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Abstract

Let G be a graph with maximum degree A(G) and maximum multiplicity u(G).
Vizing and Gupta, independently, proved in the 1960s that the chromatic index of
G is at most A(G) + u(G). The distance between two edges in G is the number of
edges contained in a shortest path in G between any of their endvertices. A distance-t
matching is a set of edges having pairwise distance at least t. Edwards et al. proposed
a conjecture: For any graph G, using the palette {1,..., A(G)+ u(G)}, any precolored
distance-2 matching can be extended to a proper edge coloring of G. Girao and Kang
verified this conjecture for distance-9 matchings. In this paper, we improve the required
distance from 9 to 3 for multigraphs G with u(G) > 2.
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1 Introduction

In this paper, we generally follow the book [15] of Stiebitz et al. for notation and terminology.
Graphs in this paper are finite, undirected, and without loops, but may have multiple edges.
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Let G = (V(G), E(G)) be a graph, where V(G) and E(G) are respectively the vertex set
and the edge set of the graph G. Let A(G) and u(G) be respectively maximum degree and
maximum multiplicity of graph G. Let [k] := {1,...,k} be a palette of k available colors. A
k-edge-coloring of G is a map ¢ that assigns to every edge e of G a color from the palette
[k] such that no two adjacent edges receive the same color (the edge coloring is also called
proper). Denote by C*(G) the set of all k-edge-colorings of G. The chromatic indezx x'(G) is
the least integer k such that C*(G) # ().

In the 1960s, Vizing [17] and, independently, Gupta [13] proved that A(G) < x/'(G) <
A(G) 4+ p(G) which is always called Vizing’s Theorem. Using the palette [A(G) + u(G)],
when can we extend a precolored edge set F' C E(G) to a proper edge coloring of G? To
address this natural generalization of Vizing’s Theorem, we consider edge set F' such that
its edges are far apart from each other. The distance between two edges in GG is the number
of edges contained in a shortest path in G between any of their endvertices. A distance-t
matching is a set of edges having pairwise distance at least t. Following this definition, a
matching is a distance-1 matching and an induced matching is a distance-2 matching.

Albertson and Moore [2] conjectured that if G is a simple graph, using the palette [A(G)+
1], any precolored distance-3 matching can be extended to a proper edge coloring of G.
Edwards et al. [8] proposed a stronger conjecture: For any graph G, using the palette [A(G)+
w(@)], any precolored distance-2 matching can be extended to a proper edge coloring of G.
Girao and Kang [9] verified this conjecture for distance-9 matchings. In this paper, we
improve the required distance from 9 to 3 for multigraphs with maximum multiplicity at
least 2 as below.

Theorem 1.1. Let G be a multigraph with mazimum degree A(G) and mazimum multiplicity
w(G) , and let M be a subset of E(G) such that the minimum distance between two edges of M
is at least 3. If u(G) > 2 and M is arbitrarily precolored from the palette K = [A(G) + u(G)],
then there is a proper edge coloring of G using colors from IC that agrees with the precoloring
on M.

The density of a graph G, denoted by w(G), is defined as

w(G) = mazx {% :HCG,|V(H)| >3 and |V(H)| is Odd}

if |[V(G)| > 3 and w(G) = 0 otherwise. By counting the number of edges in color classes, we
have \'(G) > [w(G)]. So, besides the maximum degree, the density provides another lower
bound for the chromatic index of a graph. In the 1970s, Goldberg [10] and Seymour [14]
independently conjectured that actuarally x'(G) = [w(G)] provided x'(G) > A(G)+2. The
conjecture was commonly referred to as one of most challenging problems in graph chromatic
theory [15], and it was confirmed recently by Chen et al. [7].



Our proof of Theorem 1.1 is based on the assumption of the above Goldberg-Seymour
Conjecture. We will present the proof of Theorem 1.1 in Section 4, before which we need
some new structural properties of dense subgraphs and multi-fans, and some generalizations
of Vizing’s Theorem introduced in Sections 2 and 3.

2 Dense subgraphs

Throughout the rest of this paper, we reserve the notation A and p for maximum degree
and maximum multiplicity of the graph G, respectively. For a vertex set N C V(G), let
GG — N be the graph obtained from G by deleting all the vertices in N and edges incident with
them. For an edge set F' C E(G), let G — F be the graph obtained from G by deleting all
the edges in F' but keeping their endvertices. If F' = {e}, we simply write G — e. Similarly,
we let G 4 e be the graph obtained from G by adding the edge e to E(G). For disjoint
X,Y CV(G), Eg(X,Y) is the set of edges of G with one endvertex in X and the other in
Y. If X = {z} and Y = {y}, we simply write Eg(z,y). For two disjoint subgraphs H; and
H, of G, we simply write E(H;, Hy) for Eq(V(Hy),V(H2)). For X C V(G), the edge set
Oc(X) = Eq(X,V(G)\X) is called the boundary of X in G. For a subgraph H of G, we
simply write O(H) for dg(V (H)).

For u € V(G), let dg(u) denote the degree of u in G. A k-verter in G is a vertex with
degree exactly k in G. A k-neighbor of a vertex v in G is a neighbor of v that is a k-vertex in
G. A a-edge is an edge colored with the color a. For e € E(G), V(e) is the set of endvertices
of e. The diameter of a graph G, denoted by diam(G), is the greatest distance between any
pair of vertices in V(G).

An edge e of a graph G is called a k-critical edge if k = X' (G —e) < X'(G) =k+1. A
graph G is called k-critical if X'(H) < x'(G) = k + 1 for each proper subgraph H of G. It is
easy to see that a connected graph G is critical if and only if every edge of G is critical.

For a graph G, a vertex v € V(G) and an edge coloring ¢ € C¥(G) with some positive
integer k, define the two color sets p(v) = {o(f) : f € E(G) and f is incident with v} and
P(v) = [k]\ p(v). We call p(v) the set of colors present at v and B(v) the set of colors missing
at v. For a vertex set X C V(G), define 3(X) = J,cx P(v). A vertex set X C V(G) is
called @-elementary if p(u) Np(v) = () for every two distinct vertices u,v € X. The set X is
called -closed if each color on boundary edges is present at each vertex of X. Moreover, the
set X is called strongly ¢-closed if X is (p-closed and colors on boundary edges are distinct,
e, o(f) # ¢(f') for every two distinct colored edges f, f' € Jg(X). For a subgraph H
of G, let ¢y be the edge coloring of G restricted on H. We say a subgraph H of G is -
elementary, ¢-closed and strongly ¢-closed, if V(H) is p-elementary, ¢-closed and strongly
p-closed, respectively. Clearly, if V(H) is ¢py-elementary then V(H) is ¢-elementary, and



the converse is not true.

A subgraph H of G is k-dense if |V (H)|isodd and |E(H)| = (|V(H)|—1)k/2. Moreover,
H is a maximal k-dense subgraph if there does not exist a k-dense subgraph H’ containing
H as a proper subgraph. By counting edges, we see that if H is a k-dense subgraph then
X'(H) > k. Moreover, if \'(G) = k, then x'(H) = k and for every ¢ € C*(G), every k-dense
subgraph H of G is both ¢p-elementary and strongly ¢-closed.

We start with the following consequent of the Goldberg-Seymour Conjecture.

Lemma 2.1. Let G be a multigraph and e € E(G). If e is k-critical and k > A(G)+1, then
G — e has a k-dense subgraph H containing V' (e), and e is also a k-critical edge of H + e.

