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Abstract

Let G be a graph with maximum degree ∆(G) and maximum multiplicity µ(G).
Vizing and Gupta, independently, proved in the 1960s that the chromatic index of
G is at most ∆(G) + µ(G). The distance between two edges in G is the number of
edges contained in a shortest path in G between any of their endvertices. A distance-t
matching is a set of edges having pairwise distance at least t. Edwards et al. proposed
a conjecture: For any graph G, using the palette {1, . . . ,∆(G)+µ(G)}, any precolored
distance-2 matching can be extended to a proper edge coloring of G. Girão and Kang
verified this conjecture for distance-9 matchings. In this paper, we improve the required
distance from 9 to 3 for multigraphs G with µ(G) ≥ 2.
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1 Introduction

In this paper, we generally follow the book [15] of Stiebitz et al. for notation and terminology.
Graphs in this paper are finite, undirected, and without loops, but may have multiple edges.
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Let G = (V (G), E(G)) be a graph, where V (G) and E(G) are respectively the vertex set
and the edge set of the graph G. Let ∆(G) and µ(G) be respectively maximum degree and
maximum multiplicity of graph G. Let [k] := {1, . . . , k} be a palette of k available colors. A
k-edge-coloring of G is a map ϕ that assigns to every edge e of G a color from the palette
[k] such that no two adjacent edges receive the same color (the edge coloring is also called
proper). Denote by Ck(G) the set of all k-edge-colorings of G. The chromatic index χ′(G) is
the least integer k such that Ck(G) 6= ∅.

In the 1960s, Vizing [17] and, independently, Gupta [13] proved that ∆(G) ≤ χ′(G) ≤
∆(G) + µ(G) which is always called Vizing’s Theorem. Using the palette [∆(G) + µ(G)],
when can we extend a precolored edge set F ⊆ E(G) to a proper edge coloring of G? To
address this natural generalization of Vizing’s Theorem, we consider edge set F such that
its edges are far apart from each other. The distance between two edges in G is the number
of edges contained in a shortest path in G between any of their endvertices. A distance-t
matching is a set of edges having pairwise distance at least t. Following this definition, a
matching is a distance-1 matching and an induced matching is a distance-2 matching.

Albertson and Moore [2] conjectured that if G is a simple graph, using the palette [∆(G)+
1], any precolored distance-3 matching can be extended to a proper edge coloring of G.
Edwards et al. [8] proposed a stronger conjecture: For any graph G, using the palette [∆(G)+
µ(G)], any precolored distance-2 matching can be extended to a proper edge coloring of G.
Girão and Kang [9] verified this conjecture for distance-9 matchings. In this paper, we
improve the required distance from 9 to 3 for multigraphs with maximum multiplicity at
least 2 as below.

Theorem 1.1. Let G be a multigraph with maximum degree ∆(G) and maximum multiplicity
µ(G) , and let M be a subset of E(G) such that the minimum distance between two edges of M
is at least 3. If µ(G) ≥ 2 and M is arbitrarily precolored from the palette K = [∆(G)+µ(G)],
then there is a proper edge coloring of G using colors from K that agrees with the precoloring
on M .

The density of a graph G, denoted by ω(G), is defined as

ω(G) = max

{
2|E(H)|
|V (H)| − 1

: H ⊆ G, |V (H)| ≥ 3 and |V (H)| is odd
}

if |V (G)| ≥ 3 and ω(G) = 0 otherwise. By counting the number of edges in color classes, we
have χ′(G) ≥ dω(G)e. So, besides the maximum degree, the density provides another lower
bound for the chromatic index of a graph. In the 1970s, Goldberg [10] and Seymour [14]
independently conjectured that actuarally χ′(G) = dω(G)e provided χ′(G) ≥ ∆(G) + 2. The
conjecture was commonly referred to as one of most challenging problems in graph chromatic
theory [15], and it was confirmed recently by Chen et al. [7].
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Our proof of Theorem 1.1 is based on the assumption of the above Goldberg-Seymour
Conjecture. We will present the proof of Theorem 1.1 in Section 4, before which we need
some new structural properties of dense subgraphs and multi-fans, and some generalizations
of Vizing’s Theorem introduced in Sections 2 and 3.

2 Dense subgraphs

Throughout the rest of this paper, we reserve the notation ∆ and µ for maximum degree
and maximum multiplicity of the graph G, respectively. For a vertex set N ⊆ V (G), let
G−N be the graph obtained from G by deleting all the vertices in N and edges incident with
them. For an edge set F ⊆ E(G), let G − F be the graph obtained from G by deleting all
the edges in F but keeping their endvertices. If F = {e}, we simply write G− e. Similarly,
we let G + e be the graph obtained from G by adding the edge e to E(G). For disjoint
X, Y ⊆ V (G), EG(X, Y ) is the set of edges of G with one endvertex in X and the other in
Y . If X = {x} and Y = {y}, we simply write EG(x, y). For two disjoint subgraphs H1 and
H2 of G, we simply write E(H1, H2) for EG(V (H1), V (H2)). For X ⊆ V (G), the edge set
∂G(X) = EG(X, V (G)\X) is called the boundary of X in G. For a subgraph H of G, we
simply write ∂(H) for ∂G(V (H)).

For u ∈ V (G), let dG(u) denote the degree of u in G. A k-vertex in G is a vertex with
degree exactly k in G. A k-neighbor of a vertex v in G is a neighbor of v that is a k-vertex in
G. A α-edge is an edge colored with the color α. For e ∈ E(G), V (e) is the set of endvertices
of e. The diameter of a graph G, denoted by diam(G), is the greatest distance between any
pair of vertices in V (G).

An edge e of a graph G is called a k-critical edge if k = χ′(G − e) < χ′(G) = k + 1. A
graph G is called k-critical if χ′(H) < χ′(G) = k + 1 for each proper subgraph H of G. It is
easy to see that a connected graph G is critical if and only if every edge of G is critical.

For a graph G, a vertex v ∈ V (G) and an edge coloring ϕ ∈ Ck(G) with some positive
integer k, define the two color sets ϕ(v) = {ϕ(f) : f ∈ E(G) and f is incident with v} and
ϕ(v) = [k]\ϕ(v). We call ϕ(v) the set of colors present at v and ϕ(v) the set of colors missing
at v. For a vertex set X ⊆ V (G), define ϕ(X) =

⋃
v∈X ϕ(v). A vertex set X ⊆ V (G) is

called ϕ-elementary if ϕ(u)∩ϕ(v) = ∅ for every two distinct vertices u, v ∈ X. The set X is
called ϕ-closed if each color on boundary edges is present at each vertex of X. Moreover, the
set X is called strongly ϕ-closed if X is ϕ-closed and colors on boundary edges are distinct,
i.e., ϕ(f) 6= ϕ(f ′) for every two distinct colored edges f, f ′ ∈ ∂G(X). For a subgraph H
of G, let ϕH be the edge coloring of G restricted on H. We say a subgraph H of G is ϕ-
elementary, ϕ-closed and strongly ϕ-closed, if V (H) is ϕ-elementary, ϕ-closed and strongly
ϕ-closed, respectively. Clearly, if V (H) is ϕH-elementary then V (H) is ϕ-elementary, and
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the converse is not true.

A subgraph H of G is k-dense if |V (H)| is odd and |E(H)| = (|V (H)|−1)k/2. Moreover,
H is a maximal k-dense subgraph if there does not exist a k-dense subgraph H ′ containing
H as a proper subgraph. By counting edges, we see that if H is a k-dense subgraph then
χ′(H) ≥ k. Moreover, if χ′(G) = k, then χ′(H) = k and for every ϕ ∈ Ck(G), every k-dense
subgraph H of G is both ϕH-elementary and strongly ϕ-closed.

We start with the following consequent of the Goldberg-Seymour Conjecture.

Lemma 2.1. Let G be a multigraph and e ∈ E(G). If e is k-critical and k ≥ ∆(G)+1, then
G− e has a k-dense subgraph H containing V (e), and e is also a k-critical edge of H + e.

Proof. Clearly, χ′(G) = k + 1 and χ′(G− e) = k. By the assumption of the Goldberg-
Seymour Conjecture, χ′(G) = dω(G)e = k + 1. So, there exists a subgraph H∗ of odd

order such that |E(H∗)| > (|V (H∗)| − 1)k/2. On the other hand, we have 2|E(H∗−e)|
|V (H∗−e)|−1

≤
dω(H∗−e)e ≤ χ′(H∗−e) ≤ χ′(G−e) = k, which in turn gives |E(H∗−e)| ≤ (|V (H∗)|−1)k/2.
Thus |E(H∗− e)| = (|V (H∗)| − 1)k/2. Then k ≤ dω(H∗− e)e ≤ χ′(H∗− e) ≤ χ′(G− e) = k
and k + 1 ≤ dω(H∗)e ≤ χ′(H∗) ≤ χ′(G) = k + 1, which implies that k = χ′(H∗ − e) <
χ′(H∗) = k + 1. Thus H = H∗ − e is a k-dense subgraph containing V (e), and e is also a
k-critical edge of H + e.

