Precoloring extension of Vizing's Theorem for multigraphs

Yan Cao *, Guantao Chen †, Guang
ming Jing ‡, Xuli Qi $^\$$, Songling Shan
 \P

Abstract

Let G be a graph with maximum degree $\Delta(G)$ and maximum multiplicity $\mu(G)$. Vizing and Gupta, independently, proved in the 1960s that the chromatic index of G is at most $\Delta(G) + \mu(G)$. The distance between two edges in G is the number of edges contained in a shortest path in G between any of their endvertices. A *distance-t* matching is a set of edges having pairwise distance at least t. Edwards et al. proposed a conjecture: For any graph G, using the palette $\{1, \ldots, \Delta(G) + \mu(G)\}$, any precolored distance-2 matching can be extended to a proper edge coloring of G. Girão and Kang verified this conjecture for distance-9 matchings. In this paper, we improve the required distance from 9 to 3 for multigraphs G with $\mu(G) \geq 2$.

Keywords: Edge coloring; Precoloring extension; Vizing's Theorem; Dense subgraph; Multi-fan

1 Introduction

In this paper, we generally follow the book [15] of Stiebitz et al. for notation and terminology. Graphs in this paper are finite, undirected, and without loops, but may have multiple edges.

^{*}yacao@mail.wvu.edu. Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA.

[†]gchen@gsu.edu. Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA. Partially supported by NSF grant DMS-1855716.

[‡]gjing@augusta.edu. Department of Mathematics, Augusta University, Augusta, GA 30912, USA. Partially supported by NSF grant DMS-2001130.

[§]qixuli-1212@163.com. Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA. Partially supported by NSFC grant 11801135.

[¶]sshan12@ilstu.edu. Department of Mathematics, Illinois State University, Normal, IL 61790, USA.

Let G = (V(G), E(G)) be a graph, where V(G) and E(G) are respectively the vertex set and the edge set of the graph G. Let $\Delta(G)$ and $\mu(G)$ be respectively maximum degree and maximum multiplicity of graph G. Let $[k] := \{1, \ldots, k\}$ be a palette of k available colors. A *k-edge-coloring* of G is a map φ that assigns to every edge e of G a color from the palette [k] such that no two adjacent edges receive the same color (the edge coloring is also called *proper*). Denote by $\mathcal{C}^k(G)$ the set of all *k*-edge-colorings of G. The *chromatic index* $\chi'(G)$ is the least integer k such that $\mathcal{C}^k(G) \neq \emptyset$.

In the 1960s, Vizing [17] and, independently, Gupta [13] proved that $\Delta(G) \leq \chi'(G) \leq \Delta(G) + \mu(G)$ which is always called Vizing's Theorem. Using the palette $[\Delta(G) + \mu(G)]$, when can we extend a precolored edge set $F \subseteq E(G)$ to a proper edge coloring of G? To address this natural generalization of Vizing's Theorem, we consider edge set F such that its edges are far apart from each other. The distance between two edges in G is the number of edges contained in a shortest path in G between any of their endvertices. A distance-t matching is a set of edges having pairwise distance at least t. Following this definition, a matching is a distance-1 matching and an induced matching is a distance-2 matching.

Albertson and Moore [2] conjectured that if G is a simple graph, using the palette $[\Delta(G) + 1]$, any precolored distance-3 matching can be extended to a proper edge coloring of G. Edwards et al. [8] proposed a stronger conjecture: For any graph G, using the palette $[\Delta(G) + \mu(G)]$, any precolored distance-2 matching can be extended to a proper edge coloring of G. Girão and Kang [9] verified this conjecture for distance-9 matchings. In this paper, we improve the required distance from 9 to 3 for multigraphs with maximum multiplicity at least 2 as below.

Theorem 1.1. Let G be a multigraph with maximum degree $\Delta(G)$ and maximum multiplicity $\mu(G)$, and let M be a subset of E(G) such that the minimum distance between two edges of M is at least 3. If $\mu(G) \geq 2$ and M is arbitrarily precolored from the palette $\mathcal{K} = [\Delta(G) + \mu(G)]$, then there is a proper edge coloring of G using colors from \mathcal{K} that agrees with the precoloring on M.

The *density* of a graph G, denoted by $\omega(G)$, is defined as

$$\omega(G) = max \left\{ \frac{2|E(H)|}{|V(H)| - 1} : H \subseteq G, |V(H)| \ge 3 \text{ and } |V(H)| \text{ is odd} \right\}$$

if $|V(G)| \ge 3$ and $\omega(G) = 0$ otherwise. By counting the number of edges in color classes, we have $\chi'(G) \ge \lceil \omega(G) \rceil$. So, besides the maximum degree, the density provides another lower bound for the chromatic index of a graph. In the 1970s, Goldberg [10] and Seymour [14] independently conjectured that actuarally $\chi'(G) = \lceil \omega(G) \rceil$ provided $\chi'(G) \ge \Delta(G) + 2$. The conjecture was commonly referred to as one of most challenging problems in graph chromatic theory [15], and it was confirmed recently by Chen et al. [7].

Our proof of Theorem 1.1 is based on the assumption of the above Goldberg-Seymour Conjecture. We will present the proof of Theorem 1.1 in Section 4, before which we need some new structural properties of dense subgraphs and multi-fans, and some generalizations of Vizing's Theorem introduced in Sections 2 and 3.

2 Dense subgraphs

Throughout the rest of this paper, we reserve the notation Δ and μ for maximum degree and maximum multiplicity of the graph G, respectively. For a vertex set $N \subseteq V(G)$, let G-N be the graph obtained from G by deleting all the vertices in N and edges incident with them. For an edge set $F \subseteq E(G)$, let G - F be the graph obtained from G by deleting all the edges in F but keeping their endvertices. If $F = \{e\}$, we simply write G - e. Similarly, we let G + e be the graph obtained from G by adding the edge e to E(G). For disjoint $X, Y \subseteq V(G), E_G(X, Y)$ is the set of edges of G with one endvertex in X and the other in Y. If $X = \{x\}$ and $Y = \{y\}$, we simply write $E_G(x, y)$. For two disjoint subgraphs H_1 and H_2 of G, we simply write $E(H_1, H_2)$ for $E_G(V(H_1), V(H_2))$. For $X \subseteq V(G)$, the edge set $\partial_G(X) = E_G(X, V(G) \setminus X)$ is called the *boundary* of X in G. For a subgraph H of G, we simply write $\partial(H)$ for $\partial_G(V(H))$.

For $u \in V(G)$, let $d_G(u)$ denote the *degree* of u in G. A *k*-vertex in G is a vertex with degree exactly k in G. A *k*-neighbor of a vertex v in G is a neighbor of v that is a *k*-vertex in G. A α -edge is an edge colored with the color α . For $e \in E(G)$, V(e) is the set of endvertices of e. The *diameter* of a graph G, denoted by diam(G), is the greatest distance between any pair of vertices in V(G).

An edge *e* of a graph *G* is called a *k*-critical edge if $k = \chi'(G - e) < \chi'(G) = k + 1$. A graph *G* is called *k*-critical if $\chi'(H) < \chi'(G) = k + 1$ for each proper subgraph *H* of *G*. It is easy to see that a connected graph *G* is critical if and only if every edge of *G* is critical.

For a graph G, a vertex $v \in V(G)$ and an edge coloring $\varphi \in \mathcal{C}^k(G)$ with some positive integer k, define the two color sets $\varphi(v) = \{\varphi(f) : f \in E(G) \text{ and } f \text{ is incident with } v\}$ and $\overline{\varphi}(v) = [k] \setminus \varphi(v)$. We call $\varphi(v)$ the set of colors *present* at v and $\overline{\varphi}(v)$ the set of colors *missing* at v. For a vertex set $X \subseteq V(G)$, define $\overline{\varphi}(X) = \bigcup_{v \in X} \overline{\varphi}(v)$. A vertex set $X \subseteq V(G)$ is called φ -elementary if $\overline{\varphi}(u) \cap \overline{\varphi}(v) = \emptyset$ for every two distinct vertices $u, v \in X$. The set X is called φ -closed if each color on boundary edges is present at each vertex of X. Moreover, the set X is called *strongly* φ -closed if X is φ -closed and colors on boundary edges are distinct, i.e., $\varphi(f) \neq \varphi(f')$ for every two distinct colored edges $f, f' \in \partial_G(X)$. For a subgraph Hof G, let φ_H be the edge coloring of G restricted on H. We say a subgraph H of G is φ elementary, φ -closed and strongly φ -closed, if V(H) is φ -elementary, φ -closed and strongly φ -closed, respectively. Clearly, if V(H) is φ_H -elementary then V(H) is φ -elementary, and the converse is not true.

A subgraph H of G is k-dense if |V(H)| is odd and |E(H)| = (|V(H)| - 1)k/2. Moreover, H is a maximal k-dense subgraph if there does not exist a k-dense subgraph H' containing H as a proper subgraph. By counting edges, we see that if H is a k-dense subgraph then $\chi'(H) \ge k$. Moreover, if $\chi'(G) = k$, then $\chi'(H) = k$ and for every $\varphi \in \mathcal{C}^k(G)$, every k-dense subgraph H of G is both φ_H -elementary and strongly φ -closed.

We start with the following consequent of the Goldberg-Seymour Conjecture.

Lemma 2.1. Let G be a multigraph and $e \in E(G)$. If e is k-critical and $k \ge \Delta(G) + 1$, then G - e has a k-dense subgraph H containing V(e), and e is also a k-critical edge of H + e.

Proof. Clearly, $\chi'(G) = k + 1$ and $\chi'(G - e) = k$. By the assumption of the Goldberg-Seymour Conjecture, $\chi'(G) = \lceil \omega(G) \rceil = k + 1$. So, there exists a subgraph H^* of odd order such that $|E(H^*)| > (|V(H^*)| - 1)k/2$. On the other hand, we have $\frac{2|E(H^* - e)|}{|V(H^* - e)| - 1} \leq [\omega(H^* - e)] \leq \chi'(H^* - e) \leq \chi'(G - e) = k$, which in turn gives $|E(H^* - e)| \leq (|V(H^*)| - 1)k/2$. Thus $|E(H^* - e)| = (|V(H^*)| - 1)k/2$. Then $k \leq [\omega(H^* - e)] \leq \chi'(H^* - e) \leq \chi'(G - e) = k$ and $k + 1 \leq [\omega(H^*)] \leq \chi'(H^*) \leq \chi'(G) = k + 1$, which implies that $k = \chi'(H^* - e) < \chi'(H^*) = k + 1$. Thus $H = H^* - e$ is a k-dense subgraph containing V(e), and e is also a k-critical edge of H + e.

Lemma 2.2. Given a graph G, if $\chi'(G) \ge \Delta(G) + 1$, then maximal $\chi'(G)$ -dense subgraphs are pairwise vertex-disjoint.