Proof. Clearly, X'(G) = k+ 1 and \/(G — e) = k. By the assumption of the Goldberg-
Seymour Conjecture, x'(G) = [w(G)] = k + 1. So, there exists a subgraph H* of odd
order such that |E(H*)| > (|[V(H*)| — 1)k/2. On the other hand, we have W—_sﬂ <
[w(H*—e)| < X' (H*—e) < X'(G—e) = k, which in turn gives |E(H*—e)| < (|V(H*)|—1)k/2.
Thus |[E(H* —e)| = (|[V(H*)| —1)k/2. Then k < [w(H* —e)| < X'(H*—e) <X (G—¢) =k
and k+ 1 < [w(H*)] < X' (H*) < X(G) = k + 1, which implies that £k = x'(H* —e) <
X'(H*) = k+ 1. Thus H = H* — e is a k-dense subgraph containing V'(e), and e is also a
k-critical edge of H + e. O

Lemma 2.2. Given a graph G, if X'(G) > A(G) + 1, then mazimal x'(G)-dense subgraphs
are pairwise vertex-disjoint.

Proof. Let k = x/(G) and suppose on the contrary that there are two maximal k-dense
subgraphs H; and H; with nonempty intersection. Let H = Hy N Hy and H* = H; U H,.
For each i = 1,2, since |E(H;)| = (|[V(H;)| — 1)k/2, adding any edge to H; will result a
graph with chromatic index greater than k, and so H; = G[V(H;)] is an induced subgraph
of G. Since both H; and H, are maximal and distinct, we have V(H;) \ V(Hs) # 0 and
V(H,) \ V(H;) # 0, which in turn gives H; C H* and Hy, C H*. We consider two cases
according to the parity of |V (H)|.

Case 1: |V(H)| is odd.

Since E(H*) = E(H,) U E(Hs) and E(H) = E(H;) N E(H,), we have
|E(H")| = |[E(H)| + |E(Hy)| = |E(H)| = k([V(H)| + [V(H)| = 2)/2 = [E(H)|. (1)

On the other hand, since both H; and H, are maximal k-dense, H* is not k-dense. Conse-
quently, we have

[E(H)] < k(V(H")| = 1)/2 = K(|V(H)| + [V(H)| = [V(H)|] = 1)/2. (2)
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The combination of (1) and (2) gives |E(H)| > k(|]V(H)|—1)/2. Consequently, we have
X' (G) > X'(H) > k, giving a contradiction.

Case 2: |V(H)| is even.

Let Hf = Hi — V(H) and H} = Hy — V(H). Clearly, both H{ and Hj have odd number
of vertices. Since both H} and H; have k-edge-colorings, the following two inequalities hold.

|[E(HT)| < k(|V(H)| = [V(H)] - 1)/2, (3)
|[E(HY)| < k(|V(H2)| - [V(H)| - 1)/2.
Since both H; and H, are k-dense, we have the following inequalities.
k(V(H)| = 1)/2 = |E(Hy)| = |E(H)| + |[E(Hy)| + |E(HY, H)|, (@)
k([V(Hs)| —1)/2 = |E(H2)| = |[E(H)| + |E(H3)| + |E(H;, H)|.

The combination of (3) and (4) gives

|E(HY, H)| + [E(H)
|E(H,, H)| + [E(H)|

k- [V(H)|/2,
k- |V(H)|/2.

AVARLY,

Therefore, A(G) - [V(H)| 2 T eyrydo(e) > |B(HT, H)| + |E(H5, )| + 21B(H)] >
k|V(H)|, contradicting the assumption A(G) < k. O

Lemma 2.3. Let G be a multigraph with X'(G) = k+1 > A(G) + 2 and e be a k-critical
edge of G. We have the following statements.

(a) G — e has a unique mazimal k-dense subgraph H containing V (e), and e is also a
k-critical edge of H + e;

(b) With respect to any coloring o € C¥(G—e), H is p-elementary and strongly o-closed;
() If X' (G) = A(G)+u(G), then A(H+e) = A(G), p(H+e) = u(G) and diam(H +e) <
diam(H) < 2.

Proof. By Lemma 2.1, G — e contains a k-dense subgraph H containing V' (e) and e is
also a k-critical edge of H + e. We may assume that H is a maximal k-dense subgraph, and
the uniqueness of H is a direct consequence of Lemma 2.2. This proves (a).

Since H is k-dense, by the definition, |E(H)| = %k Also since H has an odd order,
the size of a maximum matching in H has size at most (|V(H)| — 1)/2. Therefore, under
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any k-edge-coloring ¢, each color class in H is a matching of size exactly (|[V(H)| —1)/2.
Thus every color in [k] is missing at exactly one vertex of H or it appears exactly once in
O(H). Consequently, V(H) is pg-elementary and strongly ¢-closed. This proves (b).

For (c), by (a) and Vizing’s Theorem, A(G) + u(G) = X' (G) = X'(H +e) < A(H + e)
w(H +e) < A(G) + u(G) implying that A(H +e) = A(G) = A and u(H +e) = pu(G) =
For any coloring ¢ € CF(G — ¢e), H is pg-elementary by (b). For any = € V(H), all
the colors missing at other vertices present at x. Note that k. = A 4+ u — 1. For each
vertex v € V(H), we have that [py(v)| = k —dg(v) > k—A =p—1if v ¢ V(e), and
Py()|=k—dg(v)+1>k—A+1>(p—1)+1if v € V(e). Denote |V (H)| by n. Thus,
0() = | Uper e B0 = (6= )= 1)+ 1= (a = D(n—1) + 1.

neighbor set of x in H. Since p > 2, we have (=D=D+1 5. Hence, every vertex in H
is adjacent to at least half vertices in H. Consequently, every two vertices of H share a

common neighbor, which in turn gives diam(H) < 2. This proves (c). O

Since pu(H) < pu(G) = p, we get |Ny(x)| > dHu(z) > (“_1)(2_1)“, where Npy(x) is the

For a subgraph H of a graph G, let G/H be the graph obtained from G by contracting
V(H) to a single vertex. The following technical lemma will be used several times in our
proof.

Lemma 2.4. Let G be a graph with X'(G) = k > A(G), H be a k-dense subgraph, and ¢ and
¢ be k-edge-colorings of H and G/H with the same palette [k, respectively. By permuting
color classes of 1 on E(H), we can obtain a k-edge-coloring m of G such that w(f) = ¢(f)
for every edge in G/H. If X'(G) = k > A(G) + 1, for any fized color o € [k], then by
permuting other color classes of ¢ on E(H) we can obtain a coloring m of G agreeing with
@ such that all color classes are matchings except the edges with color c.

Proof. We treat ¢ as a k-edge-coloring of G— E(H ). Then, edges in 9(H) have different
colors. Since H is k-dense and x'(G) = k, H is y-elementary. For each v € V(H), we have
()| =k —di(v) > A(G) — du(v) > dg—paun(v) = |p(v)]. So, by permuting color classes
of 1), we may assume that ¢(v) C 1(v) for each v € V(H). The combination of the modified
coloring of 1 and ¢ gives 7.

