Precoloring extension of Vizing's Theorem for multigraphs

Yan Cao *, Guantao Chen ${ }^{\dagger}$, Guangming Jing ${ }^{\ddagger}$, Xuli Qi ${ }^{\S}$, Songling Shan ${ }^{\text {§ }}$

Abstract

Let G be a graph with maximum degree $\Delta(G)$ and maximum multiplicity $\mu(G)$. Vizing and Gupta, independently, proved in the 1960s that the chromatic index of G is at most $\Delta(G)+\mu(G)$. The distance between two edges in G is the number of edges contained in a shortest path in G between any of their endvertices. A distance- t matching is a set of edges having pairwise distance at least t. Edwards et al. proposed a conjecture: For any graph G, using the palette $\{1, \ldots, \Delta(G)+\mu(G)\}$, any precolored distance-2 matching can be extended to a proper edge coloring of G. Girão and Kang verified this conjecture for distance-9 matchings. In this paper, we improve the required distance from 9 to 3 for multigraphs G with $\mu(G) \geq 2$.

Keywords: Edge coloring; Precoloring extension; Vizing's Theorem; Dense subgraph; Multi-fan

1 Introduction

In this paper, we generally follow the book [15] of Stiebitz et al. for notation and terminology. Graphs in this paper are finite, undirected, and without loops, but may have multiple edges.

[^0]Let $G=(V(G), E(G))$ be a graph, where $V(G)$ and $E(G)$ are respectively the vertex set and the edge set of the graph G. Let $\Delta(G)$ and $\mu(G)$ be respectively maximum degree and maximum multiplicity of graph G. Let $[k]:=\{1, \ldots, k\}$ be a palette of k available colors. A k-edge-coloring of G is a map φ that assigns to every edge e of G a color from the palette [k] such that no two adjacent edges receive the same color (the edge coloring is also called proper). Denote by $\mathcal{C}^{k}(G)$ the set of all k-edge-colorings of G. The chromatic index $\chi^{\prime}(G)$ is the least integer k such that $\mathcal{C}^{k}(G) \neq \emptyset$.

In the 1960s, Vizing [17] and, independently, Gupta [13] proved that $\Delta(G) \leq \chi^{\prime}(G) \leq$ $\Delta(G)+\mu(G)$ which is always called Vizing's Theorem. Using the palette $[\Delta(G)+\mu(G)]$, when can we extend a precolored edge set $F \subseteq E(G)$ to a proper edge coloring of G ? To address this natural generalization of Vizing's Theorem, we consider edge set F such that its edges are far apart from each other. The distance between two edges in G is the number of edges contained in a shortest path in G between any of their endvertices. A distance- t matching is a set of edges having pairwise distance at least t. Following this definition, a matching is a distance-1 matching and an induced matching is a distance- 2 matching.

Albertson and Moore [2] conjectured that if G is a simple graph, using the palette $[\Delta(G)+$ 1], any precolored distance-3 matching can be extended to a proper edge coloring of G. Edwards et al. [8] proposed a stronger conjecture: For any graph G, using the palette $[\Delta(G)+$ $\mu(G)]$, any precolored distance-2 matching can be extended to a proper edge coloring of G. Girão and Kang [9] verified this conjecture for distance-9 matchings. In this paper, we improve the required distance from 9 to 3 for multigraphs with maximum multiplicity at least 2 as below.

Theorem 1.1. Let G be a multigraph with maximum degree $\Delta(G)$ and maximum multiplicity $\mu(G)$, and let M be a subset of $E(G)$ such that the minimum distance between two edges of M is at least 3 . If $\mu(G) \geq 2$ and M is arbitrarily precolored from the palette $\mathcal{K}=[\Delta(G)+\mu(G)]$, then there is a proper edge coloring of G using colors from \mathcal{K} that agrees with the precoloring on M.

The density of a graph G, denoted by $\omega(G)$, is defined as

$$
\omega(G)=\max \left\{\frac{2|E(H)|}{|V(H)|-1}: H \subseteq G,|V(H)| \geq 3 \text { and }|V(H)| \text { is odd }\right\}
$$

if $|V(G)| \geq 3$ and $\omega(G)=0$ otherwise. By counting the number of edges in color classes, we have $\chi^{\prime}(G) \geq\lceil\omega(G)\rceil$. So, besides the maximum degree, the density provides another lower bound for the chromatic index of a graph. In the 1970s, Goldberg [10] and Seymour [14] independently conjectured that actuarally $\chi^{\prime}(G)=\lceil\omega(G)\rceil$ provided $\chi^{\prime}(G) \geq \Delta(G)+2$. The conjecture was commonly referred to as one of most challenging problems in graph chromatic theory [15], and it was confirmed recently by Chen et al. [7].

Our proof of Theorem 1.1 is based on the assumption of the above Goldberg-Seymour Conjecture. We will present the proof of Theorem 1.1 in Section 4, before which we need some new structural properties of dense subgraphs and multi-fans, and some generalizations of Vizing's Theorem introduced in Sections 2 and 3.

2 Dense subgraphs

Throughout the rest of this paper, we reserve the notation Δ and μ for maximum degree and maximum multiplicity of the graph G, respectively. For a vertex set $N \subseteq V(G)$, let $G-N$ be the graph obtained from G by deleting all the vertices in N and edges incident with them. For an edge set $F \subseteq E(G)$, let $G-F$ be the graph obtained from G by deleting all the edges in F but keeping their endvertices. If $F=\{e\}$, we simply write $G-e$. Similarly, we let $G+e$ be the graph obtained from G by adding the edge e to $E(G)$. For disjoint $X, Y \subseteq V(G), E_{G}(X, Y)$ is the set of edges of G with one endvertex in X and the other in Y. If $X=\{x\}$ and $Y=\{y\}$, we simply write $E_{G}(x, y)$. For two disjoint subgraphs H_{1} and H_{2} of G, we simply write $E\left(H_{1}, H_{2}\right)$ for $E_{G}\left(V\left(H_{1}\right), V\left(H_{2}\right)\right)$. For $X \subseteq V(G)$, the edge set $\partial_{G}(X)=E_{G}(X, V(G) \backslash X)$ is called the boundary of X in G. For a subgraph H of G, we simply write $\partial(H)$ for $\partial_{G}(V(H))$.