Proof. Let $k = \chi'(G)$ and suppose on the contrary that there are two maximal k-dense subgraphs H_1 and H_2 with nonempty intersection. Let $H = H_1 \cap H_2$ and $H^* = H_1 \cup H_2$. For each i = 1, 2, since $|E(H_i)| = (|V(H_i)| - 1)k/2$, adding any edge to H_i will result a graph with chromatic index greater than k, and so $H_i = G[V(H_i)]$ is an induced subgraph of G. Since both H_1 and H_2 are maximal and distinct, we have $V(H_1) \setminus V(H_2) \neq \emptyset$ and $V(H_2) \setminus V(H_1) \neq \emptyset$, which in turn gives $H_1 \subsetneq H^*$ and $H_2 \subsetneq H^*$. We consider two cases according to the parity of |V(H)|.

Case 1: |V(H)| is odd.

Since
$$E(H^*) = E(H_1) \cup E(H_2)$$
 and $E(H) = E(H_1) \cap E(H_2)$, we have
 $|E(H^*)| = |E(H_1)| + |E(H_2)| - |E(H)| = k(|V(H_1)| + |V(H_2)| - 2)/2 - |E(H)|.$ (1)

On the other hand, since both H_1 and H_2 are maximal k-dense, H^* is not k-dense. Consequently, we have

$$|E(H^*)| < k(|V(H^*)| - 1)/2 = k(|V(H_1)| + |V(H_2)| - |V(H)| - 1)/2.$$
(2)

The combination of (1) and (2) gives |E(H)| > k(|V(H)| - 1)/2. Consequently, we have $\chi'(G) \ge \chi'(H) > k$, giving a contradiction.

Case 2: |V(H)| is even.

Let $H_1^* = H_1 - V(H)$ and $H_2^* = H_2 - V(H)$. Clearly, both H_1^* and H_2^* have odd number of vertices. Since both H_1^* and H_2^* have k-edge-colorings, the following two inequalities hold.

$$|E(H_1^*)| \le k(|V(H_1)| - |V(H)| - 1)/2, |E(H_1^*)| \le k(|V(H_2)| - |V(H)| - 1)/2.$$
(3)

Since both H_1 and H_2 are k-dense, we have the following inequalities.

$$k(|V(H_1)| - 1)/2 = |E(H_1)| = |E(H)| + |E(H_1^*)| + |E(H_1^*, H)|,$$

$$k(|V(H_2)| - 1)/2 = |E(H_2)| = |E(H)| + |E(H_2^*)| + |E(H_2^*, H)|.$$
(4)

The combination of (3) and (4) gives

$$|E(H_1^*, H)| + |E(H)| \ge k \cdot |V(H)|/2, |E(H_2^*, H)| + |E(H)| \ge k \cdot |V(H)|/2.$$

Therefore, $\Delta(G) \cdot |V(H)| \geq \sum_{x \in V(H)} d_G(x) \geq |E(H_1^*, H)| + |E(H_2^*, H)| + 2|E(H)| \geq k|V(H)|$, contradicting the assumption $\Delta(G) < k$.

Lemma 2.3. Let G be a multigraph with $\chi'(G) = k + 1 \ge \Delta(G) + 2$ and e be a k-critical edge of G. We have the following statements.

(a) G - e has a unique maximal k-dense subgraph H containing V(e), and e is also a k-critical edge of H + e;

(b) With respect to any coloring $\varphi \in \mathcal{C}^k(G-e)$, H is φ_H -elementary and strongly φ -closed;

(c) If $\chi'(G) = \Delta(G) + \mu(G)$, then $\Delta(H+e) = \Delta(G)$, $\mu(H+e) = \mu(G)$ and $diam(H+e) \leq diam(H) \leq 2$.

Proof. By Lemma 2.1, G - e contains a k-dense subgraph H containing V(e) and e is also a k-critical edge of H + e. We may assume that H is a maximal k-dense subgraph, and the uniqueness of H is a direct consequence of Lemma 2.2. This proves (a).

Since *H* is *k*-dense, by the definition, $|E(H)| = \frac{|V(H)|-1}{2}k$. Also since *H* has an odd order, the size of a maximum matching in *H* has size at most (|V(H)| - 1)/2. Therefore, under

any k-edge-coloring φ , each color class in H is a matching of size exactly (|V(H)| - 1)/2. Thus every color in [k] is missing at exactly one vertex of H or it appears exactly once in $\partial(H)$. Consequently, V(H) is φ_H -elementary and strongly φ -closed. This proves (b).

For (c), by (a) and Vizing's Theorem, $\Delta(G) + \mu(G) = \chi'(G) = \chi'(H+e) \leq \Delta(H+e) + \mu(H+e) \leq \Delta(G) + \mu(G)$ implying that $\Delta(H+e) = \Delta(G) = \Delta$ and $\mu(H+e) = \mu(G) = \mu$. For any coloring $\varphi \in \mathcal{C}^k(G-e)$, H is φ_H -elementary by (b). For any $x \in V(H)$, all the colors missing at other vertices present at x. Note that $k = \Delta + \mu - 1$. For each vertex $v \in V(H)$, we have that $|\overline{\varphi}_H(v)| = k - d_H(v) \geq k - \Delta = \mu - 1$ if $v \notin V(e)$, and $|\overline{\varphi}_H(v)| = k - d_H(v) + 1 \geq k - \Delta + 1 \geq (\mu - 1) + 1$ if $v \in V(e)$. Denote |V(H)| by n. Thus, $d_H(x) \geq |\bigcup_{y \in V(H), y \neq x} \overline{\varphi}_H(y)| \geq (k - \Delta)(n - 1) + 1 = (\mu - 1)(n - 1) + 1$.

Since $\mu(H) \leq \mu(G) = \mu$, we get $|N_H(x)| \geq \frac{d_H(x)}{\mu} \geq \frac{(\mu-1)(n-1)+1}{\mu}$, where $N_H(x)$ is the neighbor set of x in H. Since $\mu \geq 2$, we have $\frac{(\mu-1)(n-1)+1}{\mu} \geq \frac{n}{2}$. Hence, every vertex in H is adjacent to at least half vertices in H. Consequently, every two vertices of H share a common neighbor, which in turn gives $diam(H) \leq 2$. This proves (c).

For a subgraph H of a graph G, let G/H be the graph obtained from G by contracting V(H) to a single vertex. The following technical lemma will be used several times in our proof.

Lemma 2.4. Let G be a graph with $\chi'(G) = k \ge \Delta(G)$, H be a k-dense subgraph, and ψ and φ be k-edge-colorings of H and G/H with the same palette [k], respectively. By permuting color classes of ψ on E(H), we can obtain a k-edge-coloring π of G such that $\pi(f) = \varphi(f)$ for every edge in G/H. If $\chi'(G) = k \ge \Delta(G) + 1$, for any fixed color $\alpha \in [k]$, then by permuting other color classes of ψ on E(H) we can obtain a coloring π of G agreeing with φ such that all color classes are matchings except the edges with color α .

Proof. We treat φ as a k-edge-coloring of G - E(H). Then, edges in $\partial(H)$ have different colors. Since H is k-dense and $\chi'(G) = k$, H is ψ -elementary. For each $v \in V(H)$, we have $|\overline{\psi}(v)| = k - d_H(v) \ge \Delta(G) - d_H(v) \ge d_{G-E(H)}(v) = |\varphi(v)|$. So, by permuting color classes of ψ , we may assume that $\varphi(v) \subseteq \overline{\psi}(v)$ for each $v \in V(H)$. The combination of the modified coloring of ψ and φ gives π .

For the second part, under the condition $k \ge \Delta(G) + 1$, we have $|\overline{\psi}(v)| = k - d_H(v) \ge \Delta(G) + 1 - d_H(v) \ge d_{G-E(H)}(v) + 1 = |\varphi(v)| + 1$. So $|\overline{\psi}(v) \setminus \{\alpha\}| \ge |\varphi(v) \setminus \{\alpha\}|$. Notice that when $\alpha \in \overline{\psi}(v) \cap \overline{\varphi}(v)$, we need $|\overline{\psi}(v)| - 1 \ge |\varphi(v)|$ to ensure the inequality above, where the assumption $k \ge \Delta(G) + 1$ is applied. By permuting color classes of H except α , we may assume that $\varphi(v) \setminus \{\alpha\} \subseteq \overline{\psi}(v)$ for each $v \in V(H)$. Again, the combination of the modified coloring of ψ and φ gives the desired coloring.

3 Refinements of multi-fans and some consequences

We first recall Kempe-chains and related terminology. Let φ be a k-edge-coloring of G using the palette [k]. Given two distinct colors α, β , an (α, β) -chain is a component of the subgraph induced by edges assigned color α or β in G, which is either an even cycle or a path. We call the operation that swaps the colors α and β on an (α, β) -chain the Kempe change. Clearly, the resulting coloring after a Kempe change is still a proper k-edge-coloring. Furthermore, we say that a chain has endvertices u and v if the chain is a path joining vertices u and v. For a vertex $v \in G$, we denote by $P_v(\alpha, \beta)$ the unique (α, β) -chain containing the vertex v. For two vertices $u, v \in V(G)$, the two chains $P_u(\alpha, \beta)$ and $P_v(\alpha, \beta)$ are either identical or disjoint. More generally, let $P_{[a,b]}(\alpha, \beta)$ be a subchain of a (α, β) -chain with endvertices a and b. The operation of swapping colors α and β on the subchain P is still called a Kempe change, but the resulting coloring may no longer be a proper edge coloring.

Let G be a graph with an edge $e \in E_G(x, y)$, and φ be a proper edge coloring of G or G - e. A sequence $F = (x, e_0, y_0, e_1, y_1, \ldots, e_p, y_p)$ consisting of vertices and distinct edges is called a (general) multi-fan at x with respect to e and φ if $e_0 = e, y_0 = y$, and for $0 \leq i \leq p$, the edge $e_i \in E_G(x, y_i)$ and $\varphi(e_i) \in \overline{\varphi}(y_j)$ for some $0 \leq j \leq i - 1$. Notice that the definition of multi-fan in this paper is slightly general than the one in [15] since the edge e may be colored in G. We say a multi-fan F is maximal if there is no multi-fan containing F as a proper subsequence. Similarly, we say a multi-fan F is maximal without any α -edge if F does not contain any α -edge and there is no multi-fan without any α -edge containing F as a proper subsequence. Let $\mu_G(x, y) = |E_G(x, y)|$ for $x, y \in V(G)$. Note that a multi-fan may have repeated vertices, so by $\mu_F(x, y_i)$ for some $y_i \in V(F)$ we mean the number of edges joining x and y_i in F.