For the second part, under the condition k& > A(G) + 1, we have [¢(v)| = k — dg(v) >
AG)+1—du(v) > de—pm)(v) + 1 = |p(v)] + 1. So [i(v)\{a}| > |¢(v)\{a}|. Notice that
when a € (v) NP(v), we need [(v)| — 1 > |p(v)| to ensure the inequality above, where
the assumption k& > A(G) + 1 is applied. By permuting color classes of H except a, we may
assume that ¢(v)\{a} C ¢(v) for each v € V(H). Again, the combination of the modified
coloring of 1) and ¢ gives the desired coloring. O



3 Refinements of multi-fans and some consequences

We first recall Kempe-chains and related terminology. Let ¢ be a k-edge-coloring of G using
the palette [k]. Given two distinct colors «, /3, an («, 3)-chain is a component of the subgraph
induced by edges assigned color o or 5 in G, which is either an even cycle or a path. We call
the operation that swaps the colors o and § on an («, §)-chain the Kempe change. Clearly,
the resulting coloring after a Kempe change is still a proper k-edge-coloring. Furthermore,
we say that a chain has endvertices u and v if the chain is a path joining vertices u and v.
For a vertex v € G, we denote by P,(«a, 3) the unique (¢, 5)-chain containing the vertex v.
For two vertices u, v € V(G), the two chains P,(«a, 8) and P,(«, 3) are either identical or
disjoint. More generally, let P, (o, ) be a subchain of a (a, 3)-chain with endvertices a
and b. The operation of swapping colors a and 3 on the subchain P is still called a Kempe
change, but the resulting coloring may no longer be a proper edge coloring.

Let G be a graph with an edge e € Eg(z,y), and ¢ be a proper edge coloring of G or
G —e. A sequence F = (x, €9, Yo, €1, Y1, - - -, €p, Yp) consisting of vertices and distinct edges is
called a (general) multi-fan at = with respect to e and ¢ if ey = €, yo = y, and for 0 < i < p,
the edge e; € Eq(z,y;) and ¢(e;) € P(y;) for some 0 < j <1i— 1. Notice that the definition
of multi-fan in this paper is slightly general than the one in [15] since the edge e may be
colored in G. We say a multi-fan F' is mazimal if there is no multi-fan containing F' as a
proper subsequence. Similarly, we say a multi-fan F' is mazimal without any a-edge if F
does not contain any a-edge and there is no multi-fan without any a-edge containing F' as
a proper subsequence. Let pg(z,y) = |Eq(z,y)| for z,y € V(G). Note that a multi-fan may
have repeated vertices, so by pp(z,y;) for some y; € V(F) we mean the number of edges
joining z and y; in F'.

A linear sequence at z from yy to ys in G, denoted by S = (z,€q, Yo, €1, Y1, - - -, €s, Ys ),
is a sequence consisting of distinct vertices and distinct edges such that e; € Eg(z,y;) for
0 <i<sandp(e;) € B(y;—1) for i € [s]. Clearly for any y; € V(F), the multi-fan F' contains
a linear sequence at x from yg to y;. The following local edge recoloring operation will be used
in our proof. A shifting from y; to y; in the linear sequence S = (x, €9, Yo, €1, Y1, - - - , €5, Ys) 18
an operation that replaces the current color of e; by the color of e;;1 for each i <t <j—1
with 0 <7 < j < s. Note that the shifting does not change the color of e; where e; joins
and y;, so it will not be a proper coloring. In our proof we will uncolor or recolor the edge
e; to avoid this problem.

Lemma 3.1. [3, 11, 15] Let G be a graph, e € Eg(z,y) be a k-critical edge and ¢ € C*(G—e)
with k > A(G). And let F = (z,e,Y0,€1,Y1,---,€p,Yp) be a multi-fan at x with respect to e
and @, where yo = y. Then the following statements hold.

(a) V(F) is p-elementary, and each edge in E(F) is a k-critical edge of G.



(b) If o € B(x) and B € P(y;) for 0 <i <p, then Py(a, ) = P, (a, ).

(¢) If F' is a mazimal multi-fan at x with respect to e and @, then x is adjacent to at least
X'(G) —da(y) — pa(x,y) + 1 vertices z in V(EF)\{x,y} such that dg(z) + pe(z, 2) = X'(G).

Lemma 3.2. Let G be a multigraph with mazimum degree A and mazximum multiplicity
w>2. Lete € Eg(x,y) be an edge of G and k = A+ p— 1.

Assume that X'(G) = k + 1, e is a k-critical edge and ¢ € CH(G —e). Let F =
(x,€e,Y0,€1, Y1, .-, € Yp) be a multi-fan at x with respect to e and p, where yo = y. We
have the following statements (a), (b) and (c).

(a) If F is mazimal, then x is adjacent to at least A + p — dg(y) — pe(z,y) + 1 vertices
z in V(F)\{z,y} such that dg(z) = A and pe(z,2) = p;

(b) If F is mazimal, dg(y) = A and x has only one A-neighbor 2’ in V(F)\{z,y}, then
pp(x, z) = pg(x,z) = p for all z € V(F)\{z} and dg(z) = A—1 for all z € V(F)\{z,y,2'};

(¢) If F is maximal without any a-edge for o ¢ B(y), then F not containing any A-
neighbor in V(F)\{x,y} implies that dg(y) = A, and there exists a vertex z* € V(F)\{z,y}
with o € P(2*) and dg(2*) = A — 1.

Assume that X'(G) = k, ¢ € CK(G) and V(G) is p-elementary. We have the following
statement (d).

(d) If a multi-fan F’" is maximal at x with respect to e and ¢ in G, then x has no A-
neighbor in V(F")\{x} implies that dg(z) = A—1 for all z € V(F")\{x} and every edge in F’
is colored by a missing color at some vertex in V(F"). Furthermore, if F' is mazimal without
any a-edge and p(e) ¢ p(V(F")), then F' not containing any A-neighbor in V(F')\{z}
implies that there exists a vertex z* € V(F")\{z} with o € p(z*) and dg(z*) = A — 1.

Proof. For statements (a), (b) and (c¢), V(F') is p-elementary by Lemma 3.1 (a). Statement
(a) holds easily by Lemma 3.1 (¢). Assume that there are ¢ distinct vertices in V(F)\{z}.

For (b), we have

w = Y weenz Y wen=1+ Y ()

zeV(F)\{z} zeV(F)\{z} zeV(F)\{z}
> 1+k—-A+1)+(k—-A)+(¢—2)(k—A+1)=q(k—A+1) =qu,

which implies that all equalities above hold, i.e., pp(x,2) = pg(z,z) = p for each z €
V(F)\{z} and dg(z) = A — 1 for each z € V(F)\{x,y, z'}. This proves (b).



Now for (c), we must have that there exists a vertex z* € V(F)\{x,y} with a € $(z*),
since otherwise by (a) = has at least one A-neighbor in V(F)\{z,y}, a contradiction. Since
V(F) is g-elementary, x must be incident with a a-edge. Since now there is no a-edge in F’
and o € P(z*), we have

g > > pewa) = Y ppr)=1+(RE) =D+ > [B(2)

zeV(F)\{z} zeV(F)\{z} z€V(F)\{z,z*}
> k—=A+14+(q—1)(k—A+1)=q(k—A+1)=qu,

which implies that all equalities above hold, i.e., dg(y) = A, dg(z) = A — 1 for each
z € V(F)\{z,y}. This proves (c).