Lemma 2.2. Given a graph G, if χ′(G) ≥ ∆(G) + 1, then maximal χ′(G)-dense subgraphs
are pairwise vertex-disjoint.

Proof. Let k = χ′(G) and suppose on the contrary that there are two maximal k-dense
subgraphs H1 and H2 with nonempty intersection. Let H = H1 ∩ H2 and H∗ = H1 ∪ H2.
For each i = 1, 2, since |E(Hi)| = (|V (Hi)| − 1)k/2, adding any edge to Hi will result a
graph with chromatic index greater than k, and so Hi = G[V (Hi)] is an induced subgraph
of G. Since both H1 and H2 are maximal and distinct, we have V (H1) \ V (H2) 6= ∅ and
V (H2) \ V (H1) 6= ∅, which in turn gives H1 ( H∗ and H2 ( H∗. We consider two cases
according to the parity of |V (H)|.

Case 1: |V (H)| is odd.

Since E(H∗) = E(H1) ∪ E(H2) and E(H) = E(H1) ∩ E(H2), we have

|E(H∗)| = |E(H1)|+ |E(H2)| − |E(H)| = k(|V (H1)|+ |V (H2)| − 2)/2− |E(H)|. (1)

On the other hand, since both H1 and H2 are maximal k-dense, H∗ is not k-dense. Conse-
quently, we have

|E(H∗)| < k(|V (H∗)| − 1)/2 = k(|V (H1)|+ |V (H2)| − |V (H)| − 1)/2. (2)
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The combination of (1) and (2) gives |E(H)| > k(|V (H)| − 1)/2. Consequently, we have
χ′(G) ≥ χ′(H) > k, giving a contradiction.

Case 2: |V (H)| is even.

Let H∗1 = H1− V (H) and H∗2 = H2− V (H). Clearly, both H∗1 and H∗2 have odd number
of vertices. Since both H∗1 and H∗2 have k-edge-colorings, the following two inequalities hold.

|E(H∗1 )| ≤ k(|V (H1)| − |V (H)| − 1)/2,

|E(H∗1 )| ≤ k(|V (H2)| − |V (H)| − 1)/2.
(3)

Since both H1 and H2 are k-dense, we have the following inequalities.

k(|V (H1)| − 1)/2 = |E(H1)| = |E(H)|+ |E(H∗1 )|+ |E(H∗1 , H)|,
k(|V (H2)| − 1)/2 = |E(H2)| = |E(H)|+ |E(H∗2 )|+ |E(H∗2 , H)|.

(4)

The combination of (3) and (4) gives

|E(H∗1 , H)|+ |E(H)| ≥ k · |V (H)|/2,
|E(H∗2 , H)|+ |E(H)| ≥ k · |V (H)|/2.

Therefore, ∆(G) · |V (H)| ≥
∑

x∈V (H) dG(x) ≥ |E(H∗1 , H)| + |E(H∗2 , H)| + 2|E(H)| ≥
k|V (H)|, contradicting the assumption ∆(G) < k.

Lemma 2.3. Let G be a multigraph with χ′(G) = k + 1 ≥ ∆(G) + 2 and e be a k-critical
edge of G. We have the following statements.

(a) G − e has a unique maximal k-dense subgraph H containing V (e), and e is also a
k-critical edge of H + e;

(b) With respect to any coloring ϕ ∈ Ck(G−e), H is ϕH-elementary and strongly ϕ-closed;

(c) If χ′(G) = ∆(G)+µ(G), then ∆(H+e) = ∆(G), µ(H+e) = µ(G) and diam(H+e) ≤
diam(H) ≤ 2.

Proof. By Lemma 2.1, G− e contains a k-dense subgraph H containing V (e) and e is
also a k-critical edge of H + e. We may assume that H is a maximal k-dense subgraph, and
the uniqueness of H is a direct consequence of Lemma 2.2. This proves (a).

Since H is k-dense, by the definition, |E(H)| = |V (H)|−1
2

k. Also since H has an odd order,
the size of a maximum matching in H has size at most (|V (H)| − 1)/2. Therefore, under

5



any k-edge-coloring ϕ, each color class in H is a matching of size exactly (|V (H)| − 1)/2.
Thus every color in [k] is missing at exactly one vertex of H or it appears exactly once in
∂(H). Consequently, V (H) is ϕH-elementary and strongly ϕ-closed. This proves (b).

For (c), by (a) and Vizing’s Theorem, ∆(G) + µ(G) = χ′(G) = χ′(H + e) ≤ ∆(H + e) +
µ(H + e) ≤ ∆(G) + µ(G) implying that ∆(H + e) = ∆(G) = ∆ and µ(H + e) = µ(G) = µ.
For any coloring ϕ ∈ Ck(G − e), H is ϕH-elementary by (b). For any x ∈ V (H), all
the colors missing at other vertices present at x. Note that k = ∆ + µ − 1. For each
vertex v ∈ V (H), we have that |ϕH(v)| = k − dH(v) ≥ k − ∆ = µ − 1 if v /∈ V (e), and
|ϕH(v)| = k− dH(v) + 1 ≥ k−∆ + 1 ≥ (µ− 1) + 1 if v ∈ V (e). Denote |V (H)| by n. Thus,
dH(x) ≥ |

⋃
y∈V (H),y 6=x ϕH(y)| ≥ (k −∆)(n− 1) + 1 = (µ− 1)(n− 1) + 1.

Since µ(H) ≤ µ(G) = µ, we get |NH(x)| ≥ dH(x)
µ
≥ (µ−1)(n−1)+1

µ
, where NH(x) is the

neighbor set of x in H. Since µ ≥ 2, we have (µ−1)(n−1)+1
µ

≥ n
2
. Hence, every vertex in H

is adjacent to at least half vertices in H. Consequently, every two vertices of H share a
common neighbor, which in turn gives diam(H) ≤ 2. This proves (c).

For a subgraph H of a graph G, let G/H be the graph obtained from G by contracting
V (H) to a single vertex. The following technical lemma will be used several times in our
proof.

Lemma 2.4. Let G be a graph with χ′(G) = k ≥ ∆(G), H be a k-dense subgraph, and ψ and
ϕ be k-edge-colorings of H and G/H with the same palette [k], respectively. By permuting
color classes of ψ on E(H), we can obtain a k-edge-coloring π of G such that π(f) = ϕ(f)
for every edge in G/H. If χ′(G) = k ≥ ∆(G) + 1, for any fixed color α ∈ [k], then by
permuting other color classes of ψ on E(H) we can obtain a coloring π of G agreeing with
ϕ such that all color classes are matchings except the edges with color α.

Proof. We treat ϕ as a k-edge-coloring of G−E(H). Then, edges in ∂(H) have different
colors. Since H is k-dense and χ′(G) = k, H is ψ-elementary. For each v ∈ V (H), we have
|ψ(v)| = k − dH(v) ≥ ∆(G)− dH(v) ≥ dG−E(H)(v) = |ϕ(v)|. So, by permuting color classes

of ψ, we may assume that ϕ(v) ⊆ ψ(v) for each v ∈ V (H). The combination of the modified
coloring of ψ and ϕ gives π.

For the second part, under the condition k ≥ ∆(G) + 1, we have |ψ(v)| = k − dH(v) ≥
∆(G) + 1− dH(v) ≥ dG−E(H)(v) + 1 = |ϕ(v)|+ 1. So |ψ(v)\{α}| ≥ |ϕ(v)\{α}|. Notice that

when α ∈ ψ(v) ∩ ϕ(v), we need |ψ(v)| − 1 ≥ |ϕ(v)| to ensure the inequality above, where
the assumption k ≥ ∆(G) + 1 is applied. By permuting color classes of H except α, we may
assume that ϕ(v)\{α} ⊆ ψ(v) for each v ∈ V (H). Again, the combination of the modified
coloring of ψ and ϕ gives the desired coloring.
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3 Refinements of multi-fans and some consequences

We first recall Kempe-chains and related terminology. Let ϕ be a k-edge-coloring of G using
the palette [k]. Given two distinct colors α, β, an (α, β)-chain is a component of the subgraph
induced by edges assigned color α or β in G, which is either an even cycle or a path. We call
the operation that swaps the colors α and β on an (α, β)-chain the Kempe change. Clearly,
the resulting coloring after a Kempe change is still a proper k-edge-coloring. Furthermore,
we say that a chain has endvertices u and v if the chain is a path joining vertices u and v.
For a vertex v ∈ G, we denote by Pv(α, β) the unique (α, β)-chain containing the vertex v.
For two vertices u, v ∈ V (G), the two chains Pu(α, β) and Pv(α, β) are either identical or
disjoint. More generally, let P[a,b](α, β) be a subchain of a (α, β)-chain with endvertices a
and b. The operation of swapping colors α and β on the subchain P is still called a Kempe
change, but the resulting coloring may no longer be a proper edge coloring.