A linear sequence at x from y_0 to y_s in G, denoted by $S = (x, e_0, y_0, e_1, y_1, \ldots, e_s, y_s)$, is a sequence consisting of distinct vertices and distinct edges such that $e_i \in E_G(x, y_i)$ for $0 \leq i \leq s$ and $\varphi(e_i) \in \overline{\varphi}(y_{i-1})$ for $i \in [s]$. Clearly for any $y_i \in V(F)$, the multi-fan F contains a linear sequence at x from y_0 to y_i . The following local edge recoloring operation will be used in our proof. A shifting from y_i to y_j in the linear sequence $S = (x, e_0, y_0, e_1, y_1, \ldots, e_s, y_s)$ is an operation that replaces the current color of e_t by the color of e_{t+1} for each $i \leq t \leq j-1$ with $0 \leq i < j \leq s$. Note that the shifting does not change the color of e_j where e_j joins x and y_j , so it will not be a proper coloring. In our proof we will uncolor or recolor the edge e_j to avoid this problem.

Lemma 3.1. [3, 11, 15] Let G be a graph, $e \in E_G(x, y)$ be a k-critical edge and $\varphi \in \mathcal{C}^k(G-e)$ with $k \geq \Delta(G)$. And let $F = (x, e, y_0, e_1, y_1, \ldots, e_p, y_p)$ be a multi-fan at x with respect to e and φ , where $y_0 = y$. Then the following statements hold.

(a) V(F) is φ -elementary, and each edge in E(F) is a k-critical edge of G.

(b) If $\alpha \in \overline{\varphi}(x)$ and $\beta \in \overline{\varphi}(y_i)$ for $0 \le i \le p$, then $P_x(\alpha, \beta) = P_{y_i}(\alpha, \beta)$.

(c) If F is a maximal multi-fan at x with respect to e and φ , then x is adjacent to at least $\chi'(G) - d_G(y) - \mu_G(x, y) + 1$ vertices z in $V(F) \setminus \{x, y\}$ such that $d_G(z) + \mu_G(x, z) = \chi'(G)$.

Lemma 3.2. Let G be a multigraph with maximum degree Δ and maximum multiplicity $\mu \geq 2$. Let $e \in E_G(x, y)$ be an edge of G and $k = \Delta + \mu - 1$.

Assume that $\chi'(G) = k + 1$, *e* is a k-critical edge and $\varphi \in \mathcal{C}^k(G - e)$. Let $F = (x, e, y_0, e_1, y_1, \ldots, e_p, y_p)$ be a multi-fan at x with respect to e and φ , where $y_0 = y$. We have the following statements (a), (b) and (c).

(a) If F is maximal, then x is adjacent to at least $\Delta + \mu - d_G(y) - \mu_G(x, y) + 1$ vertices z in $V(F) \setminus \{x, y\}$ such that $d_G(z) = \Delta$ and $\mu_G(x, z) = \mu$;

(b) If F is maximal, $d_G(y) = \Delta$ and x has only one Δ -neighbor z' in $V(F) \setminus \{x, y\}$, then $\mu_F(x, z) = \mu_G(x, z) = \mu$ for all $z \in V(F) \setminus \{x\}$ and $d_G(z) = \Delta - 1$ for all $z \in V(F) \setminus \{x, y, z'\}$;

(c) If F is maximal without any α -edge for $\alpha \notin \overline{\varphi}(y)$, then F not containing any Δ -neighbor in $V(F) \setminus \{x, y\}$ implies that $d_G(y) = \Delta$, and there exists a vertex $z^* \in V(F) \setminus \{x, y\}$ with $\alpha \in \overline{\varphi}(z^*)$ and $d_G(z^*) = \Delta - 1$.

Assume that $\chi'(G) = k, \varphi \in \mathcal{C}^k(G)$ and V(G) is φ -elementary. We have the following statement (d).

(d) If a multi-fan F' is maximal at x with respect to e and φ in G, then x has no Δ -neighbor in $V(F') \setminus \{x\}$ implies that $d_G(z) = \Delta - 1$ for all $z \in V(F') \setminus \{x\}$ and every edge in F' is colored by a missing color at some vertex in V(F'). Furthermore, if F' is maximal without any α -edge and $\varphi(e) \notin \overline{\varphi}(V(F'))$, then F' not containing any Δ -neighbor in $V(F') \setminus \{x\}$ implies that there exists a vertex $z^* \in V(F') \setminus \{x\}$ with $\alpha \in \overline{\varphi}(z^*)$ and $d_G(z^*) = \Delta - 1$.

Proof. For statements (a), (b) and (c), V(F) is φ -elementary by Lemma 3.1 (a). Statement (a) holds easily by Lemma 3.1 (c). Assume that there are q distinct vertices in $V(F) \setminus \{x\}$.

For (b), we have

$$\begin{array}{ll}
q\mu &\geq & \sum_{z \in V(F) \setminus \{x\}} \mu_G(x, z) \geq \sum_{z \in V(F) \setminus \{x\}} \mu_F(x, z) = 1 + \sum_{z \in V(F) \setminus \{x\}} |\overline{\varphi}(z)| \\
&\geq & 1 + (k - \Delta + 1) + (k - \Delta) + (q - 2)(k - \Delta + 1) = q(k - \Delta + 1) = q\mu_F(x, z) \\
\end{array}$$

which implies that all equalities above hold, i.e., $\mu_F(x, z) = \mu_G(x, z) = \mu$ for each $z \in V(F) \setminus \{x\}$ and $d_G(z) = \Delta - 1$ for each $z \in V(F) \setminus \{x, y, z'\}$. This proves (b).

Now for (c), we must have that there exists a vertex $z^* \in V(F) \setminus \{x, y\}$ with $\alpha \in \overline{\varphi}(z^*)$, since otherwise by (a) x has at least one Δ -neighbor in $V(F) \setminus \{x, y\}$, a contradiction. Since V(F) is φ -elementary, x must be incident with a α -edge. Since now there is no α -edge in F and $\alpha \in \overline{\varphi}(z^*)$, we have

$$\begin{array}{ll}
q\mu & \geq & \sum_{z \in V(F) \setminus \{x\}} \mu_G(x, z) \geq \sum_{z \in V(F) \setminus \{x\}} \mu_F(x, z) = 1 + (|\overline{\varphi}(z^*)| - 1) + \sum_{z \in V(F) \setminus \{x, z^*\}} |\overline{\varphi}(z)| \\
& \geq & k - \Delta + 1 + (q - 1)(k - \Delta + 1) = q(k - \Delta + 1) = q\mu,
\end{array}$$

which implies that all equalities above hold, i.e., $d_G(y) = \Delta$, $d_G(z) = \Delta - 1$ for each $z \in V(F) \setminus \{x, y\}$. This proves (c).

Statement (d) follows from similar calculations as (b) and (c).

Let G be a graph with maximum degree Δ and maximum multiplicity μ . Berge and Fournier [6] strengthened the classical Vizing's Theorem by showing that if M^* is a maximal matching of G, then $\chi'(G - M^*) \leq \Delta + \mu - 1$. An edge $e \in E_G(x, y)$ is fully saturated with respect to G if $d_G(x) = d_G(y) = \Delta$ and $\mu_G(x, y) = \mu$. Note that for every graph G with $\chi'(G) = \Delta + \mu$, there exists a critical subgraph H of G with $\chi'(H) = \Delta + \mu$ and $\Delta(H) = \Delta$. Moreover, every graph G with $\chi'(G) = \Delta + \mu$ contains at least two fully saturated edges in G by Lemma 3.2 (a). Stiebitz et al.[page 41 (a), [15]] obtained the following generalization of Vizing's Theorem with an elegant short proof: Let G be a graph and let $k \geq \Delta + \mu$ be an integer. Then there is a k-edge-coloring φ of G such that every edge e with $\varphi(e) = k$ is fully saturated. We observe that their proof actually gives a slightly stronger result which also generalizes the Berge-Fournier theorem as below.

Lemma 3.3. Let G be a graph and M be a matching of G. If M' is a maximal matching of G - V(M) such that every edge in M' is fully saturated with respect to G, then $\chi'(G - (M \cup M')) \leq \Delta(G) + \mu(G) - 1$.

Proof. Let $G' = G - (M \cup M')$. Note that every vertex $v \in V(M \cup M')$ has $d_{G'}(v) \leq \Delta - 1$. By the maximality of M', $G - V(M \cup M')$ contains no fully saturated edges. So, G' does not have a fully saturated edge of G. By Lemma 3.2 (a), $\chi'(G') \leq \Delta + \mu - 1$, since otherwise there exist at least two fully saturated edges with respect to G in one multi-fan centered at a Δ -vertex, a contradiction.

Lemma 3.3 has the following consequence.

Corollary 3.4. Let G be a graph. If M is a maximal matching such that every edge in M is fully saturated with respect to G, then $\chi'(G - M) \leq \Delta(G) + \mu(G) - 1$.

Let M be a matching of a graph G such that $\chi'(G-M) = \Delta(G) + \mu(G)$. Let $k = \Delta + \mu - 1$. By Lemma 3.3, there is a matching M' of G - V(M) with fully saturated edges with respect to G such that $\chi'(G - (M \cup M')) = k$. Suppose that M' is minimal subject to the properties above. Then each edge $e \in M'$ is a k-critical edge of $G - (M \cup M' \setminus \{e\})$. Moreover, if $\mu \geq 2$, then by Lemma 2.3 (a) there is a unique maximal k-dense subgraph H_e of $G - (M \cup M')$ such that $V(e) \subseteq V(H_e)$. Clearly, every fully statured edge in $H_e + e$ is a fully saturated edge of G, and the converse is not true. Following the above notation, we strengthen Lemma 3.3 for multigraphs with maximum multiplicity at least 2 as below.

Lemma 3.5. For a fixed matching M of a graph G, if $\mu(G) \ge 2$ and $\chi'(G - M) = \Delta(G) + \mu(G)$, then there is a matching M^* of G - V(M) such that $\chi'(G - (M \cup M^*)) = \Delta(G) + \mu(G) - 1$ and every edge $e \in M^*$ is fully saturated in $H_e + e$, where H_e is the maximal k-dense subgraph of $G - (M \cup M^*)$ containing V(e).

Proof. Let $k = \Delta + \mu - 1$, and M' be defined prior to Lemma 3.5 maximizing the number m' of edges $e \in M'$ that is fully saturated in $H_e + e$. We claim m' = |M'|, which in turn gives Lemma 3.5. Suppose on the contrary there is an edge $e \in M'$ that is not fully saturated in $H_e + e$. By Lemma 2.3 (a), e is a k-critical edge of $H_e + e$. Let $\varphi \in \mathcal{C}^k(G - (M \cup M'))$.