Statement (d) follows from similar calculations as (b) and (c). O

Let G be a graph with maximum degree A and maximum multiplicity pu. Berge and
Fournier [6] strengthened the classical Vizing’s Theorem by showing that if M* is a maximal
matching of G, then x'(G — M*) < A+ p—1. An edge e € Eg(x,y) is fully saturated with
respect to G if dg(x) = da(y) = A and pg(x,y) = p. Note that for every graph G with
X'(G) = A+ p, there exists a critical subgraph H of G with x'(H) = A+ p and A(H) = A.
Moreover, every graph G with x'(G) = A + p contains at least two fully saturated edges in
G by Lemma 3.2 (a). Stiebitz et al.[page 41 (a), [15]] obtained the following generalization
of Vizing’s Theorem with an elegant short proof: Let G' be a graph and let k > A + u be
an integer. Then there is a k-edge-coloring ¢ of G such that every edge e with ¢(e) = k is
fully saturated. We observe that their proof actually gives a slightly stronger result which
also generalizes the Berge-Fournier theorem as below.

Lemma 3.3. Let G be a graph and M be a matching of G. If M' is a maximal matching of
G — V(M) such that every edge in M’ is fully saturated with respect to G, then x'(G — (M U
M) < A(G) + u(G) — 1.

Proof. Let G' =G — (M U M’). Note that every vertex v € V(M U M’) has dg(v) <
A — 1. By the maximality of M', G — V(M U M’) contains no fully saturated edges. So, G’
does not have a fully saturated edge of G. By Lemma 3.2 (a), x'(G') < A+ pu — 1, since
otherwise there exist at least two fully saturated edges with respect to GG in one multi-fan
centered at a A-vertex, a contradiction. O

Lemma 3.3 has the following consequence.

Corollary 3.4. Let G be a graph. If M is a mazximal matching such that every edge in M
is fully saturated with respect to G, then xX'(G — M) < A(G) + n(G) — 1.

Let M be a matching of a graph G such that x'(G—M) = A(G)+u(G). Let k = A+p—1.
By Lemma 3.3, there is a matching M’ of G — V(M) with fully saturated edges with respect
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to G such that x'(G — (M UM')) = k. Suppose that M’ is minimal subject to the properties
above. Then each edge e € M’ is a k-critical edge of G — (M U M'\{e}). Moreover, if u > 2,
then by Lemma 2.3 (a) there is a unique maximal k-dense subgraph H. of G — (M U M)
such that V(e) C V(H,). Clearly, every fully statured edge in H.+e is a fully saturated edge
of GG, and the converse is not true. Following the above notation, we strengthen Lemma 3.3
for multigraphs with maximum multiplicity at least 2 as below.

Lemma 3.5. For a fized matching M of a graph G, if u(G) > 2 and x'(G— M) = A(G) +
w(G), then there is a matching M* of G—V (M) such that x'(G—(MUM*)) = A(G)+u(G)—1
and every edge e € M* 1s fully saturated in H.+e, where H, is the maximal k-dense subgraph
of G — (M U M?*) containing V (e).

Proof. Let k = A+pu—1, and M’ be defined prior to Lemma 3.5 maximizing the number
m’ of edges e € M’ that is fully saturated in H.+e. We claim m’ = |M’|, which in turn gives
Lemma 3.5. Suppose on the contrary there is an edge e € M’ that is not fully saturated in
H, +e. By Lemma 2.3 (a), e is a k-critical edge of H, +e. Let ¢ € C*(G — (M U M")).

Let V(e) = {z,y} and F, be a maximum multi-fan at x with respect to e and g, , where
@y, is the coloring induced by ¢ on H.. By Lemma 3.2 (a), x contains a A-neighbor, say
x1, in V(F,)\{z,y}. By Lemma 3.1 (a), the edge €,,, € Eg(z,z1) in F, is also a critical
edge of H, + e. By Lemma 3.2 (a) again, in a maximum multi-fan at x; there exists a fully
saturated edge e* with respect to H, +e. Let M* = (M'\{e}) U {e*}. Since every vertex of
V(M UM') has degree less than A in G — (M UM'), it follows that M UM* is a matching of
G. Let Ho« = H. + e — e*. Clearly, H,« is also k-dense. Applying Lemma 3.1 (a) again, we
see that e* is also a k-critical edge of H. 4+ e. Thus x'(Her) = w(He+) = k. By Lemma 2.4,
we have (G — (M U M*)) = k.

Since maximal k-dense subgraphs of G — (M U M’) are vertex-disjoint, all other maximal
k-dense subgraphs of G — (M U M) are also maximal k-dense subgraphs of G — (M U M*).
For any fully saturated edge f € M'\{e}, since V(f) NV (e*) =0, f is still fully saturated
with respect to the corresponding maximal k-dense subgraph. We can use M* instead of
M’, which contradicts the maximality of M’. Thus m’' = |M’| as desired. O

4 Proof of Theorem 1.1

We rewrite Theorem 1.1 as follows.

Theorem 1.1. Let G be a multigraph with u(G) > 2. Using palette [A(G) + u(G)], any
precoloring of a distance-3 matching M in G can be extended to a proper edge coloring of G.
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Proof. Let k = A+ p— 1. We fix a precoloring of M, denoted by ® : M — [A + u]. Note
that (G — M) < k + 1 by Vizing’s Theorem. The conclusion of Theorem 1.1 holds easily
if X'(G — M) < k with the reason as follows. For any k-edge-coloring ¢ of G — M, if there
exists e € F(G — M) such that e is adjacent to an edge f € M and 1(e) = ®(f) in G, we
recolor each such e with the color A + y and get a new coloring ¢' of G — M. Under ¢, the
edges colored by A + p form a matching in G since M is a distance-3 matching. Thus the
combination of ® and v’ is a (k + 1)-edge-coloring of GG. Therefore, in the remainder of the
proof, we assume x'(G — M) =k + 1.

Let M5 ™ be the set of edges colored with A+ in M. For any matching M* C G—=V (M)
and any (k + 1)-edge-coloring or k-edge-coloring ¢ on G' — (M U M*), denote the A +
color class by M Atr In particular, M At — ) if ¢ is a k-edge-coloring. We call a triple
(M*, MZH @) is prefea31b1e if it sat1sﬁes Condition 1: V(M*) NV (MZ*H) = 0, ie., all
edges in M* are not adjacent to any edge in M Atn,

With respect to a triple (M*,Mﬁ*“,gp), we call an edge f € Eg(u,v) in M is first-
improper at v if there exists f; € E(G — (M U M?*)) such that o(f1) = ®(f), f is adjacent
to fi at w, and f; is not adjacent to any edge in M*; we call an edge f € Eg(u,v) in M
is second-improper at u if there exists f; € E(G — (M U M*)) and f, € M* such that
o(f1) = ®(f), f is adjacent to f; at u, and f; is adjacent to fo. Let A, and B,, respectively
denote the number of first-improper edges and second-improper edges in M (counting twice
if one edge is improper at both its endvertices) with respect to the triple (M*, Mﬁ*“, ©).

For a triple (M*, M2, @), let MZN(f1) (MJ(f1), respectively) be the set of all such edges
f1 that is adjacent to some first-improper (second-improper, respectively) edge f € M with
©(f1) = ®(f). Observe that MA(fl) UMJ(f1) is also a matching since M is distance-3, and
(MA(f)] = A, and [ME(f;)] = B,

For any prefeasible triple (M*, M2*#, ), all edges in M* are uncolored if [M*| > 1,
V(M*) NV (M5™) = 0 since M* C G — V(M) and V(M*) N V(MZ*#) = () by Condition
1. Recall that M is a distance-3 matching. Thus if a prefeasible trlple (M*, M A*“, v) also
satisfies Condition 2: Ap = By =0, i.e., M:}O(fl) U MB ' (f1) =0, then MA+“ UM*U MAW
is a matching. Then by giving the color A + u to all the edges in M*, we have a proper
(k + 1)-edge-coloring €2 of G implying that Theorem 1.1 holds, where is the combination
of the precoloring ® on M, the A + p coloring ¢ on M* and the coloring ¢ of G — (M U M™*).
We call such desired triple (M*, Mﬁ*“, ) is feasible if it satisfies Conditions 1 and 2.

