismatch into the system. Therefore, the trajectory of
the switching network cannot converge to the completely syn-
chronized solution, and it can only get to its §-neighborhood,
corresponding to approximate d-synchronization. The faster the
switching, the smaller the synchronization mismatch (error) &
is. In analogy with the terminology introduced in [42]-[44], we
also call the §-synchronization solution “ghost”-synchroniza-
tion. Our goal is to prove the global stability of §-synchroniza-
tion and demonstrate that the set of on-off switching sequences
that fail to trigger -synchronization has probability zero as long

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 5, MAY 2015

as synchronization in the averaged network is globally stable
and switching is fast enough. We also aim at deriving the prob-
abilistic bounds on the switching frequency and § that can be
calculated explicitly via the parameters of the switching net-
work (2).

The proof involves two steps. In the first step, one con-
structs a Lyapunov function for the difference (transverse)
oscillators' variables in the averaged network (3) and proves
that it decreases to zero. Therefore, one proves that complete
synchronization is globally stable in the averaged network. In
the second step, one uses the same Lyapunov function for the
convergence to the d-neighborhood of the ghost synchronized
solution in the switching network (2). Due to the stochastic
nature of the switching, this Lyapunov function may increase
temporarily, but the general tendency is to decrease. Switching
is a stochastic process, therefore, the convergence properties
also have a probabilistic flavor. This can be expressed by
showing that after a certain time the Lyapunov function de-
creases with high probability as long as the switching frequency
is sufficiently fast.

We define the Lyapunov function as:

N-1
1 . : :
W= 2 Z (X2 + Y50+ 220 @)
i=1
where Xi i1 = @i — @i, Yiit1 = ¥i — Yiv1, it =

z; — %41 are the N — 1 difference variables. We notice that
both the averaged system (3) and the stochastic system (2) are
assumed to have the same Lyapunov function, so we will dif-
ferentiate between the two of them using W3 and Wy for the
averaged and stochastic systems, respectively. Before we can
begin to understand the behavior of the stochastic network, it is
important to understand the dynamics of the static averaged net-
work. Global stability of complete synchronization in networks
of z-coupled Lorenz systems was extensively studied, for ex-
ample, in [7]. Based on the previous analysis [7], we can for-
mulate the following statement.

Proposition 1: Synchronization in the averaged all-to-all
a-coupled Lorenz network (3) with coupling strength ps and
the averaged intrinsic parameter r* = (1 4 pa)r is globally
stable if

. 1\ (b(b+ 1) +0)?

pE > pe _<N>< 606 —1) a). (5)
Proof: The direct application of the bound on the coupling
strength sufficient for global synchronization in the z-coupled
network of Lorenz oscillators with arbitrary topologies (see [7,
App. A]) to the averaged network (3) yields the condition (5).0]
This bound can be generalized to more complex averaged
network topologies, corresponding to networks with given
switching connections that are not all-to-all. For example, the
bound for a 2K -nearest neighbor network of z-coupled Lorenz
oscillators can be obtained by replacing the 1/N in (5) with
(1/N)(N/2K)3(1 + (65K /4N)), using the Connection Graph
method [7]. In the case of directed networks, one can use the

Generalized Connection graph [10].
The theory for the behavior of stochastic on-off systems [42]
and [43] involves placing upper bounds on the first and second
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time derivatives of the Lyapunov function W, calculated along
solutions of the averaged and switching systems. To facilitate
cross-paper reading, we shall use the same notations for those
bounds:

Bwe = DsW
we = max D W (x)|
LBws = D3V

W Ecneaéi ‘ @‘V(X)l

Bwr = maxmax |DpW(x,s)]
s xER

LBy r = maxmax |DFW(X, 8, S)l , (6)

5,5 x€R
where x is the vector composed of x; = {z;, i, 2}, i =
1,..., N, R represents the systems' absorbing domain, vector s

indicates a set of stochastic sequences corresponding to N (N —
1)/2 stochastic connections and NV intrinsic parameter switch-
ings; similarly, § corresponds to a set of another realizations of
the stochastic switching sequences.