Let G be a graph with an edge e ∈ EG(x, y), and ϕ be a proper edge coloring of G or
G− e. A sequence F = (x, e0, y0, e1, y1, . . . , ep, yp) consisting of vertices and distinct edges is
called a (general) multi-fan at x with respect to e and ϕ if e0 = e, y0 = y, and for 0 ≤ i ≤ p,
the edge ei ∈ EG(x, yi) and ϕ(ei) ∈ ϕ(yj) for some 0 ≤ j ≤ i− 1. Notice that the definition
of multi-fan in this paper is slightly general than the one in [15] since the edge e may be
colored in G. We say a multi-fan F is maximal if there is no multi-fan containing F as a
proper subsequence. Similarly, we say a multi-fan F is maximal without any α-edge if F
does not contain any α-edge and there is no multi-fan without any α-edge containing F as
a proper subsequence. Let µG(x, y) = |EG(x, y)| for x, y ∈ V (G). Note that a multi-fan may
have repeated vertices, so by µF (x, yi) for some yi ∈ V (F ) we mean the number of edges
joining x and yi in F .

A linear sequence at x from y0 to ys in G, denoted by S = (x, e0, y0, e1, y1, . . . , es, ys),
is a sequence consisting of distinct vertices and distinct edges such that ei ∈ EG(x, yi) for
0 ≤ i ≤ s and ϕ(ei) ∈ ϕ(yi−1) for i ∈ [s]. Clearly for any yi ∈ V (F ), the multi-fan F contains
a linear sequence at x from y0 to yi. The following local edge recoloring operation will be used
in our proof. A shifting from yi to yj in the linear sequence S = (x, e0, y0, e1, y1, . . . , es, ys) is
an operation that replaces the current color of et by the color of et+1 for each i ≤ t ≤ j − 1
with 0 ≤ i < j ≤ s. Note that the shifting does not change the color of ej where ej joins x
and yj, so it will not be a proper coloring. In our proof we will uncolor or recolor the edge
ej to avoid this problem.

Lemma 3.1. [3, 11, 15] Let G be a graph, e ∈ EG(x, y) be a k-critical edge and ϕ ∈ Ck(G−e)
with k ≥ ∆(G). And let F = (x, e, y0, e1, y1, . . . , ep, yp) be a multi-fan at x with respect to e
and ϕ, where y0 = y. Then the following statements hold.

(a) V (F ) is ϕ-elementary, and each edge in E(F ) is a k-critical edge of G.
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(b) If α ∈ ϕ(x) and β ∈ ϕ(yi) for 0 ≤ i ≤ p, then Px(α, β) = Pyi(α, β).

(c) If F is a maximal multi-fan at x with respect to e and ϕ, then x is adjacent to at least
χ′(G)− dG(y)− µG(x, y) + 1 vertices z in V (F )\{x, y} such that dG(z) + µG(x, z) = χ′(G).

Lemma 3.2. Let G be a multigraph with maximum degree ∆ and maximum multiplicity
µ ≥ 2. Let e ∈ EG(x, y) be an edge of G and k = ∆ + µ− 1.

Assume that χ′(G) = k + 1, e is a k-critical edge and ϕ ∈ Ck(G − e). Let F =
(x, e, y0, e1, y1, . . . , ep, yp) be a multi-fan at x with respect to e and ϕ, where y0 = y. We
have the following statements (a), (b) and (c).

(a) If F is maximal, then x is adjacent to at least ∆ + µ− dG(y)− µG(x, y) + 1 vertices
z in V (F )\{x, y} such that dG(z) = ∆ and µG(x, z) = µ;

(b) If F is maximal, dG(y) = ∆ and x has only one ∆-neighbor z′ in V (F )\{x, y}, then
µF (x, z) = µG(x, z) = µ for all z ∈ V (F )\{x} and dG(z) = ∆−1 for all z ∈ V (F )\{x, y, z′};

(c) If F is maximal without any α-edge for α /∈ ϕ(y), then F not containing any ∆-
neighbor in V (F )\{x, y} implies that dG(y) = ∆, and there exists a vertex z∗ ∈ V (F )\{x, y}
with α ∈ ϕ(z∗) and dG(z∗) = ∆− 1.

Assume that χ′(G) = k, ϕ ∈ Ck(G) and V (G) is ϕ-elementary. We have the following
statement (d).

(d) If a multi-fan F ′ is maximal at x with respect to e and ϕ in G, then x has no ∆-
neighbor in V (F ′)\{x} implies that dG(z) = ∆−1 for all z ∈ V (F ′)\{x} and every edge in F ′

is colored by a missing color at some vertex in V (F ′). Furthermore, if F ′ is maximal without
any α-edge and ϕ(e) /∈ ϕ(V (F ′)), then F ′ not containing any ∆-neighbor in V (F ′)\{x}
implies that there exists a vertex z∗ ∈ V (F ′)\{x} with α ∈ ϕ(z∗) and dG(z∗) = ∆− 1.

Proof. For statements (a), (b) and (c), V (F ) is ϕ-elementary by Lemma 3.1 (a). Statement
(a) holds easily by Lemma 3.1 (c). Assume that there are q distinct vertices in V (F )\{x}.

For (b), we have

qµ ≥
∑

z∈V (F )\{x}

µG(x, z) ≥
∑

z∈V (F )\{x}

µF (x, z) = 1 +
∑

z∈V (F )\{x}

|ϕ(z)|

≥ 1 + (k −∆ + 1) + (k −∆) + (q − 2)(k −∆ + 1) = q(k −∆ + 1) = qµ,

which implies that all equalities above hold, i.e., µF (x, z) = µG(x, z) = µ for each z ∈
V (F )\{x} and dG(z) = ∆− 1 for each z ∈ V (F )\{x, y, z′}. This proves (b).
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Now for (c), we must have that there exists a vertex z∗ ∈ V (F )\{x, y} with α ∈ ϕ(z∗),
since otherwise by (a) x has at least one ∆-neighbor in V (F )\{x, y}, a contradiction. Since
V (F ) is ϕ-elementary, x must be incident with a α-edge. Since now there is no α-edge in F
and α ∈ ϕ(z∗), we have

qµ ≥
∑

z∈V (F )\{x}

µG(x, z) ≥
∑

z∈V (F )\{x}

µF (x, z) = 1 + (|ϕ(z∗)| − 1) +
∑

z∈V (F )\{x,z∗}

|ϕ(z)|

≥ k −∆ + 1 + (q − 1)(k −∆ + 1) = q(k −∆ + 1) = qµ,

which implies that all equalities above hold, i.e., dG(y) = ∆, dG(z) = ∆ − 1 for each
z ∈ V (F )\{x, y}. This proves (c).

Statement (d) follows from similar calculations as (b) and (c).

Let G be a graph with maximum degree ∆ and maximum multiplicity µ. Berge and
Fournier [6] strengthened the classical Vizing’s Theorem by showing that if M∗ is a maximal
matching of G, then χ′(G−M∗) ≤ ∆ + µ− 1. An edge e ∈ EG(x, y) is fully saturated with
respect to G if dG(x) = dG(y) = ∆ and µG(x, y) = µ. Note that for every graph G with
χ′(G) = ∆ +µ, there exists a critical subgraph H of G with χ′(H) = ∆ +µ and ∆(H) = ∆.
Moreover, every graph G with χ′(G) = ∆ + µ contains at least two fully saturated edges in
G by Lemma 3.2 (a). Stiebitz et al.[page 41 (a), [15]] obtained the following generalization
of Vizing’s Theorem with an elegant short proof: Let G be a graph and let k ≥ ∆ + µ be
an integer. Then there is a k-edge-coloring ϕ of G such that every edge e with ϕ(e) = k is
fully saturated. We observe that their proof actually gives a slightly stronger result which
also generalizes the Berge-Fournier theorem as below.

Lemma 3.3. Let G be a graph and M be a matching of G. If M ′ is a maximal matching of
G−V (M) such that every edge in M ′ is fully saturated with respect to G, then χ′(G− (M ∪
M ′)) ≤ ∆(G) + µ(G)− 1.

Proof. Let G′ = G− (M ∪M ′). Note that every vertex v ∈ V (M ∪M ′) has dG′(v) ≤
∆− 1. By the maximality of M ′, G− V (M ∪M ′) contains no fully saturated edges. So, G′

does not have a fully saturated edge of G. By Lemma 3.2 (a), χ′(G′) ≤ ∆ + µ − 1, since
otherwise there exist at least two fully saturated edges with respect to G in one multi-fan
centered at a ∆-vertex, a contradiction.

Lemma 3.3 has the following consequence.

