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We study synchronization in ecological networks under the realistic assumption that the cou-
pling among the patches is sporadic/stochastic and due to rare and short-term meteorological
conditions. Each patch is described by a tritrophic food chain model, representing the producer,
consumer, and predator. If all three species can migrate, we rigorously prove that the network
can synchronize as long as the migration occurs frequently, i.e. fast compared to the period
of the ecological cycle, even though the network is disconnected most of the time. In the case
where only the top trophic level (i.e. the predator) can migrate, we reveal an unexpected range
of intermediate switching frequencies where synchronization becomes stable in a network which
switches between two nonsynchronous dynamics. As spatial synchrony increases the danger of
extinction, this counterintuitive effect of synchrony emerging from slower switching dispersal
can be destructive for overall metapopulation persistence, presumably expected from switching
between two dynamics which are unfavorable to extinction.
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1. Introduction

Synchronization of the growth cycles in ecological
networks of multispecies populations, called meta-
populations, across a geographic region has been
widely documented and studied (see, for example,
[Ranta et al., 1995; Earn et al., 2000; Colombo et al.,
2008] and the references therein). Multiple exam-
ples of population synchronization include moths
and butterflies [Hanski & Woiwod, 1993; Johnson
et al., 2005], crabs [Higgins et al., 1997], fish [Ranta
et al., 1995], birds [Cattadori et al., 1999], hares
[Ranta et al., 1995], lynx [Elton & Nicholson, 1942]
and sheep [Grenfell et al., 1998].

The first example of population synchrony was
given in the study of fur returns of Canadian lynx
to the Hudson Bay Company [Elton, 1924]. The
cause for spatial synchrony is believed to be a

combination of correlated atmospheric conditions
(the Moran effect) [Ranta et al., 1997; Cazelles &
Boudjema, 2001; Colombo et al., 2008; He et al.,
2010] and the presence of migration between pop-
ulation patches. Synchronization of Canadian lynx
was initially attributed to the Moran effect; how-
ever, several studies have indicated that sufficiently
strong dispersal in networks of tritrophic food chain
models, related to the Canadian boreal forest, can
induce synchrony without common atmospheric
conditions (see for example, [Blasius et al., 1999;
Belykh et al., 2009]). These studies supported by
the DNA analysis [Schwartz et al., 2002], revealing
high dispersal of Canadian lynx over large distance
between the East and West Coasts, suggest that dis-
persal plays a key role in the spatial synchronization
of the Canadian lynx. Moreover, there are numerous
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factors which can influence both the frequency and
rate at which species migrate, and subsequently
inhibit or promote spatial synchrony. It is gener-
ally accepted that the Moran effect is typically
responsible for synchrony on the continental scale,
whereas migration facilitates local, metapopulation
synchrony.

In most theoretical studies, the migration is
assumed to be a continuous process with net migra-
tion flow proportional (through a constant dispersal
coefficient) to the unbalance of population densities.
Under this assumption, the metapopulation model
is an n-patch network of linearly coupled food-chain
models with a static graph. The static interaction
is typically assumed to be of diffusive nature (on an
arbitrary coupling graph) and defined by a zero-row
sum connection matrix (see, for example, [Belykh
et al., 2009]). There has also been a fair amount of
work focused on density dependent migration mod-
els (for example, a model where predator migration
is dependent on the prey density in a given patch
[Huang & Diekmann, 2001]). However, a more
realistic assumption could be that the dispersal
among the patches is not constant, but of inter-
mittent nature. More precisely, migration episodes
are due to rare and short-term particular meteo-
rological conditions such as high winds or strong
water currents, but occur relatively frequently dur-
ing the period of the ecological cycle. The promi-
nent example of an ecological network with random,
“blinking” interactions is a chain of lakes connected
via narrow, shallow channels where the migration of
algae and zooplankton is due to weak, random water
currents. These sporadic algae-zooplankton interac-
tions among the lakes have been shown to trigger
synchronous algae outbreaks and crashes, resulting
in synchronous clear water episodes in Lake Lugano,
Switzerland [Ravera, 1977; Rinaldi, 2009]. Synchro-
nization of insect-pest outbreaks in forests, con-
nected by high, but sporadic winds has also been
largely debated (see [Rinaldi, 2012] and the refer-
ences therein).

When considering migration within a metapop-
ulation, it is natural to think of the metapopulation
as a network of patches that is sporadically con-
nected through migration routes by which species
can travel from a patch to a nearby patch, such
as, e.g. insects dispersing using favorable wind con-
ditions. This means that to model the inherent
stochasticity in the migration, we can turn the
links between nodes in the network “on” and “off”

randomly. This requires that both the time scale
of the metapopulation and the stochastic process
be considered in modeling (see [Levin, 1992; Chave,
2013; Cantrell et al., 2009] for the discussion on the
problem of pattern and scale in Ecology). While
stochastic dispersal and its role in population per-
sistence have received a great deal of attention (see
[Williams & Hastings, 2013]), the patches are typ-
ically assumed to have simple dynamics and often
described by simple discrete-time models.

In this paper, we aim at the hardest case
where individual patches can have chaotic dynamics
which are described by the tritrophic Rosenzweig–
MacArthur model [Rosenzweig & MacArthur,
1963]; in addition, one of the intrinsic parame-
ters and the on–off dispersal between the patches
are stochastic, with their own time scales, ranging
from fast to slow. We put the general blinking net-
work model [Belykh et al., 2005a] with fast on–off
stochastic connections into the ecological context
and use the rigorous theory [Hasler et al., 2013a,
2013b; Belykh et al., 2013] on probabilistic con-
vergence to derive upper bounds on the switching
frequency of on–off dispersal to achieve approxi-
mate synchronization in the stochastic metapop-
ulation network in the fast switching limit. More
precisely, we show that if the migration of all three
species is allowed, the stochastic ecological net-
work converges to approximate synchrony globally
and almost surely as long as the switching is fast
and the dispersal strength is sufficiently strong to
guarantee synchronization in the averaged network,
obtained by replacing the stochastic variables with
their means. Going beyond fast switching, we report
a counterintuitive effect when non-fast switching
makes synchronization stable even though it is
unstable in the averaged/fast switching network. In
this case, the network, switching between two non-
synchronous states, each of which supports popula-
tion persistence, can promote spatial synchrony and
therefore increase the risk of extinction. We show
that the effect is maximized when the probability
of switching p is close to 1/2, suggesting a stabiliz-
ing effect of the most probable reswitching.

The layout of this paper is as follows. First, in
Sec. 2, we introduce the stochastic model and dis-
cuss its synchronization properties. Then, in Sec. 3,
we consider the fast switching case and give the
reader background on the blinking systems theory
[Hasler et al., 2013a, 2013b; Belykh et al., 2013]. We
formally state the main theorem, in which we derive
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explicit analytical upper bounds for the switch-
ing frequency for migration that guarantees syn-
chrony. While we would ideally like to lead the
reader through all of the ins and outs of the proof,
we recognize some of the details are too technical
(and spatially cumbersome) to include in the main
text. For this reason, the majority of the proof can
be found in the Appendix. In Sec. 4, we consider
the case in which the switching is not fast (rela-
tive to the time scale of the ecological system), but
not too slow. We find somewhat striking results for
this intermediate switching case, for which a rigor-
ous theory has not yet been established. Finally, in
Sec. 5, a brief discussion of the obtained results is
given.