Let $V(e) = \{x, y\}$ and F_x be a maximum multi-fan at x with respect to e and φ_{H_e} , where φ_{H_e} is the coloring induced by φ on H_e . By Lemma 3.2 (a), x contains a Δ -neighbor, say x_1 , in $V(F_x) \setminus \{x, y\}$. By Lemma 3.1 (a), the edge $e_{xx_1} \in E_G(x, x_1)$ in F_x is also a critical edge of $H_e + e$. By Lemma 3.2 (a) again, in a maximum multi-fan at x_1 there exists a fully saturated edge e^* with respect to $H_e + e$. Let $M^* = (M' \setminus \{e\}) \cup \{e^*\}$. Since every vertex of $V(M \cup M')$ has degree less than Δ in $G - (M \cup M')$, it follows that $M \cup M^*$ is a matching of G. Let $H_{e^*} = H_e + e - e^*$. Clearly, H_{e^*} is also k-dense. Applying Lemma 3.1 (a) again, we see that e^* is also a k-critical edge of $H_e + e$. Thus $\chi'(H_{e^*}) = \omega(H_{e^*}) = k$. By Lemma 2.4, we have $\chi'(G - (M \cup M^*)) = k$.

Since maximal k-dense subgraphs of $G - (M \cup M')$ are vertex-disjoint, all other maximal k-dense subgraphs of $G - (M \cup M')$ are also maximal k-dense subgraphs of $G - (M \cup M^*)$. For any fully saturated edge $f \in M' \setminus \{e\}$, since $V(f) \cap V(e^*) = \emptyset$, f is still fully saturated with respect to the corresponding maximal k-dense subgraph. We can use M^* instead of M', which contradicts the maximality of M'. Thus m' = |M'| as desired. \Box

4 Proof of Theorem 1.1

We rewrite Theorem 1.1 as follows.

Theorem 1.1. Let G be a multigraph with $\mu(G) \geq 2$. Using palette $[\Delta(G) + \mu(G)]$, any precoloring of a distance-3 matching M in G can be extended to a proper edge coloring of G.

Proof. Let $k = \Delta + \mu - 1$. We fix a precoloring of M, denoted by $\Phi : M \to [\Delta + \mu]$. Note that $\chi'(G - M) \leq k + 1$ by Vizing's Theorem. The conclusion of Theorem 1.1 holds easily if $\chi'(G - M) \leq k$ with the reason as follows. For any k-edge-coloring ψ of G - M, if there exists $e \in E(G - M)$ such that e is adjacent to an edge $f \in M$ and $\psi(e) = \Phi(f)$ in G, we recolor each such e with the color $\Delta + \mu$ and get a new coloring ψ' of G - M. Under ψ' , the edges colored by $\Delta + \mu$ form a matching in G since M is a distance-3 matching. Thus the combination of Φ and ψ' is a (k + 1)-edge-coloring of G. Therefore, in the remainder of the proof, we assume $\chi'(G - M) = k + 1$.

Let $M_{\Phi}^{\Delta+\mu}$ be the set of edges colored with $\Delta+\mu$ in M. For any matching $M^* \subseteq G-V(M)$ and any (k+1)-edge-coloring or k-edge-coloring φ on $G - (M \cup M^*)$, denote the $\Delta + \mu$ color class by $\bar{M}_{\varphi}^{\Delta+\mu}$. In particular, $\bar{M}_{\varphi}^{\Delta+\mu} = \emptyset$ if φ is a k-edge-coloring. We call a triple $(M^*, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi)$ is **prefeasible** if it satisfies *Condition* 1: $V(M^*) \cap V(\bar{M}_{\varphi}^{\Delta+\mu}) = \emptyset$, i.e., all edges in M^* are not adjacent to any edge in $\bar{M}_{\varphi}^{\Delta+\mu}$.

With respect to a triple $(M^*, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi)$, we call an edge $f \in E_G(u, v)$ in M is firstimproper at u if there exists $f_1 \in E(G - (M \cup M^*))$ such that $\varphi(f_1) = \Phi(f)$, f is adjacent to f_1 at u, and f_1 is not adjacent to any edge in M^* ; we call an edge $f \in E_G(u, v)$ in Mis second-improper at u if there exists $f_1 \in E(G - (M \cup M^*))$ and $f_2 \in M^*$ such that $\varphi(f_1) = \Phi(f)$, f is adjacent to f_1 at u, and f_1 is adjacent to f_2 . Let A_{φ} and B_{φ} respectively denote the number of first-improper edges and second-improper edges in M (counting twice if one edge is improper at both its endvertices) with respect to the triple $(M^*, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi)$.

For a triple $(M^*, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi)$, let $M_{\varphi}^A(f_1)$ $(M_{\varphi}^B(f_1),$ respectively) be the set of all such edges f_1 that is adjacent to some first-improper (second-improper, respectively) edge $f \in M$ with $\varphi(f_1) = \Phi(f)$. Observe that $M_{\varphi}^A(f_1) \cup M_{\varphi}^B(f_1)$ is also a matching since M is distance-3, and $|M_{\varphi}^A(f_1)| = A_{\varphi}$ and $|M_{\varphi}^B(f_1)| = B_{\varphi}$.

For any prefeasible triple $(M^*, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi)$, all edges in M^* are uncolored if $|M^*| \geq 1$, $V(M^*) \cap V(M_{\Phi}^{\Delta+\mu}) = \emptyset$ since $M^* \subseteq G - V(M)$ and $V(M^*) \cap V(\bar{M}_{\varphi}^{\Delta+\mu}) = \emptyset$ by Condition 1. Recall that M is a distance-3 matching. Thus if a prefeasible triple $(M^*, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi)$ also satisfies *Condition* 2: $A\varphi = B\varphi = 0$, i.e., $M_{\varphi_0}^A(f_1) \cup M_{\varphi_0}^B(f_1) = \emptyset$, then $M_{\Phi}^{\Delta+\mu} \cup M^* \cup \bar{M}_{\varphi}^{\Delta+\mu}$ is a matching. Then by giving the color $\Delta + \mu$ to all the edges in M^* , we have a proper (k+1)-edge-coloring Ω of G implying that Theorem 1.1 holds, where Ω is the combination of the precoloring Φ on M, the $\Delta + \mu$ coloring ϕ on M^* and the coloring φ of $G - (M \cup M^*)$. We call such desired triple $(M^*, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi)$ is **feasible** if it satisfies Conditions 1 and 2.

The rest of the proof is devoted to showing the existence of a feasible triple $(M^*, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi)$ of G. Our main strategy is that we first fix a particular prefeasible triple $(M_0^*, \bar{M}_{\varphi_0}^{\Delta+\mu}, \varphi_0)$, then modify it step by step to a feasible triple $(M^*, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi)$ with $\bar{M}_{\varphi}^{\Delta+\mu} = M_{\varphi_0}^A(f_1) \cup$ $M_{\varphi_0}^B(f_1)$, which implies that the $\Delta + \mu$ color class in the final (k+1)-edge-coloring Ω of Gis $M_{\Phi}^{\Delta+\mu} \cup M^* \cup M_{\varphi_0}^A(f_1) \cup M_{\varphi_0}^B(f_1)$. By Lemma 3.5, there exsits a matching M_0^* of G - V(M) such that $\chi'(G - (M \cup M_0^*)) = k$ and each edge $e \in M_0^*$ is fully saturated and k-critical in $H_e + e$, where H_e is the unique maximal k-dense subgraph of $G - (M \cup M_0^*)$ containing V(e). Recall that $\chi'(G - M) = k + 1$. Thus $|M_0^*| \ge 1$. Let φ_0 be a k-edge-coloring of $G - (M \cup M_0^*)$. Note that $\overline{M}_{\varphi_0}^{\Delta+\mu} = \emptyset$. Obviously, the triple $(M_0^*, \emptyset, \varphi_0)$ is prefeasible that is just our initial triple, and there is neither first-improper nor second-improper $(\Delta + \mu)$ -edges in M under φ_0 .

For $(M_0^*, \emptyset, \varphi_0)$, if $A_{\varphi_0} = B_{\varphi_0} = 0$, i.e., $M_{\varphi_0}^A(f_1) \cup M_{\varphi_0}^B(f_1) = \emptyset$, then we are done. If $A_{\varphi_0} \ge 1$ and $B_{\varphi_0} = 0$, then we give the color $\Delta + \mu$ to every edge in $M_{\varphi_0}^A(f_1)$, resulting in a new (k + 1)-edge-coloring φ_1 of $G - (M \cup M_0^*)$ since $M_{\varphi_0}^A(f_1)$ is a matching. Thus $A_{\varphi_1} = B_{\varphi_1} = 0$ and all edges in M_0^* are still not adjacent to any edge in $\overline{M}_{\varphi_1}^{\Delta+\mu} = M_{\varphi_0}^A(f_1)$, which implies that the new triple $(M_0^*, M_{\varphi_0}^A(f_1), \varphi_1)$ is feasible, so we are also done.

Now we may assume that $A_{\varphi_0} \geq 0$ and $B_{\varphi_0} \geq 1$ with respect to the initial triple $(M_0^*, \emptyset, \varphi_0)$. Let H_1, H_2, \ldots, H_t be all maximal k-dense subgraphs of $G - (M \cup M_0^*)$ such that each of them contains both endvertices of some edge of M_0^* . By Lemmas 2.2-2.3, H_1, H_2, \ldots, H_t are vertex-disjoint. Moreover, each H_s with $s \in [t]$ has $diam(H_s) \leq 2$ and $\chi'(H_s) = k$, and is $(\varphi_0)_{H_s}$ -elementary and strongly φ_0 -closed in $G - (M \cup M_0^*)$. By Lemma 3.5, each edge e in M_0^* is fully saturated in $H_s + e$ for some $s \in [t]$, so all edges in M_0^* are only adjacent to edges inside H_1, H_2, \ldots, H_t . Thus for an edge $f_{uv} \in M$ with $V(f_{uv}) = \{u, v\}$, if $u, v \notin V(H_s)$ for any $s \in [t]$, then f_{uv} cannot be a second-improper edge.

Since $B_{\varphi_0} \geq 1$, we consider one second-improper edge in M, say f_{uv} with $V(f_{uv}) = \{u, v\}$ and $\Phi(f_{uv}) = i \in [k]$, and assume that f_{uv} is second-improper at u. Hence there exists some H_s with $s \in [t]$ such that $u \in V(H_s)$, where H_s contains both endvertices x and y of one edge $e_{xy} \in M_0^*$ such that f_{uv} and e_{xy} are both adjacent to an *i*-edge e_{yu} in H_s . Since M is distance-3 and $diam(H_s) \leq 2$, there does not exist another edge of M whose any endvertex is also in $V(H_s)$. Notice that u and v may belong to disjoint H_s and $H_{s'}$, where $s \neq s'$ with $s, s' \in [t]$. To make f_{uv} not be second-improper, we consider the following Cases 1-3. See Figures 1 and 2.

Case 1: f_{uv} is not improper at v, or f_{uv} is first-improper at v but $v \notin V(H_s)$.

Let F_x be a maximal multi-fan at x with respect to e_{xy} and $(\varphi_0)_{H_s}$ in $H_s + e_{xy}$. By Lemma 3.2 (a), in F_x there exist at least one Δ -vertex in $V(F_x) \setminus \{x, y\}$, say x_1 , and a linear sequence S from y to x_1 with last edge $e_{xx_1} \in E_{H_s}(x, x_1)$. Notice that x_1 is not incident with any edge in $M \cup M_0^*$ since $d_{H_s}(x_1) = \Delta$. We will do the following operations in three subcases to make sure that f_{uv} is no longer second-improper at u.