Corollary 3.4. Let G be a graph. If M is a maximal matching such that every edge in M
is fully saturated with respect to G, then χ′(G−M) ≤ ∆(G) + µ(G)− 1.

Let M be a matching of a graph G such that χ′(G−M) = ∆(G)+µ(G). Let k = ∆+µ−1.
By Lemma 3.3, there is a matching M ′ of G−V (M) with fully saturated edges with respect
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to G such that χ′(G− (M ∪M ′)) = k. Suppose that M ′ is minimal subject to the properties
above. Then each edge e ∈M ′ is a k-critical edge of G− (M ∪M ′\{e}). Moreover, if µ ≥ 2,
then by Lemma 2.3 (a) there is a unique maximal k-dense subgraph He of G − (M ∪M ′)
such that V (e) ⊆ V (He). Clearly, every fully statured edge in He+e is a fully saturated edge
of G, and the converse is not true. Following the above notation, we strengthen Lemma 3.3
for multigraphs with maximum multiplicity at least 2 as below.

Lemma 3.5. For a fixed matching M of a graph G, if µ(G) ≥ 2 and χ′(G−M) = ∆(G) +
µ(G), then there is a matching M∗ of G−V (M) such that χ′(G−(M∪M∗)) = ∆(G)+µ(G)−1
and every edge e ∈M∗ is fully saturated in He+e, where He is the maximal k-dense subgraph
of G− (M ∪M∗) containing V (e).

Proof. Let k = ∆+µ−1, and M ′ be defined prior to Lemma 3.5 maximizing the number
m′ of edges e ∈M ′ that is fully saturated in He+e. We claim m′ = |M ′|, which in turn gives
Lemma 3.5. Suppose on the contrary there is an edge e ∈ M ′ that is not fully saturated in
He + e. By Lemma 2.3 (a), e is a k-critical edge of He + e. Let ϕ ∈ Ck(G− (M ∪M ′)).

Let V (e) = {x, y} and Fx be a maximum multi-fan at x with respect to e and ϕHe , where
ϕHe is the coloring induced by ϕ on He. By Lemma 3.2 (a), x contains a ∆-neighbor, say
x1, in V (Fx)\{x, y}. By Lemma 3.1 (a), the edge exx1 ∈ EG(x, x1) in Fx is also a critical
edge of He + e. By Lemma 3.2 (a) again, in a maximum multi-fan at x1 there exists a fully
saturated edge e∗ with respect to He + e. Let M∗ = (M ′\{e}) ∪ {e∗}. Since every vertex of
V (M ∪M ′) has degree less than ∆ in G− (M ∪M ′), it follows that M ∪M∗ is a matching of
G. Let He∗ = He + e− e∗. Clearly, He∗ is also k-dense. Applying Lemma 3.1 (a) again, we
see that e∗ is also a k-critical edge of He + e. Thus χ′(He∗) = ω(He∗) = k. By Lemma 2.4,
we have χ′(G− (M ∪M∗)) = k.

Since maximal k-dense subgraphs of G− (M ∪M ′) are vertex-disjoint, all other maximal
k-dense subgraphs of G− (M ∪M ′) are also maximal k-dense subgraphs of G− (M ∪M∗).
For any fully saturated edge f ∈ M ′\{e}, since V (f) ∩ V (e∗) = ∅, f is still fully saturated
with respect to the corresponding maximal k-dense subgraph. We can use M∗ instead of
M ′, which contradicts the maximality of M ′. Thus m′ = |M ′| as desired.

4 Proof of Theorem 1.1

We rewrite Theorem 1.1 as follows.

Theorem 1.1. Let G be a multigraph with µ(G) ≥ 2. Using palette [∆(G) + µ(G)], any
precoloring of a distance-3 matching M in G can be extended to a proper edge coloring of G.
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Proof. Let k = ∆ + µ − 1. We fix a precoloring of M , denoted by Φ : M → [∆ + µ]. Note
that χ′(G −M) ≤ k + 1 by Vizing’s Theorem. The conclusion of Theorem 1.1 holds easily
if χ′(G −M) ≤ k with the reason as follows. For any k-edge-coloring ψ of G −M , if there
exists e ∈ E(G −M) such that e is adjacent to an edge f ∈ M and ψ(e) = Φ(f) in G, we
recolor each such e with the color ∆ + µ and get a new coloring ψ′ of G−M . Under ψ′, the
edges colored by ∆ + µ form a matching in G since M is a distance-3 matching. Thus the
combination of Φ and ψ′ is a (k + 1)-edge-coloring of G. Therefore, in the remainder of the
proof, we assume χ′(G−M) = k + 1.

Let M∆+µ
Φ be the set of edges colored with ∆+µ in M . For any matching M∗ ⊆ G−V (M)

and any (k + 1)-edge-coloring or k-edge-coloring ϕ on G − (M ∪M∗), denote the ∆ + µ
color class by M̄∆+µ

ϕ . In particular, M̄∆+µ
ϕ = ∅ if ϕ is a k-edge-coloring. We call a triple

(M∗, M̄∆+µ
ϕ , ϕ) is prefeasible if it satisfies Condition 1: V (M∗) ∩ V (M̄∆+µ

ϕ ) = ∅, i.e., all
edges in M∗ are not adjacent to any edge in M̄∆+µ

ϕ .

With respect to a triple (M∗, M̄∆+µ
ϕ , ϕ), we call an edge f ∈ EG(u, v) in M is first-

improper at u if there exists f1 ∈ E(G− (M ∪M∗)) such that ϕ(f1) = Φ(f), f is adjacent
to f1 at u, and f1 is not adjacent to any edge in M∗; we call an edge f ∈ EG(u, v) in M
is second-improper at u if there exists f1 ∈ E(G − (M ∪M∗)) and f2 ∈ M∗ such that
ϕ(f1) = Φ(f), f is adjacent to f1 at u, and f1 is adjacent to f2. Let Aϕ and Bϕ respectively
denote the number of first-improper edges and second-improper edges in M (counting twice
if one edge is improper at both its endvertices) with respect to the triple (M∗, M̄∆+µ

ϕ , ϕ).

For a triple (M∗, M̄∆+µ
ϕ , ϕ), let MA

ϕ (f1) (MB
ϕ (f1), respectively) be the set of all such edges

f1 that is adjacent to some first-improper (second-improper, respectively) edge f ∈M with
ϕ(f1) = Φ(f). Observe that MA

ϕ (f1)∪MB
ϕ (f1) is also a matching since M is distance-3, and

|MA
ϕ (f1)| = Aϕ and |MB

ϕ (f1)| = Bϕ.

For any prefeasible triple (M∗, M̄∆+µ
ϕ , ϕ), all edges in M∗ are uncolored if |M∗| ≥ 1,

V (M∗) ∩ V (M∆+µ
Φ ) = ∅ since M∗ ⊆ G − V (M) and V (M∗) ∩ V (M̄∆+µ

ϕ ) = ∅ by Condition
1. Recall that M is a distance-3 matching. Thus if a prefeasible triple (M∗, M̄∆+µ

ϕ , ϕ) also

satisfies Condition 2: Aϕ = Bϕ = 0, i.e., MA
ϕ0

(f1)∪MB
ϕ0

(f1) = ∅, then M∆+µ
Φ ∪M∗ ∪ M̄∆+µ

ϕ

is a matching. Then by giving the color ∆ + µ to all the edges in M∗, we have a proper
(k + 1)-edge-coloring Ω of G implying that Theorem 1.1 holds, where Ω is the combination
of the precoloring Φ on M , the ∆ +µ coloring φ on M∗ and the coloring ϕ of G− (M ∪M∗).
We call such desired triple (M∗, M̄∆+µ

ϕ , ϕ) is feasible if it satisfies Conditions 1 and 2.

The rest of the proof is devoted to showing the existence of a feasible triple (M∗, M̄∆+µ
ϕ , ϕ)

of G. Our main strategy is that we first fix a particular prefeasible triple (M∗
0 , M̄

∆+µ
ϕ0

, ϕ0),
then modify it step by step to a feasible triple (M∗, M̄∆+µ

ϕ , ϕ) with M̄∆+µ
ϕ = MA

ϕ0
(f1) ∪

MB
ϕ0

(f1), which implies that the ∆ + µ color class in the final (k + 1)-edge-coloring Ω of G

is M∆+µ
Φ ∪M∗ ∪MA

ϕ0
(f1) ∪MB

ϕ0
(f1).
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By Lemma 3.5, there exsits a matching M∗
0 of G−V (M) such that χ′(G−(M ∪M∗

0 )) = k
and each edge e ∈ M∗

0 is fully saturated and k-critical in He + e, where He is the unique
maximal k-dense subgraph of G−(M ∪M∗

0 ) containing V (e). Recall that χ′(G−M) = k+1.
Thus |M∗

0 | ≥ 1. Let ϕ0 be a k-edge-coloring of G − (M ∪ M∗
0 ). Note that M̄∆+µ

ϕ0
= ∅.