2. The Model and Problem
Statement

2.1. Individual patch model

We use the tritrophic extension of the Rosenzweig–
MacArthur prey–predator model [Rosenzweig &
MacArthur, 1963] as the individual patch in the
metapopulation stochastic network. The individual
model reads



ẋ = rx
(
1 − x

K

)
− a1xy

1 + a1b1x

ẏ =
a1xy

1 + a1b1x
−m1y − a2yz

1 + a2b2y

ż =
a2yz

1 + a2b2y
−m2z,

(1)

where x, y, and z are the producer, consumer, and
predator population densities, respectively, r and
K are the growth rate and carrying capacity of
the producer, while a1 and a2 are conversion rates
(a1 from producer to consumer and a2 from con-
sumer to predator), with their respective saturation
constants being b1 and b2. Lastly, m1 and m2 are
the mortality rates of the consumer and predator,
respectively. The model (1) can exhibit periodic and
chaotic behaviors, including Shilnikov-type chaos
[Deng & Hines, 2001; Kuznetsov et al., 2001]. Here-
after, the mortality rate of the predator population
m2 is assumed to be lower than that of the consumer
m1 as the predators typically have a longer life
span than the consumer (e.g. fish versus zooplank-
ton in the algae-zooplankton-fish food chain). This
assumption together with a high carrying capac-
ity of the producer, K, typically leads to chaotic

(a)

(b)

Fig. 1. (a) The chaotic attractor of the uncoupled patch
model (1). The attractor resembles an upside down tea cup
shape; hence inspiring the artistic presentation of its trajecto-
ries as dipped in chocolate. (b) The corresponding time series.
The top, middle, and bottom graphs give the time series for
x, y, and z, respectively. The population size is given in a
dimensionless unit. The dashed lines indicate the beginning
and end of a population cycle, the characteristic period (T )
of the metapopulation, which is approximately T = 200 units
of time.

dynamics in the patch. Unless specified otherwise,
the values of parameters r = 1.15, K = 1.07, a1 = 5,
b1 = 0.6, m1 = 0.4, a2 = 0.1, b2 = 20, m2 = 0.0037
are chosen and fixed to place the individual model
in a chaotic regime (see Fig. 1).

2.2. The stochastic network

Introduced in [Belykh et al., 2005a], the general
“blinking” network [Hasler et al., 2013a, 2013b]
fits well with the peculiar nature of random, spo-
radic interaction between metapopulations and can
be used as the main tool in the study of synchro-
nization in ecological models with realistic sporadic
interactions. We consider a network composed of
n tritrophic Rosenzweig–MacArthur prey–predator
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models (1), interconnected pairwise via stochastic
dispersal:



ẋi = rxi

(
1 − xi

K

)
− [a1 + ∆aξi(t)]xiyi

1 + a1b1xi

+ εx

n∑
j=1

sij(t)(xj − xi)

ẏi =
[a1 + ∆aξi(t)]xiyi

1 + a1b1xi
−m1yi

− a2yizi
1 + a2b2yi

+ εy

n∑
j=1

sij(t)(yj − yi)

żi =
a2yizi

1 + a2b2yi
−m2zi

+ εz

n∑
j=1

sij(t)(zj − zi), i = 1, . . . , n,

(2)

where εx, εy, and εz are the coupling strengths
(strengths of dispersal of the producer, consumer,
and predator populations, respectively). Stochas-
tic variables sij(t) form the time-varying connec-
tivity (Laplacian) matrix C(t). Following [Belykh
et al., 2005a; Hasler et al., 2013a, 2013b], we define
the stochastic variables sij as follows: we divide
the time axis into intervals of length τ ; we then
assume sij(t) to be binary signals that take the
value 1 with probability p and the value 0 with
probability 1 − p in each time interval. The exis-
tence of an edge from vertex i to vertex j is deter-
mined randomly and independently of other edges
with probability pij ∈ [0, 1]. Expressed in words,
every migration link in the metapopulation network
turns on and off, according to a similar probability
law, and the migration between any two patches
opens and closes in different time intervals inde-
pendently. All possible migration links sij = sji are
allowed to turn on and off so that the metapopu-
lation network C(t) remains constant during each
time interval [kτ, (k+ 1)τ) between the reswitching
and represents an Erdös–Rényi graph of n vertices
(see Fig. 2). Such stochastically blinking networks
represent an example of evolving dynamical net-
works whose synchronization and control [Porfiri
et al., 2006; Lü & Chen, 2005; Frasca et al., 2008;
Sorrentino & Ott, 2008; So et al., 2008; De Lellis
et al., 2010] are highly active research directions,
with multiple applications in technological, animal,

(a)

(b)

Fig. 2. (a) Example of the stochastic process with p = 0.5
and τ = 10. The time axis is divided into intervals of length
τ ; for each interval, sk = 1 with probability p and sk = 0 with
probability 1 − p. (b) Three different instances of the same
stochastically switching network. Note one disconnected node
in the network at τ = 65, making network synchronization
impossible during this lapse of time.

and neuronal networks (see a review paper [Belykh
et al., 2014] and the references therein).

The stochastically blinking sporadic interac-
tions sij(t) in the network (2) describe the stochas-
tic opening of migration corridors when conditions
are favorable (such as, e.g. heavy rains allowing
fish to migrate to another lake through streams
that are normally too shallow to traverse). It is
also reasonable to assume that the intrinsic param-
eters of the individual patch model (1) can also be
stochastic functions, similar to sij(t). For exam-
ple, when producer–consumer interaction rate a1

switches between two different values based on some
stochastic process; for instance, when the weather is
especially fierce, a rabbit may not leave his burrow
to eat grass. To account for this intrinsic stochas-
ticity in patch i, we have replaced the traditional
parameter a1 [cf. (1)] with [a1 + ∆aξi(t)], where
ξi(t) is a stochastic variable. For simplicity, we
assume that ξi(t) is governed by the same stochastic
process (but by a different stochastic sequence) and
can switch on and off at the same times as sij(t).
For example, strong winds, allowing the migration
of insects between nearby patches, can also prevent
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the insects, already present in the patches, from
food searching, thereby affecting parameter a1.

This intrinsic stochasticity parameter makes
the patches, comprising the network (2), noniden-
tical such that complete synchronization between
the patches is no longer possible. However, approxi-
mate synchronization with fluctuating synchroniza-
tion errors can be observed in this metapopulation
network with stochastic connections and intrinsic
parameters. Thus, we have knowingly decided to
handle approximate synchronization in the mis-
matched network that better represents realistic
ecological systems with no perfect symmetries. In
the next section, we will derive sufficient stability
conditions of approximate synchronization in the
stochastic network. The generalization of all the
results of this paper to networks of identical patches
is straightforward.