Before giving all of the explicit bounds (6) for the N-node
networks (2) and (3), we will walk the reader through the
process of obtaining By p and LBy for the two-node net-
work (2) with §5 = 8, = s(¢). We shall use the notation X
=21 — 3, Y =y —ys,and Z = z; — z5. We start with
the first time derivative of the Lyapunov function (4) along the
solutions of the stochastic two-node system (2):

DpW(x,8) = XX +YY + 22, (7
where the derivatives of the difference variables are governed
by the following equations, obtained from the system (2) with
N = 2[7], [53]:

X =o(Y - X) = 2s15(t)eX
Y=[1+as(t))r -UP]| X -Y -U®DZ
Z=UWX+U®Y -pZ, i,j=1,...,N,

®

where U¢) = (£, 4 &,)/2 for € = ,y, z are the corresponding
sum variables. For simplicity, we assume that the coupling and
intrinsic stochastic parameters are governed by the same sto-
chastic sequence s13(¢) = s(¢). The generalization to different
sequences is straightforward. We can rewrite (7) as a quadratic
form

DrW(x,8)=|(2s(t)e +o) X+ U(z)—(lJras(t))rJra}XY

Y2 _UWxZ ¢ bzz] .9

To bound the absolute value of this derivative by its maximum
and get By p, we will maximize each term in the quadratic
form (9). It is well-known that the individual Lorenz system
has bounds that guarantee that its trajectories will remain
in the absorbing domain. These bounds can be found, for
example, in [7] and are |z,y| < || and |z| < lg| + 7 + o,
where ¢ = b(r + ¢)/24/b — 1. Therefore, for example, X
=21 — 23 = ¢ — (—¢) = 2¢ is the upper bound for the
difference X. As we are maximizing the quadratic form term
by term, we can guarantee that it is maximized if s(¢) = 1.
While in practice, this will lead us to a more conservative

1263

result, it is much more analytically tractable. We show this
term by term maximization

max | DpW (x, s)|
xER
= 4@+ o) + e+ r+o+ (1 +a)r — o)
+4¢% + 49° + 4bp? |
= |4(26 + ) + 50 + (2 + a)r + 4(b+ 1)| ©?
= Bwr- (10)
To get LByw r, we follow a similar procedure, but using the
second derivative of the Lyapunov function. We can jump right
to this:

DLW (x,8) = X [o(Y — X) — 25()e X]

+ X [o(f - X) - 2s()e X

+Y [([Has(t)} r—U(Z)) XfoU(”*')Z}

+v [((1+as@)r - U@ ) X - XU
v ou@z - ZU(”")]

+ 7 [U@)X LUy — bz}

+7 [U<y>X+XU<y> FUGY YU bz
(11)

Of course, the stochastic sequences in these new derivatives
are different from the stochastic sequences in the previous
derivatives. To make this clear, we denote these new stochastic
variables 8, which means D?W (x,s,§) is a function of the
state variables and two different stochastic sequences. We place
the bound on LBy g in much the same way that we placed
the bound on Byyg. When finding the maximum value of the
function D?W(x, s, §), we must consider not only the optimal
values of the state variables and the stochastic variables from
the first derivative DrW (i.e., whether the function is maxi-
mized for s = 0 ors = 1), but we must also find the optimal
values including the stochastic variables introduced by the
second derivative DZW. These calculations are somewhat
tedious, and we have to skip most of intermediate steps due to
the space constraint. However, the reader should be able to re-
produce the results, following these steps. Using the ideas above
[term-by-term maximization of the derivatives and conservative
(optimal) choices for the stochastic variables (0 vs. 1)], we get the
following bounds for the original N -node networks (2) and (3):

Bwe=(N—1)¢* |[4(Nps+0)+5p+(2+ap)r+4(b+1)/,
LBW<1> =(N —1)dp [llap + 2 (6r + 3apr + 8¢