Obviously, the triple (M∗
0 , ∅, ϕ0) is prefeasible that is just our initial triple, and there is

neither first-improper nor second-improper (∆ + µ)-edges in M under ϕ0.

For (M∗
0 , ∅, ϕ0), if Aϕ0 = Bϕ0 = 0, i.e., MA

ϕ0
(f1) ∪MB

ϕ0
(f1) = ∅, then we are done. If

Aϕ0 ≥ 1 and Bϕ0 = 0, then we give the color ∆ + µ to every edge in MA
ϕ0

(f1), resulting
in a new (k + 1)-edge-coloring ϕ1 of G − (M ∪ M∗

0 ) since MA
ϕ0

(f1) is a matching. Thus
Aϕ1 = Bϕ1 = 0 and all edges in M∗

0 are still not adjacent to any edge in M̄∆+µ
ϕ1

= MA
ϕ0

(f1),
which implies that the new triple (M∗

0 ,M
A
ϕ0

(f1), ϕ1) is feasible, so we are also done.

Now we may assume that Aϕ0 ≥ 0 and Bϕ0 ≥ 1 with respect to the initial triple
(M∗

0 , ∅, ϕ0). Let H1, H2, . . . , Ht be all maximal k-dense subgraphs of G − (M ∪M∗
0 ) such

that each of them contains both endvertices of some edge of M∗
0 . By Lemmas 2.2-2.3,

H1, H2, . . . , Ht are vertex-disjoint. Moreover, each Hs with s ∈ [t] has diam(Hs) ≤ 2 and
χ′(Hs) = k, and is (ϕ0)Hs-elementary and strongly ϕ0-closed in G− (M ∪M∗

0 ). By Lemma
3.5, each edge e in M∗

0 is fully saturated in Hs+e for some s ∈ [t], so all edges in M∗
0 are only

adjacent to edges inside H1, H2, . . . , Ht. Thus for an edge fuv ∈ M with V (fuv) = {u, v}, if
u, v /∈ V (Hs) for any s ∈ [t], then fuv cannot be a second-improper edge.

Since Bϕ0 ≥ 1, we consider one second-improper edge in M , say fuv with V (fuv) = {u, v}
and Φ(fuv) = i ∈ [k], and assume that fuv is second-improper at u. Hence there exists some
Hs with s ∈ [t] such that u ∈ V (Hs), where Hs contains both endvertices x and y of one
edge exy ∈ M∗

0 such that fuv and exy are both adjacent to an i-edge eyu in Hs. Since M is
distance-3 and diam(Hs) ≤ 2, there does not exist another edge of M whose any endvertex
is also in V (Hs). Notice that u and v may belong to disjoint Hs and Hs′ , where s 6= s′ with
s, s′ ∈ [t]. To make fuv not be second-improper, we consider the following Cases 1-3. See
Figures 1 and 2.

Case 1: fuv is not improper at v, or fuv is first-improper at v but v /∈ V (Hs).

Let Fx be a maximal multi-fan at x with respect to exy and (ϕ0)Hs in Hs + exy. By
Lemma 3.2 (a), in Fx there exist at least one ∆-vertex in V (Fx)\{x, y}, say x1, and a linear
sequence S from y to x1 with last edge exx1 ∈ EHs(x, x1). Notice that x1 is not incident
with any edge in M ∪M∗

0 since dHs(x1) = ∆. We will do the following operations in three
subcases to make sure that fuv is no longer second-improper at u.

Subcase 1.1: S does not contain both an i-edge and a boundary vertex of V (Hs) that
is incident with an i-edge of ∂(Hs) in G− (M ∪M∗

0 ).
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Figure 1: One possibility for the location of fuv relative to Hs in Case 1.

For this subcase, we do Operation I as follows. Do a shifting in S from y to x1 which
gives a color in [k] to the edge exy, uncolor the edge exx1 , and replace exy by exx1 in M∗

0

since x1 is not incident with any edge in M ∪M∗
0 . Obviously, Hs + exy− exx1 is also k-dense.

By Lemma 3.1 (a), exx1 is also a k-critical edge of Hs + exy and χ′(Hs + exy − exx1) = k.
Thus we can permute color classes of E(Hs + exy − exx1) but keep the color i unchanged
to match all boundary edges by Lemma 2.4. As a result, we obtain a new matching M∗

1 =
(M∗

0\{exy}) ∪ {exx1} ⊆ G − V (M) and a new k-edge-coloring ϕ1 of G − (M ∪ M∗
1 ) such

that fuv is no longer a second-improper edge (but becomes a first-improper edge) at u with
respect to the new triple (M∗

1 , ∅, ϕ1) that is also prefeasible.

Subcase 1.2: For any ∆-vertex in V (Fx) \ {x, y}, any linear sequence from y to this
∆-vertex contains an i-edge and a boundary vertex that is incident with one i-edge in ∂(Hs).

By Lemma 3.2 (c), there exists a vertex w with dHs(w) = ∆− 1 and dG−(M∪M∗0 )(w) = ∆.
So the i-edge, denoted by h, is the only edge in ∂(Hs) at w and w is not incident with any
edge in M ∪M∗

0 . Next we fix the linear sequence S corresponding to the ∆-vertex x1, and
consider the following two subcases about the boundary i-edge h.

Subcase 1.2.1: h /∈MA
ϕ0

(f1), i.e., h is not adjacent to any precolored i-edge in M .

For this subcase, we do Operation II as follows. Let exw ∈ EHs(x,w) be the edge with
V (exw) = {x,w} in S. Do a shifting in S from y to w which gives a color in [k] to the edge
exy, uncolor the edge exw, and replace exy by exw in M∗

0 since w is not incident with any
edge in M ∪M∗

0 . Obviously, Hs + exy − exw is also k-dense. By Lemma 3.1 (a), exw is also a
k-critical edge of Hs + exy and χ′(Hs + exy − exw) = k. Thus we can permute color classes of
E(Hs+exy−exw) but keep the color i unchanged to match all boundary edges by Lemma 2.4.
As a result, we obtain a new matching M∗

1 = (M∗
0\{exy}) ∪ {exw} ⊆ G − V (M) and a new

k-edge-coloring ϕ1 of G− (M ∪M∗
1 ) such that fuv is no longer a second-improper edge (but
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becomes a first-improper edge) at u with respect to the new prefeasible triple (M∗
1 , ∅, ϕ1).

Subcase 1.2.2: h ∈MA
ϕ0

(f1), i.e., h is adjacent to some precolored i-edge in M .

For this subcase, we do Operation III as follows. First recolor h from the color i to the
color ∆ + µ. Do a shifting in S from y to x1 which gives a color in [k] to the edge exy,
uncolor the edge exx1 , and permute color classes of E(Hs + exy − exx1) but keep the color
i unchanged to match all boundary edges by Lemma 2.4. Now we obtain a new matching
M∗

1 = (M∗
0\{exy})∪{exx1} ⊆ G−V (M) and a new (k+1)-edge-coloring ϕ1 of G− (M ∪M∗

1 )
such that fuv is no longer a second-improper edge (but becomes a first-improper edge) at
u with respect to the new triple (M∗

1 , M̄
∆+µ
ϕ1

, ϕ1) with M̄∆+µ
ϕ1

= {h}. Notice that the triple
(M∗

1 , M̄
∆+µ
ϕ1

, ϕ1) is also prefeasible since h is not adjacent to any edge in M∗
1 . Moreover,

giving the color ∆ + µ to h will not be a problem since h ∈ MA
ϕ0

(f1) and we will give the
color ∆ + µ to all edges in MA

ϕ0
(f1) in the final process.

For Operations I-III, we have the following observations.

(1) M ∪M∗
1 = M ∪ (M∗

0\{exy})∪ {exx1} or M ∪M∗
1 = M ∪ (M∗

0\{exy})∪ {exw} is also a
matching, where dHs(x1) = ∆, dHs(w) = ∆− 1 and w is incident with one boundary i-edge
h;

(2) The subgraph H1
s = Hs + exy − exx1 or H1

s = Hs + exy − exw is also k-dense and
(ϕ1)H1

s
-elementary, where V (H1

s ) = V (Hs), ∂(H1
s ) = ∂(Hs) and dH1

s
(w) = ∆− 2;

(3) The new triple (M∗
1 , M̄

∆+µ
ϕ1

, ϕ1) is also prefeasible, where M̄∆+µ
ϕ1

= ∅ or {h} ⊆ (∂(Hs)∩
MA

ϕ0
(f1)) with some vertex w0 ∈ S and i ∈ ϕ1(w0).

Moreover, Bϕ1 = Bϕ0 − 1 and Aϕ1 = Aϕ0 + 1 since fuv is no longer a second-improper
edge (but becomes a first-improper edge) at u and the edges exx1 and exw cannot make new
second-improper edges.