3. Fast Switching

3.1. Switching versus averaged
networks

If dispersal switching is fast compared to the ecolog-
ical cycle of the individual patch, one can expect the
behavior of the stochastic network (2) to be close to
that of the averaged network, obtained by replac-
ing the stochastic variables sij(t) and ξi(t) by their
expected value, the switching probability p. Hence,
the averaged network is an all-to-all coupled static
network with weaker connections:

ẋi = rxi

(
1 − xi

K

)
− [a1 + ∆a · p]xiyi

1 + a1b1xi

+ εxp

n∑
j=1

(xj − xi)

ẏi =
[a1 + ∆a · p]xiyi

1 + a1b1xi
−m1yi

− a2yizi
1 + a2b2yi

+ εyp
n∑
j=1

(yj − yi)

żi =
a2yizi

1 + a2b2yi
−m2zi + εzp

n∑
j=1

(zj − zi).

(3)

The fact that the fast switching network has the
same dynamics as the averaged network seems
apparent; however, there are exceptions and a rig-
orous proof is needed to show what parameters

are responsible for the occurrence of the excep-
tions. A complete rigorous theory for the behav-
ior of stochastically switching networks that switch
rapidly was developed in [Hasler et al., 2013a,
2013b]. The difference between the dynamics of
switching and averaged networks is especially pro-
nounced when the averaged network is multistable
such that the trajectory of the switching network
may converge to the targeted attractor with high
probability or may escape towards another attrac-
tor [Hasler & Belykh, 2005]. This general theory
[Hasler et al., 2013a, 2013b] derives explicit bounds
for these probabilities and relates them to the
switching frequency, the precision, and the length
of the time interval (see its application to a multi-
stable switching oscillator in [Belykh et al., 2013]).

In the following, we apply this theory to syn-
chronization in the ecological network (2) and
derive bounds on the switching frequency that
guarantees stable synchronization. Note that syn-
chronization in the static averaged network (3) of
identical patches is defined by the invariant hyper-
planeM = {x1 = x2 = · · · = xn, y1 = y2 = · · · = yn,
z1 = z2 = · · · = zn}. At the same time, this
hyperplane is no longer invariant under the dynam-
ics of the switching network (2) with stochastically
mismatched parameters [1 + ∆aξi(t)]a1. Therefore,
only approximate synchronization, when trajecto-
ries of the switching network approach and stay
in a δ-neighborhood of the “ghost” synchronization
solution is possible. We shall show that under the
condition that the averaged network exhibits glob-
ally stable synchronization, the switching network
reaches approximate synchronization, provided that
the switching period is sufficiently small. While
expected, this effect is not obvious as the switch-
ing network is disconnected most of the time, yet is
able to synchronize.

3.2. Synchronization in the
averaged network

Before proceeding with the study of the stochas-
tic network, we should first understand the syn-
chronization properties of the averaged network.
Following [Belykh et al., 2009], we explore several
scenarios of possible migration schemes between
ecological patches when all three trophic lev-
els (x, y, z-coupling) or only one trophic level
can migrate. Figure 3 presents the Master Sta-
bility function [Pecora & Carroll, 1998] for
synchronization in the averaged network. As Fig. 3
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Fig. 3. The largest transversal Lyapunov exponent (λ) ver-
sus coupling strength ε for the two-patch x-coupled (green
curve), y-coupled (red, dashed curve), z-coupled (blue curve)
and x, y, z-coupled (blue, dotted curve) averaged network (3).
λ < 0 corresponds to stable synchronization. While the
x, y, z-coupled system is stable for all ε > ε∗xyz = 0.002 (not
shown), the z-coupled system has a window of stability, out-
side of which the patches exhibit asynchronous behavior. The
solid circle (•) indicates the value of ε = 0.175 used in the
calculations for the non-fast switching case of Fig. 5.

suggests, the x, y, z-coupling when three species can
migrate is the most effective mechanism for pro-
moting spatial synchrony. Notice that the x, y, z-
coupling has the lowest synchronization threshold
εx = εy = εz = ε = ε∗xyz among the four migration
schemes; and the largest stability zone, expanding
to the right from ε∗xyz = 0.002 up to infinite cou-
pling strengths. If only one species can migrate,
the dispersal of the consumer (i.e. the intermediate
trophic level) is the most effective in establishing
spatial synchrony. Notice that the dispersal of only
the producer (x-coupling) never induces synchrony,
whereas the dispersal of the predator (z-coupling)
yields a bounded stability well such that increas-
ing the dispersal strength εz eventually destabilizes
the synchronization solution. The latter property of
the z-coupled migration scheme will be used later in
the paper to discuss synchronization in the non-fast
switching case.

We choose the most effective migration scheme
of x, y, z-coupling with εx = εy = εz = ε to study
synchronization in the averaged network (3) and
approximate synchronization in the stochastic net-
work (2). We first formulate conditions on the cou-
pling strength sufficient for global stability of the
synchronization hyperplane M .

Theorem 1. Synchronization in the averaged x, y,
z-coupled network (3) of n patches with coupling
strength pεx = pεy = pεz = pε and the averaged
intrinsic parameter a∗1 = [1 + ∆a · p]a1 is globally

asymptotically stable if coupling ε exceeds the criti-
cal value

ε∗ =
1
p

max{ε1, ε2, ε3, ε4, ε5},

such that pε1 >
r

n
; pε2 >

1
n

[
1
b1

−m1

]
;

pε3 >
1
n

[
1
b2

−m2

]

(nε4 − r)
(
nε4 +m1 − 1

b1

)
>

1
2b21

;

(
nε5 +m1 − 1

b1

)(
nε5 +m2 − 1

b2

)
>

1
2b22

.

(4)

Proof. The proof directly follows from the one
given in [Belykh et al., 2009] for the two-patch static
network (3) (see Appendix in [Belykh et al., 2009])
where the coupling ε is replaced with pε and the
network is extended to the all-to-all configuration
with n patches. �

This bound can be generalized to more complex
averaged network topologies, corresponding to net-
works with given switching connections that are not
all-to-all, by using the Connection Graph method
[Belykh et al., 2005b]. The proof also involves the
construction of the absorbing domain, giving a
lower bound for the trajectories of the averaged net-
work. As this bound will be used in the conditions
of the main theorem (Theorem 2), related to fast
switching, we present its derivation in the following
subsection.

3.3. Absorbing domain

To get the lower bound for trajectories of the aver-
aged network (3) with εx = εy = εz = ε, we notice
upon examining (3) that the trajectories may not
leave the region A+ = {xi > 0, yi > 0, zi > 0} for
initial conditions xi, yi, zi ≥ 0 such that the system
is restricted to the positive orthant of R3n. Next, we
must show that the system (3) is bounded in that
orthant as well. To do this, we will introduce the
following function:

V =
n∑
i=1

(xi + yi + zi − ϕ), (5)
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where ϕ is a constant to be determined. We need to
find the constant ϕ that makes V a Lyapunov-type
function such the vector field of (3) on levels of V
is oriented towards the origin.