The rest of the proof is devoted to showing the existence of a feasible triple (M*, M At )
of G. Our main strategy is that we first fix a particular prefeasible triple (Mg, M, A“, ©o),
then modify it step by step to a feasible triple (M*, M2*#, @) with M3+ = MA ' (fi) U

M (f1), which implies that the A 4 i color class in the ﬁnal (k+ 1)- edge colonng Q of G

is My U M*UMA (f1) UME (f1).
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By Lemma 3.5, there exsits a matching M of G—V (M) such that x'(G—(MUM;)) =k
and each edge e € M| is fully saturated and k-critical in H, + e, where H, is the unique
maximal k-dense subgraph of G — (M U M) containing V' (e). Recall that x'(G—M) = k+1.
Thus |Mg] > 1. Let ¢y be a k-edge-coloring of G — (M U Mg). Note that MZ™ = 0.
Obviously, the triple (Mg, 0, o) is prefeasible that is just our initial triple, and there is
neither first-improper nor second-improper (A + p)-edges in M under ¢q.

For (Mg, 0,¢0), if Ay, = By, = 0, e, M5 (f1) UME(f1) = 0, then we are done. If
Ay > 1 and B,, = 0, then we give the color A + u to every edge in Mj;‘()(fl), resulting
in a new (k + 1)-edge-coloring ¢ of G — (M U M) since M/, (f1) is a matching. Thus
A, = B,, =0 and all edges in M are still not adjacent to any edge in MSOAIJ““ = Mjo(fl),
which implies that the new triple (M, M;f‘o (f1), 1) is feasible, so we are also done.

Now we may assume that A, > 0 and B,, > 1 with respect to the initial triple
(Mg, 0, ¢0). Let Hy, Hs, ..., H; be all maximal k-dense subgraphs of G — (M U M) such
that each of them contains both endvertices of some edge of M. By Lemmas 2.2-2.3,
Hy, Hs, ..., H; are vertex-disjoint. Moreover, each H; with s € [t] has diam(H,) < 2 and
X'(Hs) =k, and is (o) g,-elementary and strongly ¢g-closed in G — (M U M{). By Lemma
3.5, each edge e in M is fully saturated in H,+ e for some s € [t], so all edges in M are only
adjacent to edges inside Hy, Ho, ..., H;. Thus for an edge f,, € M with V(f.,) = {u, v}, if
u,v ¢ V(H;) for any s € [t], then f,, cannot be a second-improper edge.

Since By, > 1, we consider one second-improper edge in M, say fu, with V' (f,,) = {u, v}
and ®(f,,) =i € [k], and assume that f,, is second-improper at u. Hence there exists some
H with s € [t] such that u € V(Hy), where H contains both endvertices x and y of one
edge e, € M such that f,, and e;, are both adjacent to an i-edge ey, in H,. Since M is
distance-3 and diam(H;) < 2, there does not exist another edge of M whose any endvertex
is also in V(Hy). Notice that u and v may belong to disjoint H; and Hy, where s # s with
s,s" € [t]. To make f,, not be second-improper, we consider the following Cases 1-3. See
Figures 1 and 2.

Case 1: f,, is not improper at v, or f,, is first-improper at v but v ¢ V(Hy).

Let F, be a maximal multi-fan at x with respect to e,, and (¢o)m, in Hs + e4. By
Lemma 3.2 (a), in F, there exist at least one A-vertex in V' (F,)\ {z,y}, say z1, and a linear
sequence S from y to z; with last edge e,,, € Ey, (z,71). Notice that z; is not incident
with any edge in M U M; since dy,(x1) = A. We will do the following operations in three
subcases to make sure that f,, is no longer second-improper at wu.

Subcase 1.1: S does not contain both an i-edge and a boundary vertex of V(Hy) that
is incident with an i-edge of O(Hy) in G — (M U M).
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Figure 1: One possibility for the location of f,, relative to H, in Case 1.

For this subcase, we do Operation I as follows. Do a shifting in S from y to x; which
gives a color in [k] to the edge e,,, uncolor the edge e,,,, and replace e, by €., in M}
since x; is not incident with any edge in M U M. Obviously, H, + ey — €44, is also k-dense.
By Lemma 3.1 (a), €4, is also a k-critical edge of Hy + e, and x'(Hs + €y — €44,) = k.
Thus we can permute color classes of E(H, + ey — €44,) but keep the color i unchanged
to match all boundary edges by Lemma 2.4. As a result, we obtain a new matching M; =
(Mi\{ewy}) U{€ss,} € G — V(M) and a new k-edge-coloring ¢y of G — (M U M) such
that f,, is no longer a second-improper edge (but becomes a first-improper edge) at u with
respect to the new triple (M5, (), ¢1) that is also prefeasible.

Subcase 1.2: For any A-vertex in V(F},) \ {z,y}, any linear sequence from y to this
A-vertex contains an i-edge and a boundary vertex that is incident with one i-edge in O(Hj).

By Lemma 3.2 (c), there exists a vertex w with dp, (w) = A —1 and dg_umg) (w) = A.
So the i-edge, denoted by h, is the only edge in J(H) at w and w is not incident with any
edge in M U M. Next we fix the linear sequence S corresponding to the A-vertex z;, and
consider the following two subcases about the boundary i-edge h.

Subcase 1.2.1: h ¢ Mjo(fl), i.e., h is not adjacent to any precolored i-edge in M.

For this subcase, we do Operation II as follows. Let e, € Eg,(z,w) be the edge with
V(eww) = {x,w} in S. Do a shifting in S from y to w which gives a color in [k] to the edge
€2y, uncolor the edge e, and replace e,, by ez, in Mj since w is not incident with any
edge in M U M. Obviously, Hs + €,y — €44, 1s also k-dense. By Lemma 3.1 (a), e, is also a
k-critical edge of Hs + e,y and x'(H, + e,y — €4) = k. Thus we can permute color classes of
E(Hs+ ey, —e4) but keep the color ¢ unchanged to match all boundary edges by Lemma 2.4.
As a result, we obtain a new matching M; = (Mj\{esy}) U {em} € G — V(M) and a new
k-edge-coloring ¢ of G — (M U M) such that f,, is no longer a second-improper edge (but
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becomes a first-improper edge) at u with respect to the new prefeasible triple (M, 0, ¢1).

Subcase 1.2.2: h € Mjo (f1), i-e., h is adjacent to some precolored i-edge in M.

For this subcase, we do Operation III as follows. First recolor h from the color 7 to the
color A 4+ p. Do a shifting in S from y to x; which gives a color in [k] to the edge ey,
uncolor the edge e,,,, and permute color classes of E(H, + e, — €45,) but keep the color
1 unchanged to match all boundary edges by Lemma 2.4. Now we obtain a new matching
M} = (Mj\{exy})U{€ss,} € G—V (M) and a new (k+ 1)-edge-coloring ¢, of G — (M UM;)
such that f,, is no longer a second-improper edge (but becomes a first-improper edge) at
u with respect to the new triple (My, M@Af“, ¢1) with ]\7[891“ = {h}. Notice that the triple
(M ,M@Al*“, ¢1) is also prefeasible since h is not adjacent to any edge in M;. Moreover,
giving the color A + p to h will not be a problem since h € Mfo( f1) and we will give the
color A + pu to all edges in Mcﬁ)(fl) in the final process.