Case 2: fuv is second-improper at v with v ∈ V (Hs′) for a maximal k-dense subgraph Hs′

other than Hs.

For this case, we first do the same operations for u in Hs as we did in Case 1. Recall that
V (Hs)∩V (Hs′) = ∅, M is distance-3 andMA

ϕ0
(f1) is a matching. Then do the same operations

for v in Hs′ as we did for u in Hs. Thus fuv is no longer second-improper (but becomes
first-improper) at both u and v with respect to one prefeasible triple (M∗

2 , M̄
∆+µ
ϕ2

, ϕ2), where
M̄∆+µ

ϕ2
⊆ {hu, hv} with some edge hu ∈ ∂(Hs)∩MA

ϕ0
(f1) and some edge hv ∈ ∂(Hs′)∩MA

ϕ0
(f1)

by Case 1. Moreover, V (hu) ∩ V (hv) = ∅, Bϕ2 = Bϕ0 − 2 and Aϕ2 = Aϕ0 + 2.

Case 3: fuv is first-improper or second-improper at v with v ∈ V (Hs).
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Figure 2: Two possibilities for the location of fuv relative to Hs in Case 3.

If fuv is a first-improper edge at v with v ∈ V (Hs), then let ebv ∈ EHs(b, v) be the i-edge
incident with v in Hs. If dHs(b) < ∆, then we do the same operations for u as we did in
Case 1, which does not influence the vertex b by the observation (1) in Case 1. Thus fuv
is no longer second-improper (but becomes first-improper) at u. We will discuss the other
subcase dHs(b) = ∆ in the next paragraph.

If fuv is a second-improper edge at v with v ∈ V (Hs). We use eab ∈ M∗ with V (eab) =
{a, b} to denote the edge that is adjacent to an i-edge ebv ∈ EHs(b, v). Note that dHs(a) < ∆
and dHs(b) < ∆. We do the same operations for u as we did in Case 1, which does not
influence the vertices a and b. Thus fuv is no longer second-improper (but becomes first-
improper) at u with respect to one prefeasible triple (M∗

1 , M̄
∆+µ
ϕ1

, ϕ1), where M̄∆+µ
ϕ1

= ∅
or {h} with some boundary vertex w and its incident i-edge h ∈ ∂(Hs) ∩MA

ϕ0
(f1) by the

observation (3) in Case 1. In particular, the situation under (M∗
1 , ∅, ϕ1) is actually the same

as the subcase dHs(b) = ∆ in the previous paragraph since dH1
s
(y) = ∆, where H1

s is the new
k-dense subgraph after the operations for u in Hs by the observation (2) in Case 1.

Note that we also have dH1
s+eab(a) = dH1

s+eab(b) = ∆ and ϕ1(eyu) = i. Now consider a
maximal multi-fan Fa at a with respect to eab and (ϕ1)H1

s
in H1

s + eab. Clearly we can do
the same operations in Case 1 for v to make sure that fuv is no longer a second-improper
edge at v, unless these operations would have to put one edge eay ∈ EH1

s
(a, y) into M∗

1 , so
fuv would become second-improper at u again. Therefore, by Operations I-III in Case 1 we
may have the following two assumptions for the rest of our proof.

(1) y is the only ∆-vertex in V (Fa)\{a, b};

(2) If a linear sequence in Fa from b to y contains a boundary vertex w′, where dH1
s
(w′) =

∆− 1 and w′ is incident with one i-edge h′ in ∂(H1
s ), then h′ ∈MA

ϕ0
(f1).

Let Fb be the maximal multi-fan at b with respect to eab and (ϕ1)H1
s

in H1
s + eab. We

consider the following Subcases 3.1-3.3.
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Subcase 3.1: Fb contains a linear sequence S from a to y with no i-edge.

Let S = (b, e0, a0, e1, a1, . . . , ep, ap) be a linear sequence from a to y, where e0 = eab,
a0 = a, ep = eby ∈ EH1

s
(b, y), ap = y, and S does not contain i-edges. For this subcase we

do a shifting in S from a to y which gives a color in [k] to eab, uncolor the edge eby, and
permute color classes of E(H1

s + eab − eby) but keep the color i unchanged to match all the
boundary edges by Lemma 2.4. Now we obtain a new matching M∗

2 = (M∗
1\{eab}) ∪ {eby}

and a new k-edge-coloring ϕ2 of G− (M ∪M∗
2 ), where fuv is a second-improper edge at both

u and v, but here Φ(fuv) = i, ϕ2(ebv) = ϕ2(eyu) = i, and the edge eby is uncolored. So by
giving the color i to eby and recoloring ebv and eyu with the color ∆ + µ, we obtain a new
matching M∗

3 = M∗
2\{eby} = M∗

1\{eab} ⊆ G− V (M) and a new (k + 1)-edge-coloring ϕ3 of
G− (M ∪M∗

3 ). Thus fuv is no longer a second-improper edge or even a first-improper edge
neither at u nor at v with respect to the new triple (M∗

3 , M̄
∆+µ
ϕ3

, ϕ3), where M̄∆+µ
ϕ3

= {ebv, eyu}
if M̄∆+µ

ϕ1
= ∅ or M̄∆+µ

ϕ3
= {h, ebv, eyu} if M̄∆+µ

ϕ1
= {h}. Notice that M̄∆+µ

ϕ3
is also a matching

since M̄∆+µ
ϕ3

⊆ (MA
ϕ0

(f1) ∪MB
ϕ0

(f1)), and the triple (M∗
3 , M̄

∆+µ
ϕ3

, ϕ3) is also prefeasible since
h, ebv and eyu are not adjacent to any edge in M∗

3 . Moreover, Bϕ2 = Bϕ1 − 1 = Bϕ0 − 2 and
Aϕ2 = Aϕ1 − 1 = Aϕ0 .

Subcase 3.2: Fb contains a vertex w′′ with dH1
s
(w′′) = ∆− 1 and i ∈ (ϕ1)H1

s
(w′′).

In this subcase, the i-edge ebv is in Fb by the maximality of Fb. Note that there exists a
linear sequence S = (b, e0, a0, e1, a1, . . . , ep−1, ap−1, ep, ap) from a to v in Fb, where e0 = eab,
a0 = a, ep−1 = ebw′′ ∈ EH1

s
(b, w′′), ap−1 = w′′, ep = ebv and ap = v.

If i ∈ ϕ1(w′′) (w′′ may be the vertex a), or w′′ is incident with an i-edge h′′ ∈ ∂(Hs) ∩
MA

ϕ0
(f1), then we first do a shifting in S from a to v which gives a color in [k] to eab, recolor

the edge ebw′′ with i and uncolor the edge ebv. Then recolor h′′ from i to ∆ + µ if there
exists h′′, and permute color classes of E(H1

s + eab − ebv) but keep the color i unchanged
to match all the boundary edges by Lemma 2.4. Finally give the color ∆ + µ to the edge
ebv. Note that h 6= h′′ since ϕ1(h) = ∆ + µ 6= i = ϕ1(h′′), and h and h′′ cannot both exist
in ∂(Hs) = ∂(H1

s ) since otherwise ϕ0(h) = ϕ0(h′′) = i contradicting that Hs is strongly
ϕ0-closed. As a result, we obtain a new matching M∗

2 = M∗
1\{eab} ⊆ G− V (M) and a new

(k+ 1)-edge-coloring ϕ2 of G− (M ∪M∗
2 ) such that fuv is no longer a second-improper edge

or even a first-improper edge at v with respect to the new prefeasible triple (M∗
2 , M̄

∆+µ
ϕ2

, ϕ2),
where M̄∆+µ

ϕ2
= {ebv} if M̄∆+µ

ϕ1
= ∅ but h′′ does not exist, M̄∆+µ

ϕ2
= {ebv, h′′} if M̄∆+µ

ϕ1
= ∅

and h′′ exists, or M̄∆+µ
ϕ2

= {ebv, h} if M̄∆+µ
ϕ1

= {h}. Moreover, M̄∆+µ
ϕ2
⊆ (MA

ϕ0
(f1)∪MB

ϕ0
(f1)),

Bϕ2 = Bϕ1 − 1 = Bϕ0 − 2 and Aϕ2 = Aϕ1 = Aϕ0 + 1.