We take the derivative of V with respect to
system (3) and get

V̇ =
n∑
i=1

(ẋi + ẏi + żi)

=
n∑
i=1

(
rxi

(
1 − xi

K

)
−m1yi −m2zi

)
, (6)

where the terms ± [a1+∆ap]xiyi

1+a1b1xi
and ± a2yizi

1+a2b2yi
and

the coupling terms have canceled out.
Using the assumption that m1 > m2 (which is

a natural assumption in ecological models), we can
bound the RHS of (6) by replacing the term m1yi
with m2yi. This yields

V̇ <

n∑
i=1

(
rxi

(
1 − xi

K

)
−m2(yi + zi)

)

<
n∑
i=1

(
rxi − rx2

i

K
−m2(ϕ− xi)

)
V=0

, (7)

where we have replaced the term m2(yi + zi) with
its minimum value m2(ϕ − xi), reached at V =∑n

i=1(xi + yi + zi − ϕ) = 0 and, hence, yi + zi =
ϕ− xi. Therefore,

V̇ <
n∑
i=1

(
rxi

(
1 − xi

K

)
−m2(ϕ− xi)

)
(8)

which implies that V̇ < 0 if ϕ > ψ, where

ψ =
K

4rm2
(r +m2)2. (9)

This means that the region of the positive orthant
bounded by Vψ is an absorbing domain such that
0 ≤ xi, yi, zi ≤ ψ.

3.4. Stochastic networks: Rigorous
bounds

The general theory of fast switching (blinking) net-
works [Hasler et al., 2013a, 2013b] involves finding
upper bounds on the first and second time deriva-
tives of the Lyapunov function W , calculated along
solutions of the averaged and switching systems.
This Lyapunov function guarantees the convergence
to the desired attractor in the averaged system and

should be proven to provide probabilistic conver-
gence towards the corresponding attractor (or its
ghost) in the switching system.

In our context, this is the Lyapunov function

W =
n∑
i=1

n∑
j>i

1
2
(X2

ij + Y 2
ij + Z2

ij), (10)

where Xij =xj − xi, Yij = yj − yi, Zij = zj − zi
are the difference variables between the popu-
lation densities in patches i and j. We notice
that both the averaged x, y, z-coupled network (3)
and the corresponding stochastic network (2) are
assumed to have the same Lyapunov function, so
we will differentiate between the two of them using
WΦ and WF for the averaged and stochastic net-
works, respectively. To facilitate cross-paper read-
ing [Hasler et al., 2013a, 2013b], we use the same
notation for the Lyapunov function as well as for
all other constants and bounds. Clearly, the zero of
the Lyapunov function WΦ corresponds to complete
synchronization in the averaged network. At the
same time, the trajectories of the stochastic network
can only reach a neighborhood of the ghost synchro-
nization solution in the stochastic network, there-
fore the Lyapunov function WF cannot converge
to zero, yet can become small. Governed by the
stochastic switching, this Lyapunov function may
increase temporarily, but the general tendency is to
decrease. Therefore, the bounds of the sufficiently
fast switching will have a probabilistic flavor.

The calculations of the probabilistic bounds
are spatially cumbersome, therefore for clarity, we
present a bound for the two-cell stochastic net-
work (2) and its averaged analog (3) with the
Lyapunov function (10) and n = 2. The two-cell
stochastic network helps better isolate the robust
effect of synchronization as a result of stochastic
switching as the network becomes and stays com-
pletely uncoupled for a large fraction of time when
the probability of switching p is small. At the same
time, the larger n-patch network can remain con-
nected or have at least most of the patches con-
nected during a switching event (see Fig. 2). The
extension of the rigorous bound to the n-patch net-
work (2) is straightforward and can be performed,
similarly to a switching network of n chaotic Lorenz
oscillators [Jeter & Belykh, 2015].

Theorem 2. Assume that the coupling strength ε =
εx = εy = εz is sufficiently strong, i.e. greater than
the bound given in (4), such that synchronization in
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the two-patch averaged x, y, z-coupled network (3) is
globally stable. Assume that the switching period τ
is small enough to satisfy

τ < τ∗, (11)

where the bound τ∗ is given in (A.18) (see the
Appendix ). Then, the trajectory of the two-patch
stochastic x, y, z-coupled network (2) almost surely
reaches the U0-neighborhood of the ghost syn-
chronization solution, in finite time. Therefore,
the stochastic x, y, z-coupled network converges to
approximate synchronization globally and almost
surely. The size of the U0-neighborhood is defined by
the level of the Lyapunov function WΦ (11) (n = 2)
such that U0 = V0 + C1, where V0 = 3

2δ
2 is the

level of WΦ with uniform synchronization mismatch
X12 = Y12 = Z12 = δ and constant C1 is given
in (A.16). The constant δ in (A.17) controls the size
of the U0-neighborhood (i.e. the desired synchroniza-
tion mismatch) and can be chosen arbitrarily small.

Proof. This theorem directly follows from the con-
ditions of the general theorem, Theorem 9.1, given
in [Hasler et al., 2013b] and applied to the Lya-
punov functions WΦ and WF (10) with n = 2 and
their bounds on the first and second time deriva-
tives, calculated along solutions of the averaged (3)
and stochastic (2) networks. The details of their cal-
culations are given in the Appendix. �

Remark 1. The bound (11)–(A.18) is conservative as
it comes from the application of Lyapunov functions
and large deviation bounds [Hasler et al., 2013b].
However, it explicitly relates the sufficient switch-
ing period τ with the probability p and strength of
switching connections ε, the precision of synchro-
nization δ, the size of the absorbing domain ψ, and
the intrinsic parameters on the individual patch
model. In particular, it suggests that the carry-
ing capacity K and growth rate r of the producer,
being the leading terms in (A.18), are destabilizing
factors for promoting synchrony in the switching
network as their increase lowers the bound τ∗
and requires faster switching to maintain spatial
synchronization.

Remark 2. The bound (11)–(A.18) guarantees a few
things that are not immediately clear. It shows that
if the switching rate is fast enough, the stochas-
tic system will not just asymptotically converge
to the U0-neighborhood, but converge in a finite
amount of time. It also guarantees globally stable

synchronization in the switching x, y, z-coupled net-
work (2) even if the probability of switching p is
very small and the network is decoupled most of
the time.