+3b+3ps(N —1)+7)+242b>+(2pe(N — 1))*
+ r(6-+3ap+4r+4dapr+a®p*r+b+5apo+100),
+40+100° +ob+pe(N —1) ((2+ap)r+127)]
By r=(N-1)¢” [4(Ne+a)+5p+(2+a)r+4(b+1)|,
LBwr=(N — 1)d¢ [11¢? + 2¢ (6r + 3ar + 80 + 3b

+3e(N —1) +7) + 2+ 2> + (26(N — 1))*

+7(6 + 3a + 4r + dar + a®r + b+ 5ac + 100)

+40 4+ 100% + gb+ (N — 1) ((2+)r + 120)] .
(12)
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This completes the first step towards formulating the stability
criterion.

The second step is to define the size of the §-neighborhood of
the ghost synchronization solution of the stochastic system (2).
This is done by choosing a level curve of the Lyapunov function
Ws for the averaged system (3)

132 (. . A
Vo: We = 5 Z {5§(1~,i+1 + 532’i,i+1 + 6éi,i+1} :
i=1

We let 0 = max{dx,,,...,0zy_, x}, Which gives us the level
Vo : We < (3/2)(N — 1)82. We define another level, V; as
absorbing domain of the Lyapunov function, which we obtain
by replacing each difference variable with its maximum value,
subject to the constraints on x. We get

(13)

1
Vi Wy < §(N— 1) (8¢* +4(p +r+0)?%). (14)

These level curves let us define the following quantity:

|DWg(x)] .

= min
x€ER, Vo<Wz<V)
Notice that the derivative of the Lyapunov function DWy for
the averaged system is similar to the quadratic form (9) where
the stochastic variables s(¢) are replaced with probability p.
Under the condition that the coupling strength £ exceeds the
threshold (5), we can get the bound on 7y:

y=(N —1)|Npe + o — 2¢ — apr + 1 + b|§?, (15)

where the level 1}, corresponding to the §-synchronization
yields the minimum value ~ on the interval V < Wg < V4. To
derive the bound (15), we have used term-by-term mimimiza-
tion/maximization and replaced the difference variables with §
andset U®) = —(p +r+0) and UW = .

We also define the following constants [42], [43] that use
the bounds from (6), which help make the statement of the fol-
lowing theorem more manageable and explicit:

_ 1

64(LBwr + LBwae)Biy

D =8(LBwr + LBwag)

4?

Uy = {XW(I)(X) <Vo+ F} ;
where Uy is a neighborhood of the synchronization solution of
the averaged system (3) and is slightly larger that the level curve
Vo, corresponding to the §-synchronization.

Theorem 1: Assume that the coupling strength ¢ is strong
enough, i.e., greater than the bound given in (5), such that
synchronization in the averaged network (3) is globally stable.
Then, the following properties hold:

 If the switching time 7 is small enough to satisfy

6’73

then the trajectory of the switching system (2) almost
surely reaches the Uy-neighborhood of the ghost-synchro-
nization solution, in finite time. Therefore, the switching
network (2) converges to approximate synchronization
globally and almost surely.

c

(16)

r< (17)
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« Assume that (17) holds and that W(z(0)) < V; (i.e.,
the initial condition is chosen in the attracting domain).
Let P1(n), Yn € N, be the probability that it takes time
2n((Vi — V) /) to reach Uy. Then

Pi(n) < exp <n <i —In [D%%VOD) .

Proof: This theorem is a shortened version of the general
theorem, Theorem 9.1, given in [43] and applied to the Lya-
punov function (4) and its bounds (12)—(16) for the global sta-
bility of approximate synchronization in the stochastic network
(2). The complete statement and proof of Theorem 9.1 can be
found in [43]. O

Remark 1: The difference between the §- and Uy-neighbor-
hoods is a technicality, coming from the proof of Theorem 9.1.
The desired precision of the approximate synchronization in the
switching network is defined by U, and can be explicitly calcu-
lated through §. As 4 is typically chosen arbitrarily, we generally
see the Uy-synchronization as the §-synchronization.