Subcase 1.1: S does not contain both an *i*-edge and a boundary vertex of $V(H_s)$ that is incident with an *i*-edge of $\partial(H_s)$ in $G - (M \cup M_0^*)$.

Figure 1: One possibility for the location of f_{uv} relative to H_s in Case 1.

For this subcase, we do Operation I as follows. Do a shifting in S from y to x_1 which gives a color in [k] to the edge e_{xy} , uncolor the edge e_{xx_1} , and replace e_{xy} by e_{xx_1} in M_0^* since x_1 is not incident with any edge in $M \cup M_0^*$. Obviously, $H_s + e_{xy} - e_{xx_1}$ is also k-dense. By Lemma 3.1 (a), e_{xx_1} is also a k-critical edge of $H_s + e_{xy}$ and $\chi'(H_s + e_{xy} - e_{xx_1}) = k$. Thus we can permute color classes of $E(H_s + e_{xy} - e_{xx_1})$ but keep the color i unchanged to match all boundary edges by Lemma 2.4. As a result, we obtain a new matching $M_1^* =$ $(M_0^* \setminus \{e_{xy}\}) \cup \{e_{xx_1}\} \subseteq G - V(M)$ and a new k-edge-coloring φ_1 of $G - (M \cup M_1^*)$ such that f_{uv} is no longer a second-improper edge (but becomes a first-improper edge) at u with respect to the new triple $(M_1^*, \emptyset, \varphi_1)$ that is also prefeasible.

Subcase 1.2: For any Δ -vertex in $V(F_x) \setminus \{x, y\}$, any linear sequence from y to this Δ -vertex contains an *i*-edge and a boundary vertex that is incident with one *i*-edge in $\partial(H_s)$.

By Lemma 3.2 (c), there exists a vertex w with $d_{H_s}(w) = \Delta - 1$ and $d_{G-(M \cup M_0^*)}(w) = \Delta$. So the *i*-edge, denoted by h, is the only edge in $\partial(H_s)$ at w and w is not incident with any edge in $M \cup M_0^*$. Next we fix the linear sequence S corresponding to the Δ -vertex x_1 , and consider the following two subcases about the boundary *i*-edge h.

Subcase 1.2.1: $h \notin M^A_{\varphi_0}(f_1)$, i.e., h is not adjacent to any precolored *i*-edge in M.

For this subcase, we do Operation II as follows. Let $e_{xw} \in E_{H_s}(x, w)$ be the edge with $V(e_{xw}) = \{x, w\}$ in S. Do a shifting in S from y to w which gives a color in [k] to the edge e_{xy} , uncolor the edge e_{xw} , and replace e_{xy} by e_{xw} in M_0^* since w is not incident with any edge in $M \cup M_0^*$. Obviously, $H_s + e_{xy} - e_{xw}$ is also k-dense. By Lemma 3.1 (a), e_{xw} is also a k-critical edge of $H_s + e_{xy}$ and $\chi'(H_s + e_{xy} - e_{xw}) = k$. Thus we can permute color classes of $E(H_s + e_{xy} - e_{xw})$ but keep the color i unchanged to match all boundary edges by Lemma 2.4. As a result, we obtain a new matching $M_1^* = (M_0^* \setminus \{e_{xy}\}) \cup \{e_{xw}\} \subseteq G - V(M)$ and a new k-edge-coloring φ_1 of $G - (M \cup M_1^*)$ such that f_{uv} is no longer a second-improper edge (but

becomes a first-improper edge) at u with respect to the new prefeasible triple $(M_1^*, \emptyset, \varphi_1)$.

Subcase 1.2.2: $h \in M^A_{\varphi_0}(f_1)$, i.e., h is adjacent to some precolored *i*-edge in M.

For this subcase, we do Operation III as follows. First recolor h from the color i to the color $\Delta + \mu$. Do a shifting in S from y to x_1 which gives a color in [k] to the edge e_{xy} , uncolor the edge e_{xx_1} , and permute color classes of $E(H_s + e_{xy} - e_{xx_1})$ but keep the color i unchanged to match all boundary edges by Lemma 2.4. Now we obtain a new matching $M_1^* = (M_0^* \setminus \{e_{xy}\}) \cup \{e_{xx_1}\} \subseteq G - V(M)$ and a new (k+1)-edge-coloring φ_1 of $G - (M \cup M_1^*)$ such that f_{uv} is no longer a second-improper edge (but becomes a first-improper edge) at u with respect to the new triple $(M_1^*, \overline{M}_{\varphi_1}^{\Delta+\mu}, \varphi_1)$ with $\overline{M}_{\varphi_1}^{\Delta+\mu} = \{h\}$. Notice that the triple $(M_1^*, \overline{M}_{\varphi_1}^{\Delta+\mu}, \varphi_1)$ is also prefeasible since h is not adjacent to any edge in M_1^* . Moreover, giving the color $\Delta + \mu$ to h will not be a problem since $h \in M_{\varphi_0}^A(f_1)$ and we will give the color $\Delta + \mu$ to all edges in $M_{\varphi_0}^A(f_1)$ in the final process.

For Operations I-III, we have the following observations.

(1) $M \cup M_1^* = M \cup (M_0^* \setminus \{e_{xy}\}) \cup \{e_{xx_1}\}$ or $M \cup M_1^* = M \cup (M_0^* \setminus \{e_{xy}\}) \cup \{e_{xw}\}$ is also a matching, where $d_{H_s}(x_1) = \Delta$, $d_{H_s}(w) = \Delta - 1$ and w is incident with one boundary *i*-edge h;

(2) The subgraph $H_s^1 = H_s + e_{xy} - e_{xx_1}$ or $H_s^1 = H_s + e_{xy} - e_{xw}$ is also k-dense and $(\varphi_1)_{H_s^1}$ -elementary, where $V(H_s^1) = V(H_s)$, $\partial(H_s^1) = \partial(H_s)$ and $d_{H_s^1}(w) = \Delta - 2$;

(3) The new triple $(M_1^*, \overline{M}_{\varphi_1}^{\Delta+\mu}, \varphi_1)$ is also prefeasible, where $\overline{M}_{\varphi_1}^{\Delta+\mu} = \emptyset$ or $\{h\} \subseteq (\partial(H_s) \cap M_{\varphi_0}^A(f_1))$ with some vertex $w_0 \in S$ and $i \in \overline{\varphi}_1(w_0)$.

Moreover, $B_{\varphi_1} = B_{\varphi_0} - 1$ and $A_{\varphi_1} = A_{\varphi_0} + 1$ since f_{uv} is no longer a second-improper edge (but becomes a first-improper edge) at u and the edges e_{xx_1} and e_{xw} cannot make new second-improper edges.

Case 2: f_{uv} is second-improper at v with $v \in V(H_{s'})$ for a maximal k-dense subgraph $H_{s'}$ other than H_s .

For this case, we first do the same operations for u in H_s as we did in Case 1. Recall that $V(H_s) \cap V(H_{s'}) = \emptyset$, M is distance-3 and $M_{\varphi_0}^A(f_1)$ is a matching. Then do the same operations for v in $H_{s'}$ as we did for u in H_s . Thus f_{uv} is no longer second-improper (but becomes first-improper) at both u and v with respect to one prefeasible triple $(M_2^*, \bar{M}_{\varphi_2}^{\Delta+\mu}, \varphi_2)$, where $\bar{M}_{\varphi_2}^{\Delta+\mu} \subseteq \{h_u, h_v\}$ with some edge $h_u \in \partial(H_s) \cap M_{\varphi_0}^A(f_1)$ and some edge $h_v \in \partial(H_{s'}) \cap M_{\varphi_0}^A(f_1)$ by Case 1. Moreover, $V(h_u) \cap V(h_v) = \emptyset$, $B_{\varphi_2} = B_{\varphi_0} - 2$ and $A_{\varphi_2} = A_{\varphi_0} + 2$.

Case 3: f_{uv} is first-improper or second-improper at v with $v \in V(H_s)$.

Figure 2: Two possibilities for the location of f_{uv} relative to H_s in Case 3.

If f_{uv} is a first-improper edge at v with $v \in V(H_s)$, then let $e_{bv} \in E_{H_s}(b, v)$ be the *i*-edge incident with v in H_s . If $d_{H_s}(b) < \Delta$, then we do the same operations for u as we did in Case 1, which does not influence the vertex b by the observation (1) in Case 1. Thus f_{uv} is no longer second-improper (but becomes first-improper) at u. We will discuss the other subcase $d_{H_s}(b) = \Delta$ in the next paragraph.

If f_{uv} is a second-improper edge at v with $v \in V(H_s)$. We use $e_{ab} \in M^*$ with $V(e_{ab}) = \{a, b\}$ to denote the edge that is adjacent to an *i*-edge $e_{bv} \in E_{H_s}(b, v)$. Note that $d_{H_s}(a) < \Delta$ and $d_{H_s}(b) < \Delta$. We do the same operations for u as we did in Case 1, which does not influence the vertices a and b. Thus f_{uv} is no longer second-improper (but becomes firstimproper) at u with respect to one prefeasible triple $(M_1^*, \bar{M}_{\varphi_1}^{\Delta + \mu}, \varphi_1)$, where $\bar{M}_{\varphi_1}^{\Delta + \mu} = \emptyset$ or $\{h\}$ with some boundary vertex w and its incident *i*-edge $h \in \partial(H_s) \cap M_{\varphi_0}^A(f_1)$ by the observation (3) in Case 1. In particular, the situation under $(M_1^*, \emptyset, \varphi_1)$ is actually the same as the subcase $d_{H_s}(b) = \Delta$ in the previous paragraph since $d_{H_s}(y) = \Delta$, where H_s^1 is the new k-dense subgraph after the operations for u in H_s by the observation (2) in Case 1.

Note that we also have $d_{H_s^1+e_{ab}}(a) = d_{H_s^1+e_{ab}}(b) = \Delta$ and $\varphi_1(e_{yu}) = i$. Now consider a maximal multi-fan F_a at a with respect to e_{ab} and $(\varphi_1)_{H_s^1}$ in $H_s^1 + e_{ab}$. Clearly we can do the same operations in Case 1 for v to make sure that f_{uv} is no longer a second-improper edge at v, unless these operations would have to put one edge $e_{ay} \in E_{H_s^1}(a, y)$ into M_1^* , so f_{uv} would become second-improper at u again. Therefore, by Operations I-III in Case 1 we may have the following two assumptions for the rest of our proof.

(1) y is the only Δ -vertex in $V(F_a) \setminus \{a, b\};$

(2) If a linear sequence in F_a from b to y contains a boundary vertex w', where $d_{H_s^1}(w') = \Delta - 1$ and w' is incident with one *i*-edge h' in $\partial(H_s^1)$, then $h' \in M^A_{\varphi_0}(f_1)$.