3.5. Numerics

We present numerically calculated bounds on τ to
isolate the real window of switching periods τ, cor-
responding to approximate synchronization. As an
example, we consider the two-patch x, y, z-coupled
network (2) switching on and off with probability
p = 1/2. The intrinsic parameter a1 = 4.99 and
∆a = 0.04 are such that the individual patch sys-
tem switches between a1 = 4.99 and a1 + p∆ =
5.01, both corresponding to chaotic dynamics. The
averaged individual system is the model (1) with
a1 = 5, being the mean value of the two parameter
values. The other switching parameters, sij , turn
on and off stochastically, according to the process
that we laid out in Sec. 2. Note that sij and a1

switch with separate identically and independently
distributed stochastic processes both with the prob-
ability of an “on” connection given by p = 1

2 . To
test how the theory holds up, we pick a coupling
strength such that the average coupling is slightly
stronger than the synchronization threshold, rep-
resenting a challenging case for the onset of syn-
chronization in the stochastic network. If switching
is fast enough, we expect that the network syn-
chronizes, whereas if switching is not fast enough,
we expect to see asynchrony. In Fig. 4, we observe
exactly what we expect to see from the theory. As

Fig. 4. The effect of the switching period τ on synchro-
nization in the two-patch (x, y, z)-coupled stochastic network.
The synchronization error corresponding to three switching
periods, τ = 0.0001 (red, dashed curve), τ = 0.01 (blue,
dotted curve), and τ = 1 (solid, green curve). Nonzero size
oscillations in the neighborhood of the ghost synchronization
solution are due to stochastic parameter mismatch. The cou-
pling strength ε = 0.005.
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switching is fast (τ = 0.0001), the system tends to
synchrony (this is shown by the red, dashed curve).
Slower switching at τ = 0.01 and τ = 1 does not
provide the desired synchronization accuracy. We
also notice that as switching becomes less fast, our
intuition about the behavior of the network is less
and less reliable, because slower switching periods
can tend to synchrony more quickly than faster
switching periods when switching is not fast (com-
pare the green (τ = 1) and blue (τ = 0.01) curves
where the slower switching with τ = 1 provides
smaller synchronization errors for these particular
switching sequences).

4. Non-Fast Switching

While the above considered x, y, z-coupled network
desynchronizes when the switching is not suffi-
ciently fast, z-coupled stochastic networks (2) yield
a highly nontrivial synchronizing effect. This migra-
tion coupling scheme where only predators are
allowed to migrate (coupling through the z-variable
only) has synchronization properties distinct from

those of x-, y- and x, y, z-coupled networks. This
is the only migration scheme which has a bounded
range of coupling ε, where synchronization remains
stable (see a well in its stability diagrams in Fig. 3).
As a result, a stronger coupling, pushing the net-
work out of the stability well, destabilizes synchro-
nization. It is important to notice that the z-coupled
networks of Rosenzweig–MacArthur prey–predator
models demonstrate only locally stable synchro-
nization within the stability well and global syn-
chronization cannot be achieved for any coupling.
Therefore, the rigorous theory of global convergence
to synchronization in fast switching networks can-
not be used for this network.

We choose the coupling strength εz = ε = 0.35
in the two-node z-coupled network, switching on
and off with probability p = 1

2 . When turned on,
this excessively strong coupling corresponds to a
nonsynchronized state of the network. When the
coupling is turned off, the network is decoupled
and cannot be synchronized. It is worth noticing
that synchronization in the averaged network is also
unstable as the mean coupling value pε = 0.175,

(a)

Fig. 5. (a) Probability of approximate synchronization in the two-patch z-coupled network as a function of the switching
probability p and the switching period τ. The colors mirror the values on the z-axis, with red (lighter colors) corresponding to
higher probability of convergence (with dark red at probability 1) and blue (darker colors) corresponding to lower probabilities
(dark blue at probability 0). The coupling in the averaged network is fixed at pε = 0.175, marked by • in Fig. 3, to be outside
the stability well. As the probability p changes, the coupling strength ε in the stochastic network is adjusted to keep pε = 0.175
unchanged. When switching is fast and the switching period τ is close to zero, the probability of synchronization is zero as
the switching network behaves similarly to the unstable averaged network. Notice the large bump on the irregular surface
indicating the emergence of approximate synchronization in a window of non-fast switching periods. (b) Various cross-sections
from the surface above. When p is small, such as for p = 0.1 (blue, dotted curve) and p = 0.25 (red, dashed curve), there are
narrow windows for intermediate switching for which approximate synchronization is stable with high probability. For p = 0.5
(black curve), there is a trade-off between high probability of approximate synchronization and the length of the window for τ .
Switching probability around p = 1/2 yields the largest stability window. When p is large, such as for p = 0.75 (green dotted
curve), and p = 0.9 (magenta curve), the network does not converge to approximate synchronization consistently for any value
of τ . Probability calculations are based on 100 trials.
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(b)

Fig. 5. (Continued)

marked by a solid circle in Fig. 3, is outside its sta-
bility well. Thus, the network switches between two
nonsynchronous dynamics; when the switching is
fast and its dynamics becomes close to those of the
averaged network, synchronization in the network is
unstable, as expected. However, we find a window
of intermediate switching periods (5 < τ < 20) in
which approximate synchronization becomes stable
with high probability, against all odds (see Fig. 5).
To give the reader a sense of how these switch-
ing periods relate to the characteristic period of
the individual patch’s ecological cycle T ≈ 200, we
present the window of their ratio: 1

40 < τ
T < 1

10 ,
suggesting that the coupling between the patches
must be activated at least as many as ten and as
fewer as 40 times during the ecological cycle for
stable approximate synchronization to emerge from
switching between two nonsynchronous dynamics.
Figure 5 also shows that the probability p = 1

2 yields
the largest window of synchronization and suggests
the importance of the most probable reswitching
between the nonsynchronous dynamics to maximize
the stabilization effect.

We previously named regions of dynamical
stabilization, induced by stochastic switching, “win-
dows of opportunity,” to further emphasize that
there are consistently favorable conditions in which
the stochastic and deterministic parameters of a
switching system match up appropriately [Belykh
et al., 2013; Jeter & Belykh, 2015] to induce an
otherwise unexpected effect. To some extent, one
can draw some parallels between the stabiliza-
tion of approximate synchronization in the non-fast
switching network (2) with stochastic resonance

[Benzi et al., 1981; Wiesenfeld & Moss, 1995]
where stochasticity makes the time scales of a peri-
odic driving force and driving noise match each
other and pushes subthreshold oscillations beyond a
threshold level. However, the two phenomena have
completely different dynamical origins.

5. Conclusions

We have proposed a switching “blinking” network
of tritrophic food-chain models as a realistic
description of ecological networks where migration
episodes are due to short-term meteorological con-
ditions; however, the migration occurs relatively
frequently during the characteristic period of the
ecological cycle. We have shown how the recently
developed theory [Hasler et al., 2013a, 2013b]
of general fast switching dynamical systems can
be used to study metapopulation synchronization.
Following [Belykh et al., 2009], we have shown that
the dispersal of all the species is much more effec-
tive than those of one trophic level in promoting
synchronized dynamics. We used this three-species
dispersal case to derive explicit probabilistic bounds
on the switching frequency sufficient for the switch-
ing stochastic network to synchronize almost surely
and globally.