For Operations I-1II, we have the following observations.

(1) MUM{ = MU (Mi\{ew}) U{ess } or MUM} = MU (Mj\{ew})U{esw} is also a
matching, where dy_(z1) = A, dy,(w) = A — 1 and w is incident with one boundary i-edge
h;

(2) The subgraph H! = Hg + ey, — €4y, or HY = H + €4 — €4y 1s also k-dense and
(¢1) mi-elementary, where V(H}) = V(H,), 9(H}) = 0(H,) and dg1(w) = A — 2;

(3) The new triple (M, M5, ¢1) is also prefeasible, where M2 = @ or {h} C (9(H,)N
M, (f1)) with some vertex wo € S and 4 € 3, (wo).

Moreover, B, = B,, —1 and A, = A, + 1 since f,, is no longer a second-improper
edge (but becomes a first-improper edge) at v and the edges e,,, and e,, cannot make new
second-improper edges.

Case 2: f,, is second-improper at v with v € V(Hy) for a maximal k-dense subgraph Hg
other than H,.

For this case, we first do the same operations for u in H, as we did in Case 1. Recall that
V(H,)NV (Hy) = 0, M is distance-3 and M7, (f1) is a matching. Then do the same operations
for v in Hy as we did for u in Hy,. Thus f,, is no longer second-improper (but becomes
ﬁ_rst—improper) at both u and v with respect to one prefeasible triple (M, M, SOA;“”, ©2), where
MG C {hy, hy} with some edge h, € d(Hs)N M, (f1) and some edge h, € d(Hy)N M (f1)
by Case 1. Moreover, V(h,) NV (h,) =0, B,, = By, —2 and A,, = A, + 2.

Case 3: f,, is first-improper or second-improper at v with v € V(Hj).
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Figure 2: Two possibilities for the location of f,, relative to H, in Case 3.

If f,. is a first-improper edge at v with v € V(Hj), then let ey, € Eg, (b, v) be the i-edge
incident with v in H,. If dg,(b) < A, then we do the same operations for u as we did in
Case 1, which does not influence the vertex b by the observation (1) in Case 1. Thus f,
is no longer second-improper (but becomes first-improper) at u. We will discuss the other
subcase dy, (b) = A in the next paragraph.

If f.. is a second-improper edge at v with v € V(Hy). We use ey, € M* with V(ey,) =
{a, b} to denote the edge that is adjacent to an i-edge ey, € Ep,(b,v). Note that dy, (a) < A
and dg, (b) < A. We do the same operations for u as we did in Case 1, which does not
influence the vertices @ and b. Thus f,, is no longer second-improper (but becomes first-
improper) at u with respect to one prefeasible triple (Mf,Mé*“,cpl), where ]\ZI@Af“ =0
or {h} with some boundary vertex w and its incident i-edge h € 8(H,) N Mz (f1) by the
observation (3) in Case 1. In particular, the situation under (M5, 0, ¢;) is actually the same
as the subcase dp, (b) = A in the previous paragraph since dy:(y) = A, where H is the new
k-dense subgraph after the operations for u in Hy by the observation (2) in Case 1.

Note that we also have dy 4., (a) = dyie,, (b)) = A and ¢i(ey,) = 7. Now consider a
maximal multi-fan F, at a with respect to ey, and (¢1) o in H '+ eqw. Clearly we can do
the same operations in Case 1 for v to make sure that f,, is no longer a second-improper
edge at v, unless these operations would have to put one edge eq, € Epi(a,y) into MY, so
fuw would become second-improper at u again. Therefore, by Operations I-III in Case 1 we
may have the following two assumptions for the rest of our proof.

(1) y is the only A-vertex in V(F,)\{a,b};

(2) If a linear sequence in F, from b to y contains a boundary vertex w’, where dpy1(w') =
A —1 and w' is incident with one i-edge b/ in d(H}), then h' € M2 (f1).

Let Fy, be the maximal multi-fan at b with respect to ey, and (¢1) g in H 51 + eqa. We
consider the following Subcases 3.1-3.3.
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Subcase 3.1: F;, contains a linear sequence S from a to y with no i-edge.

Let S = (b,eq,ap,€1,0a1,...,€,,a,) be a linear sequence from a to y, where ey = ey,
ap = a, e, = ey, € Eyi(b,y), a, =y, and S does not contain i-edges. For this subcase we
do a shifting in S from a to y which gives a color in [k] to e, uncolor the edge ey, and
permute color classes of E(H] + eq), — €y,) but keep the color i unchanged to match all the
boundary edges by Lemma 2.4. Now we obtain a new matching Mj = (M;\{euw}) U {es,}
and a new k-edge-coloring s of G — (M U M;), where f,, is a second-improper edge at both
u and v, but here ®(f,,) = 1, pa(ew) = pa(eyu) = ¢, and the edge ey, is uncolored. So by
giving the color 7 to e, and recoloring e, and ey, with the color A + ;, we obtain a new
matching My = M;\{ey,} = M{\{ew} C G — V(M) and a new (k + 1)-edge-coloring 3 of
G — (M U Mj). Thus fy, is no longer a second-improper edge or even a first-improper edge
neither at u nor at v with respect to the new triple (M;, M2, @3), where M2 = {ey,, ey, }
if MO =0 or M2 = {h, ey, ey} if MO = {h}. Notice that MZ s also a matching
since M2 C (MA (f1) UMZ(f1)), and the triple (M, M2, ¢3) is also prefeasible since
I, ep, and €yu are not adJacent to any edge in Mj. Moreover B,, =B, —1=DB,, —2 and
A<P2 - A‘Pl —-1= Aeoo

Subcase 3.2: Fj contains a vertex w” with dyi(w”) = A =1 and i € (@;) g1 (w").

In this subcase, the i-edge ey, is in F}, by the maximality of F,. Note that there exists a
linear sequence S = (b, e, ag, €1, a1, - - ., €p_1,ap_1, €y, ap) from a to v in Fy,, where ey = egp,
ap = a, ep_1 = ey € Egi(b,w”), ap,m1 = w", ey = e, and a, = v.