Let F_b be the maximal multi-fan at b with respect to e_{ab} and $(\varphi_1)_{H_s^1}$ in $H_s^1 + e_{ab}$. We consider the following Subcases 3.1-3.3.

Subcase 3.1: F_b contains a linear sequence S from a to y with no *i*-edge.

Let $S = (b, e_0, a_0, e_1, a_1, \ldots, e_p, a_p)$ be a linear sequence from a to y, where $e_0 = e_{ab}$, $a_0 = a, e_p = e_{by} \in E_{H_s^1}(b, y), a_p = y$, and S does not contain *i*-edges. For this subcase we do a shifting in S from a to y which gives a color in [k] to e_{ab} , uncolor the edge e_{by} , and permute color classes of $E(H_s^1 + e_{ab} - e_{by})$ but keep the color i unchanged to match all the boundary edges by Lemma 2.4. Now we obtain a new matching $M_2^* = (M_1^* \setminus \{e_{ab}\}) \cup \{e_{by}\}$ and a new k-edge-coloring φ_2 of $G - (M \cup M_2^*)$, where f_{uv} is a second-improper edge at both u and v, but here $\Phi(f_{uv}) = i$, $\varphi_2(e_{bv}) = \varphi_2(e_{yu}) = i$, and the edge e_{by} is uncolored. So by giving the color i to e_{by} and recoloring e_{bv} and e_{yu} with the color $\Delta + \mu$, we obtain a new matching $M_3^* = M_2^* \setminus \{e_{by}\} = M_1^* \setminus \{e_{ab}\} \subseteq G - V(M)$ and a new (k + 1)-edge-coloring φ_3 of $G - (M \cup M_3^*)$. Thus f_{uv} is no longer a second-improper edge or even a first-improper edge neither at u nor at v with respect to the new triple $(M_3^*, \bar{M}_{\varphi_3}^{\Delta+\mu}, \varphi_3)$, where $\bar{M}_{\varphi_3}^{\Delta+\mu} = \{e_{bv}, e_{yu}\}$ if $\bar{M}_{\varphi_1}^{\Delta+\mu} = \emptyset$ or $\bar{M}_{\varphi_3}^{\Delta+\mu} = \{h, e_{bv}, e_{yu}\}$ if $\bar{M}_{\varphi_1}^{\Delta+\mu} = \{h\}$. Notice that $\bar{M}_{\varphi_3}^{\Delta+\mu}$ is also a matching since $\bar{M}_{\varphi_3}^{\Delta+\mu} \subseteq (M_{\varphi_0}^A(f_1) \cup M_{\varphi_0}^B(f_1))$, and the triple $(M_3^*, \bar{M}_{\varphi_3}^{\Delta+\mu}, \varphi_3)$ is also prefeasible since h, e_{bv} and e_{yu} are not adjacent to any edge in M_3^* . Moreover, $B_{\varphi_2} = B_{\varphi_1} - 1 = B_{\varphi_0} - 2$ and $A_{\varphi_2} = A_{\varphi_1} - 1 = A_{\varphi_0}$.

Subcase 3.2: F_b contains a vertex w'' with $d_{H^1_{\epsilon}}(w'') = \Delta - 1$ and $i \in (\overline{\varphi}_1)_{H^1_{\epsilon}}(w'')$.

In this subcase, the *i*-edge e_{bv} is in F_b by the maximality of F_b . Note that there exists a linear sequence $S = (b, e_0, a_0, e_1, a_1, \ldots, e_{p-1}, a_{p-1}, e_p, a_p)$ from a to v in F_b , where $e_0 = e_{ab}$, $a_0 = a, e_{p-1} = e_{bw''} \in E_{H_s^1}(b, w''), a_{p-1} = w'', e_p = e_{bv}$ and $a_p = v$.

If $i \in \overline{\varphi}_1(w'')$ (w'' may be the vertex a), or w'' is incident with an *i*-edge $h'' \in \partial(H_s) \cap M_{\varphi_0}^A(f_1)$, then we first do a shifting in S from a to v which gives a color in [k] to e_{ab} , recolor the edge $e_{bw''}$ with i and uncolor the edge e_{bv} . Then recolor h'' from i to $\Delta + \mu$ if there exists h'', and permute color classes of $E(H_s^1 + e_{ab} - e_{bv})$ but keep the color i unchanged to match all the boundary edges by Lemma 2.4. Finally give the color $\Delta + \mu$ to the edge e_{bv} . Note that $h \neq h''$ since $\varphi_1(h) = \Delta + \mu \neq i = \varphi_1(h'')$, and h and h'' cannot both exist in $\partial(H_s) = \partial(H_s^1)$ since otherwise $\varphi_0(h) = \varphi_0(h'') = i$ contradicting that H_s is strongly φ_0 -closed. As a result, we obtain a new matching $M_2^* = M_1^* \setminus \{e_{ab}\} \subseteq G - V(M)$ and a new (k+1)-edge-coloring φ_2 of $G - (M \cup M_2^*)$ such that f_{uv} is no longer a second-improper edge or even a first-improper edge at v with respect to the new prefeasible triple $(M_2^*, \bar{M}_{\varphi_2}^{\Delta+\mu}, \varphi_2)$, where $\bar{M}_{\varphi_2}^{\Delta+\mu} = \{e_{bv}\}$ if $\bar{M}_{\varphi_1}^{\Delta+\mu} = \emptyset$ but h'' does not exist, $\bar{M}_{\varphi_2}^{\Delta+\mu} = \{e_{bv}, h''\}$ if $\bar{M}_{\varphi_1}^{\Delta+\mu} = \emptyset$ and h'' exists, or $\bar{M}_{\varphi_2}^{\Delta+\mu} = \{e_{bv}, h\}$ if $\bar{M}_{\varphi_1}^{\Delta+\mu} = \{h\}$. Moreover, $M_{\varphi_2}^{\Delta+\mu} \subseteq (M_{\varphi_0}^A(f_1) \cup M_{\varphi_0}^B(f_1))$, $B_{\varphi_2} = B_{\varphi_1} - 1 = B_{\varphi_0} - 2$ and $A_{\varphi_2} = A_{\varphi_1} = A_{\varphi_0} + 1$.

Now we may assume that w'' is incident with an *i*-edge $h'' \in \partial(H_s)$ but $h'' \notin M^A_{\varphi_0}(f_1)$. Then we have $\overline{M}_{\varphi_1}^{\Delta+\mu} = \emptyset$. Note that the vertex $w'' \notin V(F_a)$ by the assumption (2). Moreover, w'' is not incident with any edge in $M \cup M_1^*$ and w'' is only incident with the *i*-edge h'' in $\partial(H_s^1)$. Since $d_{G-(M \cup M_1^*)}(w'') = \Delta$ and φ_1 is a *k*-edge-coloring of $G - (M \cup M_1^*)$ with $k \geq \Delta + 1$, there exists a color $\alpha \in \overline{\varphi}_1(w'')$ with $\alpha \neq i$. Since H_s^1 is $(\varphi_1)_{H_s^1}$ -elementary, there exists a α -edge e'_0 incident with the vertex a. Thus we can define a maximal multi-fan at a with respect to e'_0 and $(\varphi_1)_{H_s^1}$ in H_s^1 , denoted by $F'_a = (a, e'_0, b_0, \ldots, e'_q, b_q)$, such that $(\varphi_1)_{H_s^1}(e'_j) \in (\overline{\varphi}_1)_{H_s^1}(b_{l-1})$ for $j \in [q]$ and some $l \in [j]$. Moreover, $V(F'_a)$ is $(\varphi_1)_{H_s^1}$ -elementary since $V(H_s^1)$ is $(\varphi_1)_{H_s^1}$ -elementary. By the assumption (1) and Lemma 3.2 (b), we have $\mu_{F_a}(a,b') = \mu_{H_s^1+e_ab}(a,b') = \mu$ for any vertex b' in $V(F_a) \setminus \{a\}$. Therefore, $V(F'_a) \setminus \{a\}$ and $V(F_a) \setminus \{a\}$ are vertex-disjoint, since otherwise we have $V(F'_a) \subseteq V(F_a)$ and $\alpha \in (\overline{\varphi}_1)_{H_s^1}(b')$ for some $b' \in V(F_a)$ implying $b' = w'' \in V(F_a)$, a contradiction. Note that if $w'' \notin V(F'_a)$, then $V(F'_a) \setminus \{a\}$ must contain a Δ -vertex in H_s^1 , since otherwise Lemma 3.2 (d) and the fact $(\varphi_1)_{H_s^1}(e'_0) = \alpha \in \overline{\varphi}_1(w'')$ imply that $w'' \in V(F'_a)$, a contradiction. Thus F'_a contains a linear sequence $S' = (a, e'_{l_1}, b_{l_1}, \ldots, e'_{l_t}, b_{l_t})$, where $e'_{l_1} = e'_0$, $b_{l_1} = b_0$, $b_{l_t} \in V(F'_a)$ is a Δ -vertex if $w'' \notin V(F'_a)$, and b_{l_t} is w'' if $w'' \in V(F'_a)$. Notice that b_{l_t} is not incident with any edge in $M \cup M_1^*$ by our choice of b_{l_t} . Moreover, $b_{l_t} \neq y$ since $V(F'_a) \setminus \{a\}$ and $V(F_a) \setminus \{a\}$ are vertexdisjoint. Let β ($\beta \neq i$) be a color in $\overline{\varphi}_1(b)$. By Lemma 3.1 (b), we have $P_b(\beta, \alpha) = P_{w''}(\beta, \alpha)$. We then consider the following two subcases according to the set $(V(S') \setminus \{a\}) \cap (V(S) \setminus \{a\})$.

We first assume that $(V(S')\setminus\{a\}) \cap (V(S)\setminus\{a\})$ is either $\{b_{l_t}\}$ or \emptyset . If $e'_0 \notin P_b(\beta, \alpha)$, then we do Kempe changes on $P_{[b,w'']}(\beta, \alpha)$, uncolor e'_0 and color e_{ab} with α . If $e'_0 \in P_b(\beta, \alpha)$ and $P_b(\beta, \alpha)$ meets b_0 before a, then we do Kempe changes on $P_{[b,b_0]}(\beta, \alpha)$, uncolor e'_0 and color e_{ab} with α . If $e'_0 \in P_b(\beta, \alpha)$ and $P_{w''}(\beta, \alpha)$ meets b_0 before a, then we uncolor e'_0 , do Kempe changes on $P_{[w'',b_0]}(\beta, \alpha)$, do a shifting in S from a to w'' and recolor the edge $e_{bw''}$ with β . In all three cases above, the edge e_{ab} is colored with a color in [k] and e'_0 is uncolored. Finally we do a shifting in S' from b_0 to b_{l_t} which gives a color in [k] to e'_0 , and uncolor e'_{l_t} . Notice that the above shifting in S' does nothing if $b_0 = b_{l_t}$. Since $H^1_s + e_{ab} - e'_{l_t}$ is also k-dense and $\chi'(H^1_s + e_{ab} - e'_{l_t}) = k$, we can permute color classes of $E(H^1_s + e_{ab} - e'_{l_t})$ but keep the color iunchanged to match all the boundary edges by Lemma 2.4. Now we obtain a new matching $M^*_2 = (M^*_1 \setminus \{e_{ab}\}) \cup \{e'_{l_t}\}$ and a new k-edge-coloring φ_2 of $G - (M \cup M^*_2)$ such that f_{uv} is no longer a second-improper edge (but becomes a first-improper edge) at v with respect to the new prefeasible triple $(M^*_2, \emptyset, \varphi_2)$. Moreover, $B_{\varphi_2} = B_{\varphi_0} - 2$ and $A_{\varphi_2} = A_{\varphi_0} + 2$.