Going beyond fast switching, we considered a
switching network where only the predator popu-
lation can migrate and discovered a large window
of intermediate switching periods in which synchro-
nization in the switching network becomes stable
even though it is unstable in the averaged/fast-
switching network. In this case, the network
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switches between two nonsynchronous states; one
corresponds to the uncoupled network, whereas the
other is determined by a network topology with
overly strong desynchronizing dispersal. Yet, the
network can synchronize in this “resonant” win-
dow of intermediate switching periods with high
probability. In this context, the sporadic stochas-
tic switching plays a constructive role in stabilizing
metapopulation synchrony and indicates the impor-
tance of reswitching between the unstable states. At
the same time, metapopulation synchrony increases
the probability of extinction as all patches syn-
chronously follow the same ecological cycle with
typical outbreaks and crashes such that one patch in
an endangered state cannot be saved by the migra-
tion from another equally endangered patch. In this
respect, the role of stochasticity in the switching
ecological network can be viewed as destructive
as it decreases overall metapopulation persistence.
Remarkably, the opposite examples of stochastic
dispersal are available [Williams & Hastings, 2013]
where switching between two sets of dynamics, each
of which leads to extinction, can promote persis-
tence of marine organisms’ metapopulations. How-
ever, the models and type of stochastic dispersal
used in this study [Williams & Hastings, 2013]
are quite different from ours. The effect of non-
fast switching between stable two-dimensional lin-
ear systems has previously been studied. It was
shown that switching between two stable linear
nodes can cause the trajectory to escape to infin-
ity when the switching is not fast [Lawley et al.,
2014].

We have chosen identically distributed indepen-
dent random variables as the driving stochastic pro-
cess for the migration in the ecological network.
As a result, migration episodes occur independently
from each other. As the migration episodes are
often governed by meteorological conditions that
could be driven by a Markov process, the exten-
sion of this study to ecological networks where
the probability of a migration episode depends on
the present migration connections is an important
research topic. Outside of Ecology, on–off switch-
ing networks represent a class of evolving dynamical
networks [Belykh et al., 2014], changing their struc-
ture stochastically or in accordance with some gov-
erning deterministic rule. Epileptic brain networks
switching their functional topology during epilep-
tic seizures [Lehnertz et al., 2014] are an important
example.

Acknowledgments

This work was supported by the National Science
Foundation under Grant No. DMS-1009744, the US
ARO Network Program under grant W911NF-15-
1-0267, and GSU Brains & Behavior program. We
are grateful to Martin Hasler and Sergio Rinaldi for
helpful discussions.

References

Belykh, I. V., Belykh, V. N. & Hasler, M. [2005a] “Blink-
ing model and synchronization in small-world net-
works with a time-varying coupling,” Physica D 195,
188–206.

Belykh, V. N., Belykh, I. V. & Hasler, M. [2005b] “Con-
nection graph stability method for synchronized cou-
pled chaotic systems,” Physica D 195, 159–187.

Belykh, I., Piccardi, C. & Rinaldi, S. [2009] “Synchrony
in tritrophic food chain metacommunities,” J. Biol.
Dyn. 3, 497–514.

Belykh, I., Belykh, V. N., Jeter, R. & Hasler, M.
[2013] “Multistable randomly switching oscillators:
The odds of meeting a ghost,” Eur. Phys. J. Spec.
Topics 222, 2497–2507.

Belykh, I., di Bernardo, M., Kurths, J. & Porfiri, M.
[2014] “Evolving dynamical networks,” Physica D
267, 1–6.

Benzi, R., Sutera, A. & Vulpani, A. [1981] “The mecha-
nism of stochastic resonance,” J. Phys. A: Math. Gen.
14, L453–L457.

Blasius, B., Huppert, A. & Stone, L. [1999] “Com-
plex dynamics and phase synchronization in spa-
tially extended ecological systems,” Nature 399, 354–
359.

Cantrell, R. S., Cosner, C. & Ruan, S. (eds.) [2009] Spa-
tial Ecology (CRC-Chapman & Hall, Boca Raton).

Cattadori, I. M., Hudson, P. J., Merler, S. & Rizzoli, A.
[1999] “Synchrony, scale and temporal dynamics of
rock partridge (Alectoris graeca saxatilis) populations
in the dolomites,” J. Anim. Ecol. 68, 540–549.

Cazelles, B. & Boudjema, G. [2001] “The Moran effect
and phase synchronization in complex spatial commu-
nity dynamics,” Amer. Natur. 157, 670–676.

Chave, J. [2013] “The problem of pattern and scale in
ecology: What have we learned in 20 years?” Ecol.
Lett. 16, 4–16.

Colombo, A., Dercole, F. & Rinaldi, S. [2008] “Remarks
on metacommunity synchronization with application
to prey–predator systems,” Amer. Natur. 171, 430–
442.

De Lellis, P., di Bernardo, M., Garofalo, F. & Porfiri,
M. [2010] “Evolution of complex networks via edge
snapping,” IEEE Trans. Circuits Syst.-I 57, 2132–
2143.

1540002-11



July 7, 2015 10:12 WSPC/S0218-1274 1540002

R. Jeter & I. Belykh

Deng, B. & Hines, G. [2001] “Food chain chaos due to
Shilnikov’s orbit,” Chaos 12, 533–538.

Earn, D., Levin, S. & Rohani, P. [2000] “Coherence and
conservation,” Science 270, 1360–1364.

Elton, C. S. [1924] “Periodic fluctuations in the numbers
of animals,” British J. Exper. Biol. 2, 119–163.

Elton, C. S. & Nicholson, M. [1942] “The ten-year cycle
in numbers of the lynx in Canada,” J. Anim. Ecol.
11, 215–244.

Frasca, M., Buscarino, A., Rizzo, A., Fortuna, L. & Boc-
caletti, S. [2008] “Synchronization of moving chaotic
agents,” Phys. Rev. Lett. 100, 044102.

Grenfell, B. T., Wilson, K., Finkenstädt, B. F., Coulson,
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Appendix

Derivation of the Bound from

Theorem 2

In this appendix, we present the calculations of the
constants used in the statement of Theorem 2. As
we consider the two-patch network, we can rewrite
the Lyapunov function (10) for the different vari-
ables X = x2 − x1, Y = y2 − y1, Z = z2 − z1 as

W =
1
2
(X2 + Y 2 + Z2). (A.1)

To apply Theorem 9.1 [Hasler et al., 2013b] to
the global stability of approximate synchronization
in the two-patch x, y, z-coupled network (2) with
ε = εx = εy = εz, we need to calculate upper
bounds on the first and second time derivatives of
the Lyapunov function W , calculated along solu-
tions of the averaged and switching networks. As in
the main text, we shall use the same notation for
the Lyapunov functions and their derivatives as in
[Hasler et al., 2013b]. The required derivatives are

BWΦ = max
x∈R

|DΦW (x)|

LBWΦ = max
x∈R

|D2
ΦW (x)|

BWF = max
s∈0,1M

max
x∈R

|DFW (x, s)|

LBWF = max
s,s∈0,1M

max
x∈R

|D2
FW (x, s, s)|,

(A.2)

where x is the vector of xi = {xi, yi, zi}, i = 1, 2,
R is the systems’ absorbing domain, s is a set
of stochastic sequences corresponding to the con-
nections between patches and the switching of the
parameter a1; similarly, s corresponds to another
set of stochastic switching sequences. We start with
BWΦ, which requires the first time derivative of the
Lyapunov function of the averaged system:

DΦW (x) = XẊ + Y Ẏ + ZŻ.