If i € 3, (w”) (w” may be the vertex a), or w” is incident with an i-edge h” € J(H;) N
M:;‘O (f1), then we first do a shifting in S from a to v which gives a color in [k] to ey, recolor
the edge ey, with ¢ and uncolor the edge ep,. Then recolor hA” from i to A + p if there
exists h”, and permute color classes of E(H! + e, — €3,) but keep the color ¢ unchanged
to match all the boundary edges by Lemma 2.4. Finally give the color A + p to the edge
ep- Note that h # h” since ¢1(h) = A+ u # i = p1(h”), and h and A" cannot both exist
in (H,) = O(H}) since otherwise pg(h) = ¢o(h”) = i contradicting that H, is strongly
@o-closed. As a result, we obtain a new matching My = M \{es} € G — V(M) and a new
(k + 1)-edge-coloring 9 of G — (M U My) such that f,, is no longer a second-improper edge
or even a first-improper edge at v with respect to the new prefeasible triple (My, M, A“L“, ©2),
where M2t = {ey, } if M2 = ) but h” does not exist, MS = {ep,, h"} if MAJ”” =0
and h” ex1sts or Mot = {va, h} if M2+ = {h}. Moreover, MAW C (M2 (fr) UMB (f1),
B,, = B, 1—B —2and A, A L= Ay + 1

Now we may assume that w” is incident with an i-edge b € d(H,) but h” ¢ M (f1).
Then we have M2 = . Note that the vertex w” ¢ V( ) by the assumption (2). Moreover,
’is not 1n01dent with any edge in M U M} and w” is only incident with the i-edge h” in
3(Hsl). Since dg_(mumyy(w”) = A and ¢, is a k-edge-coloring of G — (M U M;) with
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k > A+ 1, there exists a color a € @ (w”) with a # i. Since H] is (¢1)m:-elementary,
there exists a a-edge e incident with the vertex a. Thus we can define a maximal multi-fan
at a with respect to ej and (¢1)g in H], denoted by F, = (a, €, b, ..., €y: bg), such that
(¢1)mi(e)) € (1) m (bi-1) for j € [q] and some [ € [j]. Moreover, V(F},) is (¢1)mi-elementary
since V(H}) is (¢1)gi-elementary. By the assumption (1) and Lemma 3.2 (b), we have
pr, (@, 0) = ppiye,,(a,b) = p for any vertex 0" in V(F,)\{a}. Therefore, V(F;,)\{a} and
V(F,)\{a} are vertex-disjoint, since otherwise we have V(F;) C V(F,) and a € (@,)u: (V')
for some V' € V(F,) implying b’ = w” € V(F,), a contradiction. Note that if w” ¢ V(F!),
then V(F!)\{a} must contain a A-vertex in H}, since otherwise Lemma 3.2 (d) and the fact
(01)m(ey) = a € Py (w”) imply that w” € V(F}), a contradiction. Thus F}, contains a linear
sequence S" = (a,€), by, ..., € ,b,), where €] = e, by, = by, by, € V(F,) is a A-vertex if
w” ¢ V(F!), and b, is w” if w” € V(F].). Notice that b, is not incident with any edge in
M U M by our choice of b,. Moreover, b, # y since V(F.)\{a} and V(F,)\{a} are vertex-
disjoint. Let 8 (5 # ©) be a color in 3, (b). By Lemma 3.1 (b), we have B,(3, ) = Py (5, ).
We then consider the following two subcases according to the set (V(S")\{a})N(V(5)\{a}).

We first assume that (V(S")\{a})N(V(S)\{a}) is either {b,} or (. If e ¢ P,(53, «), then
we do Kempe changes on Py, (3, ), uncolor e and color ey, with a. If ef € Py(3, ) and
Py(B, o) meets by before a, then we do Kempe changes on Py, (3, o), uncolor e and color
eqp with . If e, € Py(8, ) and P, (53, ) meets by before a, then we uncolor ej, do Kempe
changes on Py, 41(f, @), do a shifting in S from a to w” and recolor the edge ey, with . In
all three cases above, the edge e, is colored with a color in [k] and ef is uncolored. Finally
we do a shifting in S’ from by to b;, which gives a color in [k] to ef, and uncolor ¢;,. Notice
that the above shifting in S” does nothing if by = b;,. Since H! + €4, — e;t is also k-dense and
X'(H} + eq, —€),) = k, we can permute color classes of E(H_ + e, — €], ) but keep the color i
unchanged to match all the boundary edges by Lemma 2.4. Now we obtain a new matching
M3 = (M;\{eaw})U{e}, } and a new k-edge-coloring ¢, of G — (M U M) such that f,, is no
longer a second-improper edge (but becomes a first-improper edge) at v with respect to the
new prefeasible triple (M;, 0, ¢2). Moreover, B, = By, —2 and A,, = A, + 2.

Then we assume that there exists b, = a; € (V(S")\{a})N(V(S)\{a}) for some i € [t—1].
In this case we assume a; is the closest vertex to the vertex a along S. Note that b, # b
as V(F;)\{a} and V(F;,)\{a} are vertex-disjoint. Let a; = (¢1)m1(ej,,,) € (@1)m:(b,). By
Lemma 3.1 (b), we have Py(8,0;) = By, (B,a:). If ¢, ¢ Fy(8, ), then we do Kempe
changes on P[b,bli]<ﬁ’ @), uncolor egiﬂ and color ey, with «;. If egm € By(5, ;) and Py(B, ;)
meets by, , before a, then we do Kempe changes on P[b,bzm](ﬁ» @;), uncolor egiﬂ and color
eqy With oy, If egm € By (B, q;) and by, (B, ;) meets by, before a, then we uncolor egiﬂ,
do Kempe changes on P[bzivbziﬂ]w? «;), do a shifting in S from a to b;, and recolor the edge
e;; with 8. In all three cases above, the edge ey is colored with a color in [k] and €],
is uncolored. Finally we do a shifting in S from b;,,, to b;,, which gives a color in [k] to
ej,,,» and uncolor €. Notice that the above shifting in " does nothing if b;,,, = b;,. Since
H} + eq — €], is also k-dense and x'(H] + eq — €],) = k, we can permute color classes of
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E(H. +eq —€],) but keep the color i unchanged to match all the boundary edges by Lemma
2.4. Now we obtain a new matching My = (M{\{ew}) U {e,} € G — V(M) and a new
k-edge-coloring ¢y of G — (M U M) such that f,, is no longer a second-improper edge (but
becomes a first-improper edge) at v with respect to the new prefeasible triple (M, 0, ¢2).
Moreover, B, = B,, —2 and A,, = A,, + 2.

Subcase 3.3: [} does not contain a linear sequence from a to y with no i-edge, and F;
does not contain a vertex w” with dy:(w”) = A —1and i € (@) (w").

We claim that F}, contains a linear sequence S* from a to y* (y* # y), where d1(y*) = A
and there is no i-edge in S*. By Lemma 3.2 (a), the multi-fan F} contains at least one
A-vertex in H!. Now if F}, does not contain any linear sequence without i-edges from a to
any A-vertex in H!, then by Lemma 3.2 (c), the multi-fan F}, contains a vertex w” with
dgi(w”) = A —1and i € (¢;)m1(w"), contradicting the condition of Subcase 3.3. So Fj,
contains a linear sequence S* from a to a vertex y*, where dy1(y*) = A and there is no
1-edge in S*. Note that y* # y, since otherwise we also have a contradiction to the condition
of Subcase 3.3. Thus the claim is proved.

Assume that S* = (b,eq,ao,€1,a1,...,€p,a,) from a to y*, where ey = ey, ap = a,
ep = ey € By (b,y*), a, = y*, and S* contains no i-edge. Let 0 € 3, (y*).

Subcase 3.3.1: 0 = .

We do a shifting in S* from a to y*, uncolor the edge ey, and permute color classes
of E(H! + eu — ep,~) but keep the color i unchanged to match all the boundary edges by
Lemma 2.4. Then color the edge e~ with ¢ and recolor the edge e, from i to A + p, which
results in a new matching My = M\{ew} C G — V(M) and a new (k + 1)-edge-coloring o
of G — (M U M;). Then f,, is no longer a second-improper edge or even a first-improper
edge at v with respect to the new prefeasible triple (Mj, Mﬁ;“,g@) with ]\7[?;“ = {ew}
if MOTH =0, or Mot = {ey, h} if MST* = {h} (when y* € V(F,) N V(F,)) by the
observation (3) in Case 1. Moreover, M2** C (M2 (f1) U MZ (f1)), By, = By, — 2 and
ALP2 = Awo + 1L

Subcase 3.3.2: 0 # 4.