Remark 2: The probability bound (18) depends on the
number of discrete steps n as this is the probability that the
system will take at least time 2n((Vy — V;)/7y) to converge to
the Up-neighborhood. Notice that this time depends on how far
from the neighborhood of the ghost synchronization solution
lies from the border of the attracting domain, expressed via V.

In order to make the theorem more explicit, we shall consider
what this looks like when the attractor is in a typical chaotic
regime, i.e., let r = 30, a = 2/30, b = 8/3, and o = 10. Also,
let § = 0.1. Doing this, we get

c=2187 [274877906944000(]\7— 1)% (175+80v/15+6N¢)?

(18)

><(242021—I—52704\/15—"—9(173+34\/15)p+18p2
+ 18%(N — 1)*(1 + p*) +9e(N — 1)
—1
><(91+32\/15+(90+32\/15)p+p2))} ,

242021 + 52704v15 + 9(173 + 64V/15)p
+18p2 +1822(N —1)(14p?)+9¢ (N —1)
x (91+32V15 + (90 + 32VIB)p + 47) )

v=]3.33x 1073 (N —1)(—2.0687x 10°+(—6+3=N)p| .

To give the reader an idea of the magnitude of these numbers,
we set N = 2, ¢ = 1 and p = 0.5, which gives us:

p= 1090

e 7.14722x 10723, D ~ 6.84128 x 103, v ~ 6.895 x 101,

These values determine the size of the neighborhood Uy =
{x|W(x) < 0.05}. Turning our attention back to (17), we use
the values that we have computed to get the explicit bound on
7 for the two node stochastic network (2). Thus, if:

T < 7.5615 x 10775,
then the probability (18) is bounded by:

—2.34354 x 10~23 + 30.993
Py(n) < exp (”( * T)>.

(19)

T

Of course, given the bound that we have on 7, it is evident that
the probability (18) converges to 0 very quickly if 7 is this small.
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Fig. 2. (Color online) (top) Transversal stability of synchronization in the av-
eraged ten-node, z-coupled Lorenz network (green) and the averaged ten-node,
z-coupled Rossler system (blue), expressed via the Lyapunov exponent. For the
Lorenz network, when € > £* =2 1.5, the system tends to synchrony, whereas
for the Rossler system, there is a synchronization window for e~ < & < ¢t
the system exhibits synchronous behavior. The values of ¢ used in Fig. 5 are
marked with *, @, and V on the blue curve. (bottom) Transversal stability of
synchronization in the two-node, Duffing network (21). There are two synchro-
nization windows, for €1 < & < &z and €3 < &£. The values ¢ = 0.45 and
e = 1.75 are used for the switching networks in Fig. 9.

This probability guarantees a few things that are not immedi-
ately clear. It shows that if the switching rate is fast enough,
the stochastic system will not just asymptotically converge to
the Uy-neighborhood, but converge in a finite amount of time,
with the faster switching is, the shorter the time limit guaran-
teeing convergence is. This leads to an additional implication
of this probability bound: it ensures that there is a window for
values of 7 in which the stochastic system will converge within
some given finite time, i.e., for 0 < 7 < 7*. As we emphasized,
the explicit bound given in (19) is very conservative; however,
it rigorously proves that synchronization can be stably achieved
in the switching network (2) even if the probability of switching
p is small and the network is disconnected most of the time. It
also suggests that the probability of not-converging to §-syn-
chronization within the finite time [see (18)] decreases at least
exponentially fast as 7 decreases.

In the following subsection, we present numerically calcu-
lated bounds in order to isolate the real window of switching
periods 7, corresponding to d-synchronization.

B. Numerical Results

As an example, we consider a ten-node network of coupled
Lorenz oscillators (2). Hereafter, the intrinsic parameters and
the switching probability are chosen and fixed as follows: r
=30,a=2/30,b=28/3,0 =10, and p = 1/2. The coupling
strength £ = 3 is chosen such that synchronization in the aver-
aged system with ps = 1.5 is stable [see Fig. 2 (top)].