Then we assume that there exists $b_{l_i} = a_j \in (V(S') \setminus \{a\}) \cap (V(S) \setminus \{a\})$ for some $i \in [t-1]$. In this case we assume a_j is the closest vertex to the vertex a along S. Note that $b_{l_i} \neq b$ as $V(F'_a) \setminus \{a\}$ and $V(F_a) \setminus \{a\}$ are vertex-disjoint. Let $\alpha_i = (\varphi_1)_{H^1_s}(e'_{l_{i+1}}) \in (\overline{\varphi}_1)_{H^1_s}(b_{l_i})$. By Lemma 3.1 (b), we have $P_b(\beta, \alpha_i) = P_{b_{l_i}}(\beta, \alpha_i)$. If $e'_{l_{i+1}} \notin P_b(\beta, \alpha_i)$, then we do Kempe changes on $P_{[b,b_{l_i}]}(\beta, \alpha_i)$, uncolor $e'_{l_{i+1}}$ and color e_{ab} with α_i . If $e'_{l_{i+1}} \in P_b(\beta, \alpha_i)$ and $P_b(\beta, \alpha_i)$ meets $b_{l_{i+1}}$ before a, then we do Kempe changes on $P_{[b,b_{l_i+1}]}(\beta, \alpha_i)$, uncolor $e'_{l_{i+1}}$ and color e_{ab} with α_i . If $e'_{l_{i+1}} \in P_b(\beta, \alpha_i)$ and $P_{b_{l_i}}(\beta, \alpha_i)$ meets $b_{l_{i+1}}$ before a, then we uncolor $e'_{l_{i+1}}$, do Kempe changes on $P_{[b_{l_i,b_{l_{i+1}}]}(\beta, \alpha_i)$, do a shifting in S from a to b_{l_i} and recolor the edge e_{l_i} with β . In all three cases above, the edge e_{ab} is colored with a color in [k] and $e'_{l_{i+1}}$ is uncolored. Finally we do a shifting in S' from $b_{l_{i+1}}$ to b_{l_t} , which gives a color in [k] to $e'_{l_{i+1}}$, and uncolor e'_{l_t} . Notice that the above shifting in S' does nothing if $b_{l_{i+1}} = b_{l_t}$. Since $H^1_s + e_{ab} - e'_{l_t}$ is also k-dense and $\chi'(H^1_s + e_{ab} - e'_{l_t}) = k$, we can permute color classes of $E(H_s^1 + e_{ab} - e'_{l_t})$ but keep the color *i* unchanged to match all the boundary edges by Lemma 2.4. Now we obtain a new matching $M_2^* = (M_1^* \setminus \{e_{ab}\}) \cup \{e'_{l_t}\} \subseteq G - V(M)$ and a new *k*-edge-coloring φ_2 of $G - (M \cup M_2^*)$ such that f_{uv} is no longer a second-improper edge (but becomes a first-improper edge) at *v* with respect to the new prefeasible triple $(M_2^*, \emptyset, \varphi_2)$. Moreover, $B_{\varphi_2} = B_{\varphi_0} - 2$ and $A_{\varphi_2} = A_{\varphi_0} + 2$.

Subcase 3.3: F_b does not contain a linear sequence from a to y with no *i*-edge, and F_b does not contain a vertex w'' with $d_{H_a^1}(w'') = \Delta - 1$ and $i \in (\overline{\varphi}_1)_{H_a^1}(w'')$.

We claim that F_b contains a linear sequence S^* from a to y^* $(y^* \neq y)$, where $d_{H^1_s}(y^*) = \Delta$ and there is no *i*-edge in S^* . By Lemma 3.2 (*a*), the multi-fan F_b contains at least one Δ -vertex in H^1_s . Now if F_b does not contain any linear sequence without *i*-edges from a to any Δ -vertex in H^1_s , then by Lemma 3.2 (*c*), the multi-fan F_b contains a vertex w'' with $d_{H^1_s}(w'') = \Delta - 1$ and $i \in (\overline{\varphi}_1)_{H^1_s}(w'')$, contradicting the condition of Subcase 3.3. So F_b contains a linear sequence S^* from a to a vertex y^* , where $d_{H^1_s}(y^*) = \Delta$ and there is no *i*-edge in S^* . Note that $y^* \neq y$, since otherwise we also have a contradiction to the condition of Subcase 3.3. Thus the claim is proved.

Assume that $S^* = (b, e_0, a_0, e_1, a_1, \ldots, e_p, a_p)$ from a to y^* , where $e_0 = e_{ab}$, $a_0 = a$, $e_p = e_{by^*} \in E_{H_s^1}(b, y^*)$, $a_p = y^*$, and S^* contains no *i*-edge. Let $\theta \in \overline{\varphi}_1(y^*)$.

Subcase 3.3.1: $\theta = i$.

We do a shifting in S^* from a to y^* , uncolor the edge e_{by^*} , and permute color classes of $E(H_s^1 + e_{ab} - e_{by^*})$ but keep the color i unchanged to match all the boundary edges by Lemma 2.4. Then color the edge e_{by^*} with i and recolor the edge e_{bv} from i to $\Delta + \mu$, which results in a new matching $M_2^* = M_1^* \setminus \{e_{ab}\} \subseteq G - V(M)$ and a new (k+1)-edge-coloring φ_2 of $G - (M \cup M_2^*)$. Then f_{uv} is no longer a second-improper edge or even a first-improper edge at v with respect to the new prefeasible triple $(M_2^*, \bar{M}_{\varphi_2}^{\Delta+\mu}, \varphi_2)$ with $\bar{M}_{\varphi_2}^{\Delta+\mu} = \{e_{bv}\}$ if $\bar{M}_{\varphi_1}^{\Delta+\mu} = \emptyset$, or $\bar{M}_{\varphi_2}^{\Delta+\mu} = \{e_{bv}, h\}$ if $\bar{M}_{\varphi_1}^{\Delta+\mu} = \{h\}$ (when $y^* \in V(F_x) \cap V(F_b)$) by the observation (3) in Case 1. Moreover, $\bar{M}_{\varphi_2}^{\Delta+\mu} \subseteq (M_{\varphi_0}^A(f_1) \cup M_{\varphi_0}^B(f_1)), B_{\varphi_2} = B_{\varphi_0} - 2$ and $A_{\varphi_2} = A_{\varphi_0} + 1$.

Subcase 3.3.2: $\theta \neq i$.

Since $V(H_s^1)$ is $(\varphi_1)_{H_s^1}$ -elementary, there exists a θ -edge e'_0 incident with the vertex a. Thus similarly as in Subcase 3.2, we can define a maximal multi-fan at a with respect to e'_0 and $(\varphi_1)_{H_s^1}$ in H_s^1 , denoted by $F'_a = (a, e'_0, b_0, \ldots, e'_q, b_q)$, such that $(\varphi_1)_{H_s^1}(e'_j) \in (\overline{\varphi}_1)_{H_s^1}(b_{l-1})$ for $j \in [q]$ and some $l \in [j]$. By the assumption (1) and Lemma 3.2 (b), we have $\mu_{F_a}(a, b') =$ $\mu_{H_s^1+e_{ab}}(a, b') = \mu$ for any vertex b' in $V(F_a) \setminus \{a\}$. Therefore, $V(F'_a) \setminus \{a\}$ and $V(F_a) \setminus \{a\}$ are vertex-disjoint, since otherwise we have $V(F'_a) \subseteq V(F_a)$ and $(\varphi_1)_{H_s^1}(e'_0) = \theta \in (\overline{\varphi}_1)_{H_s^1}(b')$ for some $b' \in V(F_a)$ implying $y^* = b' \in V(F_a)$, which contradicts the assumption (1). Note that $V(F'_a) \setminus \{a\}$ must contain a Δ -vertex in H^1_s , since otherwise Lemma 3.2 (d) and the fact $(\varphi_1)_{H^1_s}(e'_0) = \theta \in \overline{\varphi}_1(y^*)$ imply that $y^* \in V(F'_a)$, which contradicts $d_{H^1_s}(y^*) = \Delta$. Moreover, if F'_a does not contain any linear sequence to a Δ -vertex in H^1_s without *i*-edges, then by Lemma 3.2 (d) the multi-fan F'_a contains a vertex w^* with $i \in (\overline{\varphi}_1)_{H^1_s}(w^*)$ and $d_{H^1_s}(w^*) = \Delta - 1$, so w^* is not incident with any edge in $M \cup M^*_1$. Thus F'_a contains a linear sequence $S' = (a, e'_{l_1}, b_{l_1}, \ldots, e'_{l_t}, b_{l_t})$, where $e'_{l_1} = e'_0, b_{l_1} = b_0, b_{l_t}$ is w^* if there exists a vertex $w^* \in V(F'_a)$ with $d_{H^1_s}(w) = \Delta - 1$ such that w^* is incident with a boundary *i*-edge $h^* \in \partial(H^1_s)$ but $h^* \notin M^A_{\varphi_0}(f_1)$, and b_{l_t} is a Δ -vertex in H^1_s otherwise. Notice that b_{l_t} is not incident with any edge in $M \cup M^*_1$ by our choice of b_{l_t} . Moreover, if $b_{l_t} = w^*$ as defined above, then $b_{l_t} = w^*$ is not a vertex in $V(F_b)$ by the condition of Subcase 3.3. And $b_{l_t} \neq y$ since $V(F'_a) \setminus \{a\}$ and $V(F_a) \setminus \{a\}$ are vertex-disjoint. Let β ($\beta \neq i$) be a color in $\overline{\varphi}_1(b)$. By Lemma 3.1 (b), we have $P_b(\beta, \theta) = P_{y^*}(\beta, \theta)$. We then consider the following two subcases according to the set $(V(S') \setminus \{a\}) \cap (V(S^*) \setminus \{a\})$.