Since V(H}) is (¢1)g1-elementary, there exists a f-edge ¢f, incident with the vertex a.
Thus similarly as in Subcase 3.2, we can define a maximal multi-fan at a with respect to e,
and (¢1)g1 in HY, denoted by F, = (a,€j, bo, . . ., €,,by), such that (o1)m1(€}) € (@1)m (bi-1)
for j € [¢] and some [ € [j]. By the assumption (1) and Lemma 3.2 (b), we have ug, (a,t') =
WH te,, (@, b") = p for any vertex b’ in V(F,)\{a}. Therefore, V(F;)\{a} and V(F,)\{a} are
vertex-disjoint, since otherwise we have V(F,) C V(F,) and (¢1)m(ey) = 0 € (1) (V)
for some ¥ € V(F,) implying y* = b € V(F,), which contradicts the assumption (1).
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Note that V(F!)\{a} must contain a A-vertex in H}, since otherwise Lemma 3.2 (d) and
the fact (¢1)mi(ey) = 0 € P,(y*) imply that y* € V(F}), which contradicts dy:(y*) = A.
Moreover, if F! does not contain any linear sequence to a A-vertex in H! without i-edges,
then by Lemma 3.2 (d) the multi-fan F, contains a vertex w* with i € (%;)g1(w*) and
dpgi(w*) = A — 1, so w* is not incident with any edge in M U M;. Thus F} contains a
linear sequence S" = (a,€; ,by,,...,¢e,,b,), where e; = ep, by, = by, by, is w* if there exists
a vertex w* € V(F) with dy1(w) = A — 1 such that w* is incident with a boundary i-edge
h* € O(H}) but h* ¢ M (f1), and by, is a A-vertex in H| otherwise. Notice that b, is not
incident with any edge in M U M7 by our choice of b,,. Moreover, if b, = w* as defined
above, then b, = w* is not a vertex in V(F},) by the condition of Subcase 3.3. And b, # y
since V(F!))\{a} and V(F,)\{a} are vertex-disjoint. Let (5 # i) be a color in 3, (b). By
Lemma 3.1 (b), we have F,(3,6) = P,(8,6). We then consider the following two subcases
according to the set (V(S")\{a}) N (V(S*)\{a}).

We first assume that (V(S')\{a}) N (V(S*)\{a}) is either {b,} or 0. If e ¢ P,(5,0),
then we do Kempe changes on Py, ,+(/3,0), uncolor e and color ey, with 0. If e € Fy(5,0)
and Fy(f3,6) meets by before a, then we do Kempe changes on Py, ,1(5,6), uncolor ej and
color e, with 6. If e € P,(5,0) and P,+(3,6) meets by before a, then we uncolor e, do
Kempe changes on P, (3,0), do a shifting in S* from a to y* and recolor ey, with j.
In all three cases above, the edge e, is colored with a color in [k] and e} is uncolored.
Then we do a shifting in S from by to b;, which gives a color in [k] to e, and uncolor e,
and permute color classes of E(H] + eq — €;,) but keep the color ¢ unchanged to match all
the boundary edges except i-edges by Lemma 2.4. Finally recolor h* with the color A +
if w* is incident with a boundary i-edge h* € d(H,) N M2 (f1). Now we obtain a new
matching My = (M{\{ew})U{e},} € G — V(M) and a new proper (k + 1)-edge-coloring ¢;
of G — (M U M3) such that f,, is no longer a second-improper edge (but becomes a first-
improper edge) with respect to the new prefeasible triple (Mg, M2, ¢,), where M2 = ()
or {h} or {h*}. Moreover, M2** C M2 (f1), By, = By, — 2 and Ay, = Ay +2.

Then we assume that there exists b, = a; € (V(5)\{a})N(V(5*)\{a}) for some i € [t—1].
In this case we assume a; is the closest vertex to a along S*. Note that b, # b as V(F.)\{a}
and V/(F,)\{a} are vertex-disjoint. Let 0; = (¢1)m1(ej,,,) € (¥1)mi(b,). By Lemma 3.1 (b),
Py(p,6;) = By, (8,0;). If €1y ¢ By(3,0;), then we do Kempe changes on P[b,bli}(ﬁy 0;), uncolor
efm and color ey, with 6;. If egiﬂ € By(8,6;) and Fy(53,6;) meets by, before a, then we do
Kempe changes on P[b7bzi+1](ﬁ7 0;), uncolor egiﬂ and color ey, with 0;. If e;iﬂ € Py(p,6;) and
By, (B,0;) meets by,,, before a, then we uncolor €},,,» do Kempe changes on P[bz,.,bzm](@ 0;),
do a shifting in S from a to b, and recolor the edge e, = ew, € Ep1(b, by;) with 8. In all
three cases above, the edge eq is colored with a color in [k] and e is uncolored. Then
we do a shifting in S” from b;,,, to b, which gives a color in [k] to eEM, and uncolor the
edge e, and permute color classes of E(H] + eq — €],) but keep the color ¢ unchanged to
match all the boundary edges except i-edges by Lemma 2.4. Finally recolor h* with A +
if w* is incident with a boundary i-edge h* € d(H,) N M2 (f1). Now we obtain a new
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matching My = (M{\{ew}) U {e},} € G — V(M) and a new proper (k + 1)-edge-coloring ¢,
of G — (M U M) such that f,, is no longer a second-improper edge (but becomes a first-
improper edge) with respect to the new prefea31ble triple (My, M. A+“, 2), where M Ste =10
or {h} or {h*}. Moreover, M3 C M/ (f1), By, = By, — 2 and A = Ay + 2.

In all above Cases 1-3, the second-improper edge f,, in M is no longer a second-improper
edge with respect to one new prefeasible triple, say (M*', M ﬁﬂ‘ ,©') uniformly. Observe that
all our operations in Cases 1-3 are inside G[V(H;)| and G[V(H.)], and on at most two
possible edges respectively in d(H,) N Mz (f1) and (Hy) N M (f1). Recall that M2 (f1)
is a matching and all maximal k-dense subgraphs Hy, Hs, .. Ht are vertex-disjoint. Thus
all other maximal k-dense subgraphs of G — (M U M) distinct with Hy and Hy are also
maximal k-dense subgraphs of G' — (M U M*). For any other edges in M is still fully
saturated with respect to the corresponding maximal k-dense subgraphs distinct with H,
and Hy. Recall that M is a distance-3 matching, and each maximal k-dense subgraph of
H,, Hs, ..., H; has diameter at most 2. Thus for all other second-improper edges distinct
with f,, in M, we can do the same operations as we did for f,, in Cases 1-3 such that the
number of second-improper edges becomes zero with respect to one new prefeasible triple,
say (M*", MA,,J”‘,QO ’). By operations in Cases 1-3 we have MA,,JF“ C (M (fr) UME(f1)),

Then by giving the color A + p to all edges in MJ,(f1) = (MJ(f1) U MZ (f1)) \ MA+“
the number of first-improper edges also becomes zero, and we get the ﬁnal feasible trlple
(M*, MSH, @), where M3+ = M2 (fi) UM (f1). The proof is now finished. O
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