Considering small values of 7, Fig. 3 shows that for £ /2 = £*,
the system synchronizes with probability 1 for = = 0.001, but
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Fig. 4. (Color online) (top) Traces for 21 (blue) and z2 (red) in the stochastic
Lorenz network for 7 = 0.001. The two traces practically coincide, showing
§-synchronization. (bottom): The synchronization error corresponding to two
switching frequencies, 7 = 0.003 (green) and 7 = 0.001 (blue). The blue
curve oscillates about a small value, close to 1071, because the stochasticity
in the parameter r prevents the stochastic network from converging to complete
synchronization. This mimics the expected behavior from Fig. 3.

the probability decays rapidly for bigger values of 7, until 7
= 0.003, where there is no longer synchrony (also see Fig. 4.
The window for convergence, 0 < 7 < 7" is guaranteed by
the probability bound given by (18), and while this window is
expected, the extent of it shown in Fig. 3 is not. Fig. 3 also in-
dicates that the integration step of the oscillators does not es-
sentially play a role. While choosing a smaller integration step
allows one to choose smaller switching periods 7, closer to in-
stantaneous switching, the convergence probability remains the
same and equal to one.

There are circumstances for which not converging to the av-
eraged system is favorable, and the present theory is not able
to make definitive claims about the behavior of the stochastic
system beyond fast switching. This leads us to explore the ef-
fects of not-fast-switching (where 7 is not necessarily small) on
the dynamics of the switching network.

IV. BEYOND FAST SWITCHING: WINDOWS OF OPPORTUNITY

We consider switching networks (1) of Rossler and Duffing
oscillators. These networks are known to exhibit synchroniza-
tion properties distinct from those of the Lorenz network consid-
ered in Section I1I. While the Lorenz network belongs to Class I,
z-coupled Rossler networks and networks of coupled Duffing-
type oscillators [58] are in Class II [14]. Class I networks syn-
chronize when the coupling exceeds a threshold value, and syn-
chronization remains stable up to infinitely strong coupling (see
Fig. 2 for the unbounded stability window for synchronization
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in the Lorenz networks, to the right from the threshold coupling
value). Class II networks have a bounded range of coupling
where synchronization remains stable (see a well in the stability
diagrams of the Rossler and Duffing networks in Fig. 2 where
synchronization loses its stability when the coupling increases).
These differences between Class I and Class II networks gen-
erate distinct windows of switching frequencies, yielding stable
synchrony in the corresponding switching networks.

It is important to emphasize that Class II networks such as
z-coupled Rossler networks can only exhibit local synchroniza-
tion within the stability well and global synchronization cannot
be achieved/proved for any coupling. This is due to so-called
shortwave length bifurcations [55] and the persistent presence
of saddle fixed points, lying outside of the synchronization man-
ifold in the phase space of the x-coupled Rossler system [56].
Hence, there are trajectories that escape to infinity, and the ex-
istence of the global absorbing domain cannot be proved. As a
result, the above rigorous theory of global convergence to syn-
chronization in fast switching networks cannot be applied to the
Class II networks considered below.

A. z-Coupled Rossler Oscillators

We begin with a switching network of ten 2-coupled Rossler

oscillators:
N

—(yi+2z)+ Zaijsij(mj — 1)

Jj=1

T; =

9 =2; +ay;

2 =b+ zi{x; — c). (20)
Hereafter, the intrinsic parameters are chosen and fixed as fol-
lows: a = 0.2, b = 0.2, ¢ = 7. To simplify multi-trial simu-
lations, we did not include a stochastic intrinsic parameter into
this system; however, all the reported windows of switching are
robustly seen when it is present [54]. The averaged network
is an all-to-all network, similar to that of the Lorenz network.
As discussed above, synchronization in a network of x-cou-
pled Rossler systems is known [5] to destabilize after a crit-
ical coupling strength €*, which depends on the eigenvalues of
the connectivity matrix G. We choose the coupling strengths
in the stochastic network such that the coupling in the aver-
aged network is defined by one of the three values, marked in
Fig. 2. In particular, for ¢ = 1, synchronization in the aver-
aged network is unstable. As a result, synchronization in the
fast-switching network is also unstable. Surprisingly, there is a
window of intermediate switching frequencies for which syn-
chronization becomes stable (see Fig. 5). In fact, the stochastic
network switches between topologies whose large proportion
does not support synchronization or is simply disconnected.