We first assume that $(V(S') \setminus \{a\}) \cap (V(S^*) \setminus \{a\})$ is either $\{b_{l_t}\}$ or \emptyset . If $e'_0 \notin P_b(\beta, \theta)$, then we do Kempe changes on $P_{[b,y^*]}(\beta, \theta)$, uncolor e'_0 and color e_{ab} with θ . If $e'_0 \in P_b(\beta, \theta)$ and $P_b(\beta, \theta)$ meets b_0 before a, then we do Kempe changes on $P_{[b,b_0]}(\beta, \theta)$, uncolor e'_0 and color e_{ab} with θ . If $e'_0 \in P_b(\beta, \theta)$ and $P_{y^*}(\beta, \theta)$ meets b_0 before a, then we uncolor e'_0 , do Kempe changes on $P_{[y^*,b_0]}(\beta, \theta)$, do a shifting in S^* from a to y^* and recolor e_{by^*} with β . In all three cases above, the edge e_{ab} is colored with a color in [k] and e'_0 is uncolored. Then we do a shifting in S' from b_0 to b_{l_t} which gives a color in [k] to e'_0 , and uncolor e'_{l_t} , and permute color classes of $E(H_s^1 + e_{ab} - e'_{l_t})$ but keep the color i unchanged to match all the boundary edges except i-edges by Lemma 2.4. Finally recolor h^* with the color $\Delta + \mu$ if w^* is incident with a boundary i-edge $h^* \in \partial(H_s) \cap M^{A}_{\varphi_0}(f_1)$. Now we obtain a new matching $M_2^* = (M_1^* \setminus \{e_{ab}\}) \cup \{e'_{l_t}\} \subseteq G - V(M)$ and a new proper (k+1)-edge-coloring φ_2 of $G - (M \cup M_2^*)$ such that f_{uv} is no longer a second-improper edge (but becomes a firstimproper edge) with respect to the new prefeasible triple $(M_2^*, \overline{M}^{\Delta+\mu}_{\varphi_2}, \varphi_2)$, where $\overline{M}^{\Delta+\mu}_{\varphi_2} = \emptyset$ or $\{h\}$ or $\{h^*\}$. Moreover, $\overline{M}^{\Delta+\mu}_{\varphi_2} \subseteq M^{A}_{\varphi_0}(f_1), B_{\varphi_2} = B_{\varphi_0} - 2$ and $A_{\varphi_2} = A_{\varphi_0} + 2$.

Then we assume that there exists $b_{l_i} = a_j \in (V(S') \setminus \{a\}) \cap (V(S^*) \setminus \{a\})$ for some $i \in [t-1]$. In this case we assume a_j is the closest vertex to a along S^* . Note that $b_{l_i} \neq b$ as $V(F'_a) \setminus \{a\}$ and $V(F_a) \setminus \{a\}$ are vertex-disjoint. Let $\theta_i = (\varphi_1)_{H_s^1}(e'_{l_{i+1}}) \in (\overline{\varphi}_1)_{H_s^1}(b_{l_i})$. By Lemma 3.1 (b), $P_b(\beta, \theta_i) = P_{b_{l_i}}(\beta, \theta_i)$. If $e'_{l_{i+1}} \notin P_b(\beta, \theta_i)$, then we do Kempe changes on $P_{[b,b_{l_i}]}(\beta, \theta_i)$, uncolor $e'_{l_{i+1}}$ and color e_{ab} with θ_i . If $e'_{l_{i+1}} \in P_b(\beta, \theta_i)$ and $P_b(\beta, \theta_i)$ meets $b_{l_{i+1}}$ before a, then we do Kempe changes on $P_{[b,b_{l_i+1}]}(\beta, \theta_i)$, uncolor $e'_{l_{i+1}}$ and color e_{ab} with θ_i . If $e'_{l_{i+1}} \in P_b(\beta, \theta_i)$ and $P_{b_l_i}(\beta, \theta_i)$ meets $b_{l_{i+1}} \in P_b(\beta, \theta_i)$ and $P_{b_{l_i}}(\beta, \theta_i)$ meets $b_{l_{i+1}} \in P_b(\beta, \theta_i)$, uncolor $e'_{l_{i+1}}$ and color e_{ab} with θ_i . If $e'_{l_{i+1}} \in P_b(\beta, \theta_i)$, θ_i , θ_i , θ_i and recolor $e'_{l_{i+1}}$ do Kempe changes on $P_{[b_{l_i}, b_{l_i+1}]}(\beta, \theta_i)$, θ_i , θ_i , θ_i , θ_i , θ_i and recolor the edge $e_{l_i} = e_{bb_{l_i}} \in E_{H_s^1}(b, b_{l_i})$ with β . In all three cases above, the edge e_{ab} is colored with a color in [k] and $e'_{l_{i+1}}$ is uncolored. Then we do a shifting in S' from $b_{l_{i+1}}$ to b_{l_i} which gives a color in [k] to $e'_{l_{i+1}}$, and uncolor the edge e'_{l_i} , and permute color classes of $E(H_s^1 + e_{ab} - e'_{l_i})$ but keep the color i unchanged to match all the boundary edges except i-edges by Lemma 2.4. Finally recolor h^* with $\Delta + \mu$ if w^* is incident with a boundary i-edge $h^* \in \partial(H_s) \cap M^A_{\varphi_0}(f_1)$. Now we obtain a new matching $M_2^* = (M_1^* \setminus \{e_{ab}\}) \cup \{e'_{l_t}\} \subseteq G - V(M)$ and a new proper (k+1)-edge-coloring φ_2 of $G - (M \cup M_2^*)$ such that f_{uv} is no longer a second-improper edge (but becomes a firstimproper edge) with respect to the new prefeasible triple $(M_2^*, \bar{M}_{\varphi_2}^{\Delta+\mu}, \varphi_2)$, where $\bar{M}_{\varphi_2}^{\Delta+\mu} = \emptyset$ or $\{h\}$ or $\{h^*\}$. Moreover, $\bar{M}_{\varphi_2}^{\Delta+\mu} \subseteq M_{\varphi_0}^A(f_1)$, $B_{\varphi_2} = B_{\varphi_0} - 2$ and $A_{\varphi_2} = A_{\varphi_0} + 2$.

In all above Cases 1-3, the second-improper edge f_{uv} in M is no longer a second-improper edge with respect to one new prefeasible triple, say $(M^{*'}, \bar{M}_{\varphi'}^{\Delta+\mu}, \varphi')$ uniformly. Observe that all our operations in Cases 1-3 are inside $G[V(H_s)]$ and $G[V(H'_s)]$, and on at most two possible edges respectively in $\partial(H_s) \cap M_{\varphi_0}^A(f_1)$ and $\partial(H_{s'}) \cap M_{\varphi_0}^A(f_1)$. Recall that $M_{\varphi_0}^A(f_1)$ is a matching and all maximal k-dense subgraphs H_1, H_2, \ldots, H_t are vertex-disjoint. Thus all other maximal k-dense subgraphs of $G - (M \cup M_0^*)$ distinct with H_s and $H_{s'}$ are also maximal k-dense subgraphs of $G - (M \cup M^{*'})$. For any other edges in M_0^* is still fully saturated with respect to the corresponding maximal k-dense subgraphs distinct with H_s and $H_{s'}$. Recall that M is a distance-3 matching, and each maximal k-dense subgraph of H_1, H_2, \ldots, H_t has diameter at most 2. Thus for all other second-improper edges distinct with f_{uv} in M, we can do the same operations as we did for f_{uv} in Cases 1-3 such that the number of second-improper edges becomes zero with respect to one new prefeasible triple, say $(M^{*''}, \bar{M}_{\varphi''}^{\Delta+\mu}, \varphi'')$. By operations in Cases 1-3 we have $\bar{M}_{\varphi_0}^{\Delta+\mu} \subseteq (M_{\varphi_0}^A(f_1) \cup M_{\varphi_0}^B(f_1))$, Then by giving the color $\Delta + \mu$ to all edges in $M_{\varphi''}^A(f_1) = (M_{\varphi_0}^A(f_1) \cup M_{\varphi_0}^B(f_1)) \setminus \bar{M}_{\varphi''}^{\Delta+\mu}$, the number of first-improper edges also becomes zero, and we get the final feasible triple $(M^*, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi)$, where $\bar{M}_{\varphi}^{\Delta+\mu} = M_{\varphi_0}^A(f_1) \cup M_{\varphi_0}^B(f_1)$. The proof is now finished. \Box

References

- M.O. Albertson, You can't paint yourself into a corner, J. Combin. Theory Ser. B, 73:189–194, 1998.
- [2] M.O. Albertson and E.H. Moore, Extending graph colorings using no extra colors, *Discrete Math.*, 234:125–132, 2001.
- [3] L.D. Andersen, On edge-colourings of graphs, Math. Scand., 40:161–175, 1977.
- [4] M. Behzad, Graphs and their chromatics numbers, ProQuest LLC, Ann Arbor, MI, 1965. Dissertation (Ph.D.)-Michigan State University.
- [5] L.W. Beineke and R.J. Wilson, editor, Topics in chromatic graph theory, volume 156 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2015, Academic consultant: Bjarne Toft.
- [6] C. Berge and J. C. Fournier, A short proof for a generalization of Vizing's theorem, Discrete Math., 15(3):333–336, 1991.

- [7] G. Chen, G. Jing and W. Zang, Proof of the Goldberg-Seymour Conjecture on edgecolorings of multigraphs. Submitted.
- [8] K. Edwards, A. Girão, J. Heuvel, R.J. Kang, G.J. Puleo and J. Sereni, Extension from precoloured sets of edges, *Electron. J. Combin.*, 25:P3.1, 2018.
- [9] A. Girão and R.J. Kang, A precolouring extension of Vizing's theorem, J. Graph Theory, 1-6, 2019.
- [10] M.K. Goldberg, On multigraphs of almost maximal chromatic class (in Russian), Diskret. Analiz, 23:3–7, 1973.
- [11] M.K. Goldberg, A remark on the chromatic class of a multigraph (in Russian), Vycisl. Mat. i. Vycisl. Tehn. (Kharkow), 5:128–130, 1974.
- [12] M.K. Goldberg, Edge-coloring of multigraphs:recolring technique, J. Graph Theory, 8(1)123–137, 1984.
- [13] R.G. Gupta, Studies in the Theory of Graphs, PhD dissertation, Tata Institute of Fundamental Research, Bombay, 1967.
- [14] P.D. Seymour, On Multi-Colourings of Cubic Graphs, and Conjectures of Fulkerson and Tutte, Proc. London Math. Soc., 38:423–460, 1979.
- [15] M. Stiebitz, D. Scheide, B. Toft and L.M. Favrholdt, Graph edge coloring, Wiley Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, 2012. Vizing's theorem and Goldberg's conjecture, With a preface by Stiebitz and Toft.
- [16] C. Thomassen, Color-critical graphs on a fixed surface, J. Combin. Theory Ser. B, 70:67–100, 1997.
- [17] V.G. Vizing, Critical graphs with given chromatic class, *Diskret. Analiz*, 3:29–39, 1965.
- [18] V.G. Vizing, Some unsolved problems in graph theory, Uspehi Mat. Nauk, 23:117–134, 1968.