Here, the derivatives Ẋ, Ẏ , and Ż are given by the
following difference system, obtained by subtracting
the corresponding equations of the averaged net-
work

Ẋ = [(f(x2) − f(x1)) − (g(x2)y2 − g(x1)y1)]

− 2pεX

Ẏ = [(g(x2)y2 − g(x1)y1) − (h(y2)z2 − h(y1)z1)]

− (m1 + 2pε)Y

Ż = [h(y2)z2 − h(y1)z1] − (m2 + 2pε)Z
(A.3)

with f(η) = rη(1 − η
K ), g(η) = a∗1η

1+a∗1b1η
, where η =

x1, x2 and a∗1 = [1 + ∆a · p]a1 and h(ξ) = a2ξ
1+a2b2ξ

with ξ = y1, y2.
Recall that 0 ≤ xi, yi, zi < ψ = K

4rm2
(r +

m2)2 [cf. (9)]. We use this bound to find BWΦ =
max
x∈R

|DΦW (x)| by substituting either 0 or ψ for each

xi, yi, zi (i = 1, 2), depending on which will maxi-
mize each term. While this may not give the tightest
bound, it simplifies the derivation of the bound, and
makes the final bound a little more manageable:

max|DΦW (x)|

=
[
ψ

(
rψ + pεψ +

rψ2

K
+ a∗1ψ + pεψ

)

+ψ(a∗1ψ
2 + pεψ +m1ψ + a2ψ

2 + pεψ)

+ψ(a2ψ
2 + pεψ +m2ψ + pεψ)

]
,

which reduces to

BWΦ = ψ2

(
r +

rψ

K
+ 2a∗1ψ

+m1 + 2a2ψ +m2 + 6pε
)
. (A.4)

Next, we repeat this process for LBWΦ =
max
x∈R

|D2
ΦW (x)| which requires the second time

derivative of the Lyapunov function of the averaged
system, D2

ΦW (x). Taking the second time deriva-
tive of WΦ, we get:

D2
ΦW (x) = Ẋ2 +XẌ + Ẏ 2 + Y Ÿ + Ż2 + ZZ̈,

where Ẍ, Ÿ , and Z̈ are defined by the system

Ẍ = [ḟ(x2) − ḟ(x1)] − [ġ(x2)y2 + g(x2)ẏ2

− ġ(x1)y1 − g(x1)ẏ1] − 2pεẊ

Ÿ = [ġ(x2)y2 + g(x2)ẏ2 − ġ(x1)y1 − g(x1)ẏ1]

− [ḣ(y2)z2 + h(y2)ż2 − ḣ(y1)z1 − h(y1)ż1]

− (m1 + 2pε)Ẏ
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Z̈ = ḣ(y2)z2 + h(y2)ż2 − ḣ(y1)z1 − h(y1)ż1

− (m2 + 2pε)Ż.
(A.5)

Then, using the same methods as before, we replace
all of the variables with either ψ or 0, depending on
which helps maximize the equation term by term.
Using Mathematica, we simplify the tedious expres-
sion to get:

LBWΦ = max |D2
ΦW (x)|

= ψ2

[
4(a∗1)

2ψ2 + 6a2
2ψ

2 + 2m2
1 +m2

+ 2m2
2 + 2pε+ 7pm1ε+ 5pεm2

+ 20p2ε2 + a2ψ(1 + 5m1 + a∗1ψ(4 +m1)

+ 4m2 + 17pε+m1pε) + 6
rεψ

K
+ 6pεr

+ 2pεψr + 3
ψ2r2

K
+ 2

ψr2

K
+ r2

+
a∗1ψ
K

(3Km1 + 16pεK + 5ψr + 3Kr)
]
.

(A.6)

After finding these bounds for the averaged net-
work, we must do the same thing for the stochastic
system. We start by finding

max|DFW (x, s)| = XẊ + Y Ẏ + ZŻ,

where the derivatives Ẋ , Ẏ , and Ż are governed
by the difference system which is identical to (A.5),
when p is replaced with s12(t) and a∗1 with [1 +
∆a · ξ1]a1 and a∗1 with [1 + ∆a · ξ2]a1 in the func-
tions g(x1) and g(x2), respectively. Similarly
to the calculations of BWΦ, the expression for
max|DFW (x, s)| can be simplified using the same
bounds. It is worth mentioning that in choosing the
favorable bound term by term, the inequalities will
be maximized for s12 = 1, i.e. when the switch is
“on” and ξ1 = ξ2 = 1 such that

BWF = max|DFW (x, s)|

=
[
ψ

(
rψ + εψ +

rψ2

K
+ â1ψ + εψ

)

+ψ(â1ψ
2 + εψ +m1ψ + a2ψ

2 + εψ)

+ψ(a2ψ
2 + εψ +m2ψ + εψ)

]
,

where â1 = [1 + ∆a]a1. The bound further reduces
as follows

BWF = ψ2

(
r +

rψ

K
+ 2â1ψ

+m1 + 2a2ψ +m2 + 6ε
)
. (A.7)

Then, we take the second time derivative of WF

to get

D2
FW (x, s, s) = Ẋ2 +XẌ + Ẏ 2 + Y Ÿ

+ Ż2 + ZZ̈,

with Ẍ , Ÿ , and Z̈ defined in difference system (A.5),
when p is replaced with s12(t) and a∗1 with [1+∆a ·
ξ1]a1 and a∗1 with [1 + ∆a · ξ2]a1 in the functions
g(x1) and g(x2), respectively. The reader should
notice the additional stochastic variables s12, ξ1,
and ξ2. This is another realization of the stochas-
tic sequence that does not match the realization
given by s12, ξ1, and ξ2. However, after substitut-
ing the bounds on the state variables, we observe
that the maximum is obtained when s12 = s12 = 1,
ξ1 = ξ1 = 1, and ξ2 = ξ2 = 1. Therefore, the bound
simplifies to

LBWF = max|D2
FW (x)|

= ψ2

[
4â2

1ψ
2 + 6a2

2ψ
2 + 2ε+ 20ε2

+ 7εm1 + 2m2
1 +m2 + 5εm2 + 2m2

2

+ a2ψ · (1 + 5m1 + â1ψ(4 +m1)

+ ε(17 +m1) + 4m2) + 6
ψεr

K

+ 6εr + 2ψεr + 3
ψ2r2

K2
+ 2

ψr2

K
+ r2

+
â1ψ

K
· (16εK + 5ψr + 3K(m1 + r))

]
.

(A.8)

The next step in deriving the bound τ∗ of The-
orem 2 is to define the size of the δ-neighborhood of
the ghost synchronization solution of the stochastic
system (2). To do this, we choose a level curve of the
Lyapunov function WΦ for the averaged system (3):

V0 : W =
1
2
(δ2X + δ2Y + δ2Z). (A.9)
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We let δ = max{δX , δY , δZ}, which simplifies the
level to

V0 : WΦ ≤ 3
2
δ2. (A.10)

We define another level, V1 as the absorbing domain
of the Lyapunov function, which we obtain by
replacing each difference variable with its maximum
value, subject to the constraints on x. We get:

V1 : WΦ =
1
2
(ψ2 + ψ2 + ψ2) =

3
2
ψ2. (A.11)

These level curves allow us to define the following
quantity used in the general Theorem 9.1 [Hasler
et al., 2013b]:

γ = min
x∈R,V0≤WΦ≤V1

|DΦW (x)|.