To better isolate the above effect and gain insight into what
happens when switching between a connected network in which
the synchronous solution is unstable, and a completely discon-
nected network in which the nodes' trajectories behave inde-
pendently of one another, we consider a two-node Rossler net-
work (20). Figs. 6 and 7 demonstrate the emergence of syn-
chrony windows for various intermediate values of 7 for which
the fast-switching network does not support synchronization.
In essence, the system is switching between two unstable sys-
tems, and yet when the switching period 7 is in a favorable
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Fig. 6. (Color online) (top) Probability of synchrony in the two-node Rossler
network (20) as a function of the switching probability p and switching period 7.
Red (lighter) colors correspond to higher probability of convergence (with dark
red at probability 1) and blue (darker) colors correspond to lower probabilities
(dark blue at probability 0). The coupling strength of the connection is fixed at
e = 7. As p increases, pe, the effective coupling in the averaged/fast-switching
network progresses through the window of synchrony indicated in Fig. 2 (top).
For the two-node network this interval is ps € [0.08 2.2], yielding the stability
range p € [0.011 0.31] (the red interval on the y-axis) for ¢ = 7 and small
7. (bottom) Slices from the top Figure for different p. Notice the emergence of
“windows of opportunity” for not-fast switching periods at which synchrony in
the fast-switching network is unstable. Switching probability around p = 1/2
yields the largest stability window. Probability calculations are based on 100
trials.

range, the system stabilizes. Fig. 7 also indicates the role of
switching probability p and shows that the largest synchrony
window is achieved at probability p = 1/2. This probability
corresponds to the most probable (frequent) re-switching for
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Fig. 8. (Color online) Comparison of the probability of synchrony in the two-
node Rossler network in which switching is stochastic (blue, solid curve) and
periodic (red, dashed curve) when switching is slow. The networks switch be-
tween two couplings strengths: € = 0 and ¢ = 7, both corresponding to un-
stable synchrony. The averaged network with € = 3.5 is also unstable for syn-
chronization. There is substantial overlap between the two switching frequency
windows that induce synchrony. Notice the second (right) stability window for
periodic switching where stochastic switching fails to stabilize synchronization.
Probability calculations are based on 1000 trials.

a fixed switching period 7 and indicates a stabilizing effect of
re-switching.

In an attempt to better understand the underlying phenom-
enon, we consider what happens in this connected/disconnected
network when the switching is periodic instead of stochastic. We
find that for periodic switching (the dashed curve in Fig. 8) there
is a window of similar length to when switching is stochastic,
and for similar values of 7. Furthermore, when switching is pe-
riodic, we have an additional, though smaller, window for 7
€ [4.5,5].

The appearance of additional windows of opportunity in the
periodically switching network and the overall better stability of
synchronization, compared to the stochastic network can be ex-
plained by an analogy to the dynamics of Kapitza's pendulum.
Kapitza's pendulum is a rigid pendulum in which the pivot point
vibrates in a vertical direction, up and down [57]. The unusual
property of Kapitza's pendulum is that the vibrating suspen-
sion can stabilize the pendulum in an upright vertical position
which corresponds to an otherwise unstable equilibrium in the
absence of suspension vibrations. This effect is also known as
dynamic stabilization. Loosely speaking, the switching network
of Rossler oscillators performs a similar function as it switches
between two unstable networks, yet it dynamically stabilizes the
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Fig. 9. (Color online) Probability of synchrony in the Duffing network.
Switching probability: p = 1/2, number of trials: 100. (Blue solid line) On-off
connected/disconnected network, switching between ¢ = 0 and ¢ = 1.75
(depicted from the instability window shown in Fig. 2 (bottom)). (Red dashed
line) On-off connected/connected network, switching between ¢ = 0.45
and € = 1.75, corresponding to two instability zones in Fig. 2. In either
case, the network switches between two configurations that do not support
stable synchronization. Synchrony in the fast switching/averaged network is
unstable, yet there are windows of opportunity, yielding stable synchrony for
intermediate 7.