Now we may assume that w′′ is incident with an i-edge h′′ ∈ ∂(Hs) but h′′ /∈ MA
ϕ0

(f1).
Then we have M̄∆+µ

ϕ1
= ∅. Note that the vertex w′′ /∈ V (Fa) by the assumption (2). Moreover,

w′′ is not incident with any edge in M ∪M∗
1 and w′′ is only incident with the i-edge h′′ in

∂(H1
s ). Since dG−(M∪M∗1 )(w

′′) = ∆ and ϕ1 is a k-edge-coloring of G − (M ∪ M∗
1 ) with
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k ≥ ∆ + 1, there exists a color α ∈ ϕ1(w′′) with α 6= i. Since H1
s is (ϕ1)H1

s
-elementary,

there exists a α-edge e′0 incident with the vertex a. Thus we can define a maximal multi-fan
at a with respect to e′0 and (ϕ1)H1

s
in H1

s , denoted by F ′a = (a, e′0, b0, . . . , e
′
q, bq), such that

(ϕ1)H1
s
(e′j) ∈ (ϕ1)H1

s
(bl−1) for j ∈ [q] and some l ∈ [j]. Moreover, V (F ′a) is (ϕ1)H1

s
-elementary

since V (H1
s ) is (ϕ1)H1

s
-elementary. By the assumption (1) and Lemma 3.2 (b), we have

µFa(a, b′) = µH1
s+eab(a, b

′) = µ for any vertex b′ in V (Fa)\{a}. Therefore, V (F ′a)\{a} and
V (Fa)\{a} are vertex-disjoint, since otherwise we have V (F ′a) ⊆ V (Fa) and α ∈ (ϕ1)H1

s
(b′)

for some b′ ∈ V (Fa) implying b′ = w′′ ∈ V (Fa), a contradiction. Note that if w′′ /∈ V (F ′a),
then V (F ′a)\{a} must contain a ∆-vertex in H1

s , since otherwise Lemma 3.2 (d) and the fact
(ϕ1)H1

s
(e′0) = α ∈ ϕ1(w′′) imply that w′′ ∈ V (F ′a), a contradiction. Thus F ′a contains a linear

sequence S ′ = (a, e′l1 , bl1 , . . . , e
′
lt
, blt), where e′l1 = e′0, bl1 = b0, blt ∈ V (F ′a) is a ∆-vertex if

w′′ /∈ V (F ′a), and blt is w′′ if w′′ ∈ V (F ′a). Notice that blt is not incident with any edge in
M ∪M∗

1 by our choice of blt . Moreover, blt 6= y since V (F ′a)\{a} and V (Fa)\{a} are vertex-
disjoint. Let β (β 6= i) be a color in ϕ1(b). By Lemma 3.1 (b), we have Pb(β, α) = Pw′′(β, α).
We then consider the following two subcases according to the set (V (S ′)\{a})∩ (V (S)\{a}).

We first assume that (V (S ′)\{a})∩ (V (S)\{a}) is either {blt} or ∅. If e′0 /∈ Pb(β, α), then
we do Kempe changes on P[b,w′′](β, α), uncolor e′0 and color eab with α. If e′0 ∈ Pb(β, α) and
Pb(β, α) meets b0 before a, then we do Kempe changes on P[b,b0](β, α), uncolor e′0 and color
eab with α. If e′0 ∈ Pb(β, α) and Pw′′(β, α) meets b0 before a, then we uncolor e′0, do Kempe
changes on P[w′′,b0](β, α), do a shifting in S from a to w′′ and recolor the edge ebw′′ with β. In
all three cases above, the edge eab is colored with a color in [k] and e′0 is uncolored. Finally
we do a shifting in S ′ from b0 to blt which gives a color in [k] to e′0, and uncolor e′lt . Notice
that the above shifting in S ′ does nothing if b0 = blt . Since H1

s + eab− e′lt is also k-dense and
χ′(H1

s + eab− e′lt) = k, we can permute color classes of E(H1
s + eab− e′lt) but keep the color i

unchanged to match all the boundary edges by Lemma 2.4. Now we obtain a new matching
M∗

2 = (M∗
1\{eab})∪{e′lt} and a new k-edge-coloring ϕ2 of G− (M ∪M∗

2 ) such that fuv is no
longer a second-improper edge (but becomes a first-improper edge) at v with respect to the
new prefeasible triple (M∗

2 , ∅, ϕ2). Moreover, Bϕ2 = Bϕ0 − 2 and Aϕ2 = Aϕ0 + 2.

Then we assume that there exists bli = aj ∈ (V (S ′)\{a})∩(V (S)\{a}) for some i ∈ [t−1].
In this case we assume aj is the closest vertex to the vertex a along S. Note that bli 6= b
as V (F ′a)\{a} and V (Fa)\{a} are vertex-disjoint. Let αi = (ϕ1)H1

s
(e′li+1

) ∈ (ϕ1)H1
s
(bli). By

Lemma 3.1 (b), we have Pb(β, αi) = Pbli (β, αi). If e′li+1
/∈ Pb(β, αi), then we do Kempe

changes on P[b,bli ]
(β, αi), uncolor e′li+1

and color eab with αi. If e′li+1
∈ Pb(β, αi) and Pb(β, αi)

meets bli+1
before a, then we do Kempe changes on P[b,bli+1

](β, αi), uncolor e′li+1
and color

eab with αi. If e′li+1
∈ Pb(β, αi) and Pbli (β, αi) meets bli+1

before a, then we uncolor e′li+1
,

do Kempe changes on P[bli ,bli+1
](β, αi), do a shifting in S from a to bli and recolor the edge

eli with β. In all three cases above, the edge eab is colored with a color in [k] and e′li+1

is uncolored. Finally we do a shifting in S ′ from bli+1
to blt , which gives a color in [k] to

e′li+1
, and uncolor e′lt . Notice that the above shifting in S ′ does nothing if bli+1

= blt . Since

H1
s + eab − e′lt is also k-dense and χ′(H1

s + eab − e′lt) = k, we can permute color classes of
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E(H1
s +eab−e′lt) but keep the color i unchanged to match all the boundary edges by Lemma

2.4. Now we obtain a new matching M∗
2 = (M∗

1\{eab}) ∪ {e′lt} ⊆ G − V (M) and a new
k-edge-coloring ϕ2 of G− (M ∪M∗

2 ) such that fuv is no longer a second-improper edge (but
becomes a first-improper edge) at v with respect to the new prefeasible triple (M∗

2 , ∅, ϕ2).
Moreover, Bϕ2 = Bϕ0 − 2 and Aϕ2 = Aϕ0 + 2.

Subcase 3.3: Fb does not contain a linear sequence from a to y with no i-edge, and Fb
does not contain a vertex w′′ with dH1

s
(w′′) = ∆− 1 and i ∈ (ϕ1)H1

s
(w′′).

We claim that Fb contains a linear sequence S∗ from a to y∗ (y∗ 6= y), where dH1
s
(y∗) = ∆

and there is no i-edge in S∗. By Lemma 3.2 (a), the multi-fan Fb contains at least one
∆-vertex in H1

s . Now if Fb does not contain any linear sequence without i-edges from a to
any ∆-vertex in H1

s , then by Lemma 3.2 (c), the multi-fan Fb contains a vertex w′′ with
dH1

s
(w′′) = ∆ − 1 and i ∈ (ϕ1)H1

s
(w′′), contradicting the condition of Subcase 3.3. So Fb

contains a linear sequence S∗ from a to a vertex y∗, where dH1
s
(y∗) = ∆ and there is no

i-edge in S∗. Note that y∗ 6= y, since otherwise we also have a contradiction to the condition
of Subcase 3.3. Thus the claim is proved.

Assume that S∗ = (b, e0, a0, e1, a1, . . . , ep, ap) from a to y∗, where e0 = eab, a0 = a,
ep = eby∗ ∈ EH1

s
(b, y∗), ap = y∗, and S∗ contains no i-edge. Let θ ∈ ϕ1(y∗).

Subcase 3.3.1: θ = i.

We do a shifting in S∗ from a to y∗, uncolor the edge eby∗ , and permute color classes
of E(H1

s + eab − eby∗) but keep the color i unchanged to match all the boundary edges by
Lemma 2.4. Then color the edge eby∗ with i and recolor the edge ebv from i to ∆ + µ, which
results in a new matching M∗

2 = M∗
1\{eab} ⊆ G− V (M) and a new (k+ 1)-edge-coloring ϕ2

of G − (M ∪M∗
2 ). Then fuv is no longer a second-improper edge or even a first-improper

edge at v with respect to the new prefeasible triple (M∗
2 , M̄

∆+µ
ϕ2

, ϕ2) with M̄∆+µ
ϕ2

= {ebv}
if M̄∆+µ

ϕ1
= ∅, or M̄∆+µ

ϕ2
= {ebv, h} if M̄∆+µ

ϕ1
= {h} (when y∗ ∈ V (Fx) ∩ V (Fb)) by the

observation (3) in Case 1. Moreover, M̄∆+µ
ϕ2

⊆ (MA
ϕ0

(f1) ∪MB
ϕ0

(f1)), Bϕ2 = Bϕ0 − 2 and
Aϕ2 = Aϕ0 + 1.

Subcase 3.3.2: θ 6= i.

Since V (H1
s ) is (ϕ1)H1

s
-elementary, there exists a θ-edge e′0 incident with the vertex a.