We can see that |DΦW (X)| is minimized at the
level V0, which corresponds to the δ-neighborhood.

Hence, we calculate γ as:

γ = min
x∈R,V0≤WΦ≤V1

|DΦW (x)|

=
∣∣∣δ2(r − r

K
δ −m1 −m2 − 6pε

)∣∣∣. (A.12)

We must also define the following constants that are
used in the theorem:

c =
1

64(LBWF + LBWΦ)B2
WF

D = 8(LBWF + LBWΦ)

U0 =
{
x |W (x) < V0 +

4γ2

D

}
,

(A.13)

where U0 is a neighborhood of the synchroniza-
tion solution of the averaged system (3), and is
slightly larger than V0, which corresponds to the δ-
neighborhood of the ghost synchronization solution
in the stochastic system (2). After substituting the
values for BWF , LBWF , and LBWΦ we obtain

c = K4 ·
[
64ψ4(2â1ψK + 2a2ψK +Km1 +Km2 + 6Kpε+ ψr +Kr)2

×
(

1
K2ψ2

(6a2
2ψ

2K2 + 4(â1)2ψ2K2 + 2K2m2
1 +K2m2 + 2K2m2

2 + 2pεK2 + 7pεK2m1

+ 5pεK2m2 + 20p2ε2K2 + a2ψK
2(15m1 + â1ψ(4 +m1) + 4m2 + 17pε+ pεm1) + 6ψpKrε

+ 6pεK2r + 2ψpεrK2 + 3ψ2r2 + 2ψr2K +K2r2 + â1ψK(3Km1 + 16pεK + 5ψr + 3Kr))

+
1

K2ψ2
(6a2

2ψ
2K2 + a2ψK

2(1 + 4m2 + 4a∗1ψ + 17pε +m1 · (5 + a∗1ψ + pε)) + 3ψ2r2

+ψKr(5a∗1ψ + 6pε+ 2r) +K2(2m2
1 +m2 + 2m2

2 + 2pε+ 3a∗1ψm1 + 7pεm1

+ 5pεm2 + 4(a∗1)
2ψ2 + 16a∗1ψpε+ 20p2ε2 + 3a∗1ψr + 6rpε+ 2ψrpε+ r2))

)]−1

(A.14)

and

D = 8ψ2(12a2
2ψ

2 + 4(a∗1)
2ψ2 + 4â2

1ψ
2 + a2ψ((â1ψ + a∗1ψ)(4 +m1)

+ 2(1 + 5m1 + 4m2 + 17pε+m1pε))m1pε) +
(a∗1 + â1)ψ

K
(5ψr +K(3m1 + 16pε+ 3r))

+ 2
(

1
K

(3ψ2r2 + 2ψKr(3pε+ r) + 2m2
1 +m2 + 2m2

2 + r2 + pε(2 + 7m1 + 5m2 + 20pε+ 6r + 2ψr))
)
.

(A.15)

With C1 being defined as 4γ
D , we get

C1 = δ4
(
r − r

K
δ −m1 −m2 − 6pε

)2
· 1
2

[
ψ2(12a2

2ψ
2 + 4(a∗1)

2ψ2 + 4â2
1ψ

2

+ a2ψ((â1ψ + a∗1ψ)(4 +m1) + 2(1 + 5m1 + 4m2 + 17pε+m1pε)))
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+
(a∗1 + â1)ψ

K
(5ψr +K(3m1 + 16pε+ 3r)) + 2

(
1
K

(3ψ2r2 + 2ψKr(3pε+ r)

+ 2m2
1 +m2 + 2m2

2 + r2 + pε(2 + 7m1 + 5m2 + 20pε+ 6r + 2ψr))
)]−1

.

(A.16)

The desired bound on the switching period τ∗ in Theorem 2 comes from the bound in Theorem 9.1 [Hasler
et al., 2013b] such that

τ < τ∗ =
cγ3

ln
[
D

(V1 − V0)
γ2

] . (A.17)

Plugging the constants c (A.14), γ (A.12), D (A.15), V0 (A.10), V1 (A.11) into the general expression
(A.17) yields the final bound used in Theorem 2:

τ < τ∗ = K4
∣∣∣δ2(r − r

K
δ −m1 −m2 − 6pε

)∣∣∣3

·
(

64ψ4(2â1ψK + 2a2ψK +Km1 +Km2 + 6Kpε+ ψr +Kr)2

×
(

1
K2ψ2

(6a2
2ψ

2K2 + 4â2
1ψ

2K2 + 2K2m2
1 +K2m2 + 2K2m2

2 + 2pεK2 + 7pεK2m1

+ 5pεK2m2 + 20p2ε2K2 + a2ψK
2(15m1 + â1ψ(4 +m1) + 4m2 + 17pε+ pεm1) + 6ψpKrε

+ 6pεK2r + 2ψpεrK2 + 3ψ2r2 + 2ψr2K +K2r2 + â1ψK(3Km1 + 16pεK + 5ψr + 3Kr))

+
1

K2ψ2
(6a2

2ψ
2K2 + a2ψK

2(1 + 4m2 + 4a∗1ψ + 17pε +m1(5 + a∗1ψ + pε))

+ 3ψ2r2 + ψKr(5a∗1ψ + 6pε+ 2r) +K2(2m2
1 +m2 + 2m2

2 + 2pε+ 3a∗1ψm1

+ 7pεm1 + 5pεm2 + 4(a∗1)
2ψ2 + 16a∗1ψpε+ 20p2ε2 + 3a∗1ψr + 6rpε+ 2ψrpε+ r2))

))

× ln


8ψ2


12a2

2ψ
2 + 4(a∗1)

2ψ2 + 4â2
1ψ

2 + a2ψ((a∗1ψ + â1ψ)(4 +m1) + 2(1 + 5m1 + 4m2

+ 17pε+m1pε)) +
(a∗1 + â1)ψ

K
(5ψr +K(3m1 + 16pε+ 3r)) + 2

(
1
K

(3ψ2r2 + 2ψKr(3pε+ r)

+ 2m2
1 +m2 + 2m2

2 + r2 + pε(2 + 7m1 + 5m2 + 20pε+ 6r + 2ψr))
)

×
3
2
(ψ2 − δ)

δ4
(
r − r

K
δ −m1 −m2 − 6pε

)2






−1

, (A.18)
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where once again ψ = K
4rm2

(r+m2)2 is the absorb-
ing domain bounds [cf. (9)], a∗1 = [1 + ∆a · p]a1,
and â1 = [1 + ∆a]a1. Note that the bound τ∗ is
explicit in the parameters of the stochastic net-
work. The size of the neighborhood U0 used in The-
orem 2 is given by U0 = V0 + C1, where V0 = 3

2δ
2

[cf. (A.10)] and C1 is given in (A.16). The constant
δ defines the required precision of synchronization
and can be chosen arbitrarily.

This completes the calculation of the bounds
that are necessary to apply general Theorem 9.1
[Hasler et al., 2013b] on the convergence near the
ghost attractor in a stochastically switching dynam-
ical system to formulate Theorem 2 for approxi-
mate synchronization in the stochastic ecological
network (2).
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