synchronous state. In this context, the stabilizing oscillations
around the unstable equilibrium in Kapitza's pendulum may be
viewed as switchings in our network. While both periodic and
stochastic vibrations of the suspension can stabilize Kapitza's
pendulum, the periodic forcing clearly has an advantage over
the stochastic perturbation as the latter can generate a sequence
of “unfortunate” pushes in one direction, letting the pendulum
pass the point of no return and fall down. The same is likely
to happen in our network of Rossler systems where periodic
switching provides better dynamic stabilization of the unstable
synchronous state and has wider ranges of favorable switching
frequencies.

B. Duffing Network

To demonstrate that the emergence of windows of opportu-
nity is a general phenomenon in Class II networks, we consider
a network of driven Duffing oscillators:

Ty =y

i = —x) — hy + gsin(nt) + e(x; —x;) Q2D

for i,j = 1,2, 4 # j. This network has a multiple window
diagram for stability of synchronization [see Fig. 2 (bottom)]
and belongs to Class II networks. The intrinsic parameters are
chosen and fixed as follows: = 1, A = 0.1, and ¢ = 5.6 [58].
Fig. 9 demonstrates the emergence of windows of opportunity
for stable synchronization in an intermediate range of switching
periods.

V. CONCLUSIONS

We have studied the stability of synchronization in dynamical
networks with both stochastically switching connections and in-
trinsic parameters. In particular, we have proved that approxi-
mate synchronization in the fast-switching network of Lorenz
oscillators can be achieved globally and almost surely, provided
that the corresponding averaged network synchronizes globally.
For the first time, we have given the explicit bounds on the
switching frequency sufficient for global synchronization and
the probability that synchronization is achieved within some
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given finite time. By this work, we also promote the general
rigorous theory of stochastically blinking networks [42]-[44]
which allows one to derive explicit bounds for probabilistic
convergence to an attractor (or even a ghost-attractor) of any
blinking system in question, provided that a Lyapunov function
for the convergence in the averaged system can be constructed.

An important research problem is to develop a rigorous
theory for understanding dynamical networks beyond fast
switching. In our paper, we have used examples to show that
connections, that are only present with some probability p in
a complex network, can stabilize synchronization even in a
normally unstable regime. We have explored the possibilities
when the time scale for the stochastic process does not approach
zero, and showed that not-fast switching can be favorable,
compared to fast switching, when one does not want to follow
the dynamics of the averaged system. We have also shown
that switching cannot be too slow, as this can make the system
even more unpredictable. This gives the impression that there
is some window for each system for which we have a sense
of “controlled unpredictability.” Moreover, this phenomenon
also seemed to pop up in [44] when we were analyzing an
entirely different system whose parameters blink stochastically
(i.e., not a network with stochastic connections). We named
this controlled unpredictability, “windows of opportunity,” to
further emphasize that there seem to consistently be favorable
conditions in which the stochastic and deterministic parame-
ters match up appropriately, and allow the system to behave
favorably, against all odds.

While the numerical results for the non-fast switching net-
works reveal unexpected windows of opportunity and give us
plenty of insight as to the effects of stochastic coupling in dy-
namical networks (and how stochastic connections can actually
be favorable to static ones), we are currently working on de-
veloping an analytical approach to this problem. The effect of
non-fast switching between stable two-dimensional nonlinear
[59] and linear [60] systems has previously been analytically
explored. An interesting observation is that switching at expo-
nential times between two stable linear degenerate nodes can
cause the trajectory to escape to infinity when the switching is
not fast [60]. The highly nonlinear dynamical effects in multidi-
mensional stochastic networks with non-fast switching reported
in our paper call for analytical approaches and techniques and
represent a subject of future study.
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