Thus similarly as in Subcase 3.2, we can define a maximal multi-fan at a with respect to e′0
and (ϕ1)H1

s
in H1

s , denoted by F ′a = (a, e′0, b0, . . . , e
′
q, bq), such that (ϕ1)H1

s
(e′j) ∈ (ϕ1)H1

s
(bl−1)

for j ∈ [q] and some l ∈ [j]. By the assumption (1) and Lemma 3.2 (b), we have µFa(a, b′) =
µH1

s+eab(a, b
′) = µ for any vertex b′ in V (Fa)\{a}. Therefore, V (F ′a)\{a} and V (Fa)\{a} are

vertex-disjoint, since otherwise we have V (F ′a) ⊆ V (Fa) and (ϕ1)H1
s
(e′0) = θ ∈ (ϕ1)H1

s
(b′)

for some b′ ∈ V (Fa) implying y∗ = b′ ∈ V (Fa), which contradicts the assumption (1).
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Note that V (F ′a)\{a} must contain a ∆-vertex in H1
s , since otherwise Lemma 3.2 (d) and

the fact (ϕ1)H1
s
(e′0) = θ ∈ ϕ1(y∗) imply that y∗ ∈ V (F ′a), which contradicts dH1

s
(y∗) = ∆.

Moreover, if F ′a does not contain any linear sequence to a ∆-vertex in H1
s without i-edges,

then by Lemma 3.2 (d) the multi-fan F ′a contains a vertex w∗ with i ∈ (ϕ1)H1
s
(w∗) and

dH1
s
(w∗) = ∆ − 1, so w∗ is not incident with any edge in M ∪ M∗

1 . Thus F ′a contains a
linear sequence S ′ = (a, e′l1 , bl1 , . . . , e

′
lt
, blt), where e′l1 = e′0, bl1 = b0, blt is w∗ if there exists

a vertex w∗ ∈ V (F ′a) with dH1
s
(w) = ∆− 1 such that w∗ is incident with a boundary i-edge

h∗ ∈ ∂(H1
s ) but h∗ /∈ MA

ϕ0
(f1), and blt is a ∆-vertex in H1

s otherwise. Notice that blt is not
incident with any edge in M ∪M∗

1 by our choice of blt . Moreover, if blt = w∗ as defined
above, then blt = w∗ is not a vertex in V (Fb) by the condition of Subcase 3.3. And blt 6= y
since V (F ′a)\{a} and V (Fa)\{a} are vertex-disjoint. Let β (β 6= i) be a color in ϕ1(b). By
Lemma 3.1 (b), we have Pb(β, θ) = Py∗(β, θ). We then consider the following two subcases
according to the set (V (S ′)\{a}) ∩ (V (S∗)\{a}).

We first assume that (V (S ′)\{a}) ∩ (V (S∗)\{a}) is either {blt} or ∅. If e′0 /∈ Pb(β, θ),
then we do Kempe changes on P[b,y∗](β, θ), uncolor e′0 and color eab with θ. If e′0 ∈ Pb(β, θ)
and Pb(β, θ) meets b0 before a, then we do Kempe changes on P[b,b0](β, θ), uncolor e′0 and
color eab with θ. If e′0 ∈ Pb(β, θ) and Py∗(β, θ) meets b0 before a, then we uncolor e′0, do
Kempe changes on P[y∗,b0](β, θ), do a shifting in S∗ from a to y∗ and recolor eby∗ with β.
In all three cases above, the edge eab is colored with a color in [k] and e′0 is uncolored.
Then we do a shifting in S ′ from b0 to blt which gives a color in [k] to e′0, and uncolor e′lt ,
and permute color classes of E(H1

s + eab − e′lt) but keep the color i unchanged to match all
the boundary edges except i-edges by Lemma 2.4. Finally recolor h∗ with the color ∆ + µ
if w∗ is incident with a boundary i-edge h∗ ∈ ∂(Hs) ∩ MA

ϕ0
(f1). Now we obtain a new

matching M∗
2 = (M∗

1\{eab})∪ {e′lt} ⊆ G− V (M) and a new proper (k+ 1)-edge-coloring ϕ2

of G − (M ∪M∗
2 ) such that fuv is no longer a second-improper edge (but becomes a first-

improper edge) with respect to the new prefeasible triple (M∗
2 , M̄

∆+µ
ϕ2

, ϕ2), where M̄∆+µ
ϕ2

= ∅
or {h} or {h∗}. Moreover, M̄∆+µ

ϕ2
⊆MA

ϕ0
(f1), Bϕ2 = Bϕ0 − 2 and Aϕ2 = Aϕ0 + 2.

Then we assume that there exists bli = aj ∈ (V (S ′)\{a})∩(V (S∗)\{a}) for some i ∈ [t−1].
In this case we assume aj is the closest vertex to a along S∗. Note that bli 6= b as V (F ′a)\{a}
and V (Fa)\{a} are vertex-disjoint. Let θi = (ϕ1)H1

s
(e′li+1

) ∈ (ϕ1)H1
s
(bli). By Lemma 3.1 (b),

Pb(β, θi) = Pbli (β, θi). If e′li+1
/∈ Pb(β, θi), then we do Kempe changes on P[b,bli ]

(β, θi), uncolor
e′li+1

and color eab with θi. If e′li+1
∈ Pb(β, θi) and Pb(β, θi) meets bli+1

before a, then we do
Kempe changes on P[b,bli+1

](β, θi), uncolor e′li+1
and color eab with θi. If e′li+1

∈ Pb(β, θi) and

Pbli (β, θi) meets bli+1
before a, then we uncolor e′li+1

, do Kempe changes on P[bli ,bli+1
](β, θi),

do a shifting in S∗ from a to bli and recolor the edge eli = ebbli ∈ EH1
s
(b, bli) with β. In all

three cases above, the edge eab is colored with a color in [k] and e′li+1
is uncolored. Then

we do a shifting in S ′ from bli+1
to blt which gives a color in [k] to e′li+1

, and uncolor the

edge e′lt , and permute color classes of E(H1
s + eab − e′lt) but keep the color i unchanged to

match all the boundary edges except i-edges by Lemma 2.4. Finally recolor h∗ with ∆ + µ
if w∗ is incident with a boundary i-edge h∗ ∈ ∂(Hs) ∩ MA

ϕ0
(f1). Now we obtain a new
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matching M∗
2 = (M∗

1\{eab})∪ {e′lt} ⊆ G− V (M) and a new proper (k+ 1)-edge-coloring ϕ2

of G − (M ∪M∗
2 ) such that fuv is no longer a second-improper edge (but becomes a first-

improper edge) with respect to the new prefeasible triple (M∗
2 , M̄

∆+µ
ϕ2

, ϕ2), where M̄∆+µ
ϕ2

= ∅
or {h} or {h∗}. Moreover, M̄∆+µ

ϕ2
⊆MA

ϕ0
(f1), Bϕ2 = Bϕ0 − 2 and Aϕ2 = Aϕ0 + 2.

In all above Cases 1-3, the second-improper edge fuv in M is no longer a second-improper
edge with respect to one new prefeasible triple, say (M∗′ , M̄∆+µ

ϕ′ , ϕ′) uniformly. Observe that
all our operations in Cases 1-3 are inside G[V (Hs)] and G[V (H ′s)], and on at most two
possible edges respectively in ∂(Hs) ∩MA

ϕ0
(f1) and ∂(Hs′) ∩MA

ϕ0
(f1). Recall that MA

ϕ0
(f1)

is a matching and all maximal k-dense subgraphs H1, H2, . . . , Ht are vertex-disjoint. Thus
all other maximal k-dense subgraphs of G − (M ∪M∗

0 ) distinct with Hs and Hs′ are also
maximal k-dense subgraphs of G − (M ∪ M∗′). For any other edges in M∗

0 is still fully
saturated with respect to the corresponding maximal k-dense subgraphs distinct with Hs

and Hs′ . Recall that M is a distance-3 matching, and each maximal k-dense subgraph of
H1, H2, . . . , Ht has diameter at most 2. Thus for all other second-improper edges distinct
with fuv in M , we can do the same operations as we did for fuv in Cases 1-3 such that the
number of second-improper edges becomes zero with respect to one new prefeasible triple,
say (M∗′′ , M̄∆+µ

ϕ′′ , ϕ′′). By operations in Cases 1-3 we have M̄∆+µ
ϕ′′ ⊆ (MA

ϕ0
(f1) ∪MB

ϕ0
(f1)),

Then by giving the color ∆ + µ to all edges in MA
ϕ′′(f1) = (MA

ϕ0
(f1) ∪MB

ϕ0
(f1)) \ M̄∆+µ

ϕ′′ ,
the number of first-improper edges also becomes zero, and we get the final feasible triple
(M∗, M̄∆+µ

ϕ , ϕ), where M̄∆+µ
ϕ = MA

ϕ0
(f1) ∪MB

ϕ0
(f1). The proof is now finished.
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