For $u \in V(G)$, let $d_{G}(u)$ denote the degree of u in G. A k-vertex in G is a vertex with degree exactly k in G. A k-neighbor of a vertex v in G is a neighbor of v that is a k-vertex in G. A α-edge is an edge colored with the color α. For $e \in E(G), V(e)$ is the set of endvertices of e. The diameter of a graph G, denoted by $\operatorname{diam}(G)$, is the greatest distance between any pair of vertices in $V(G)$.

An edge e of a graph G is called a k-critical edge if $k=\chi^{\prime}(G-e)<\chi^{\prime}(G)=k+1$. A graph G is called k-critical if $\chi^{\prime}(H)<\chi^{\prime}(G)=k+1$ for each proper subgraph H of G. It is easy to see that a connected graph G is critical if and only if every edge of G is critical.

For a graph G, a vertex $v \in V(G)$ and an edge coloring $\varphi \in \mathcal{C}^{k}(G)$ with some positive integer k, define the two color sets $\varphi(v)=\{\varphi(f): f \in E(G)$ and f is incident with $v\}$ and $\bar{\varphi}(v)=[k] \backslash \varphi(v)$. We call $\varphi(v)$ the set of colors present at v and $\bar{\varphi}(v)$ the set of colors missing at v. For a vertex set $X \subseteq V(G)$, define $\bar{\varphi}(X)=\bigcup_{v \in X} \bar{\varphi}(v)$. A vertex set $X \subseteq V(G)$ is called φ-elementary if $\bar{\varphi}(u) \cap \bar{\varphi}(v)=\emptyset$ for every two distinct vertices $u, v \in X$. The set X is called φ-closed if each color on boundary edges is present at each vertex of X. Moreover, the set X is called strongly φ-closed if X is φ-closed and colors on boundary edges are distinct, i.e., $\varphi(f) \neq \varphi\left(f^{\prime}\right)$ for every two distinct colored edges $f, f^{\prime} \in \partial_{G}(X)$. For a subgraph H of G, let φ_{H} be the edge coloring of G restricted on H. We say a subgraph H of G is φ elementary, φ-closed and strongly φ-closed, if $V(H)$ is φ-elementary, φ-closed and strongly φ-closed, respectively. Clearly, if $V(H)$ is φ_{H}-elementary then $V(H)$ is φ-elementary, and
the converse is not true.
A subgraph H of G is k-dense if $|V(H)|$ is odd and $|E(H)|=(|V(H)|-1) k / 2$. Moreover, H is a maximal k-dense subgraph if there does not exist a k-dense subgraph H^{\prime} containing H as a proper subgraph. By counting edges, we see that if H is a k-dense subgraph then $\chi^{\prime}(H) \geq k$. Moreover, if $\chi^{\prime}(G)=k$, then $\chi^{\prime}(H)=k$ and for every $\varphi \in \mathcal{C}^{k}(G)$, every k-dense subgraph H of G is both φ_{H}-elementary and strongly φ-closed.

We start with the following consequent of the Goldberg-Seymour Conjecture.
Lemma 2.1. Let G be a multigraph and $e \in E(G)$. If e is k-critical and $k \geq \Delta(G)+1$, then $G-e$ has a k-dense subgraph H containing $V(e)$, and e is also a k-critical edge of $H+e$.

Proof. Clearly, $\chi^{\prime}(G)=k+1$ and $\chi^{\prime}(G-e)=k$. By the assumption of the GoldbergSeymour Conjecture, $\chi^{\prime}(G)=\lceil\omega(G)\rceil=k+1$. So, there exists a subgraph H^{*} of odd order such that $\left|E\left(H^{*}\right)\right|>\left(\left|V\left(H^{*}\right)\right|-1\right) k / 2$. On the other hand, we have $\frac{2\left|E\left(H^{*}-e\right)\right|}{\left|V\left(H^{*}-e\right)\right|-1} \leq$ $\left\lceil\omega\left(H^{*}-e\right)\right\rceil \leq \chi^{\prime}\left(H^{*}-e\right) \leq \chi^{\prime}(G-e)=k$, which in turn gives $\left|E\left(H^{*}-e\right)\right| \leq\left(\left|V\left(H^{*}\right)\right|-1\right) k / 2$. Thus $\left|E\left(H^{*}-e\right)\right|=\left(\left|V\left(H^{*}\right)\right|-1\right) k / 2$. Then $k \leq\left\lceil\omega\left(H^{*}-e\right)\right\rceil \leq \chi^{\prime}\left(H^{*}-e\right) \leq \chi^{\prime}(G-e)=k$ and $k+1 \leq\left\lceil\omega\left(H^{*}\right)\right\rceil \leq \chi^{\prime}\left(H^{*}\right) \leq \chi^{\prime}(G)=k+1$, which implies that $k=\chi^{\prime}\left(H^{*}-e\right)<$ $\chi^{\prime}\left(H^{*}\right)=k+1$. Thus $H=H^{*}-e$ is a k-dense subgraph containing $V(e)$, and e is also a k-critical edge of $H+e$.

Lemma 2.2. Given a graph G, if $\chi^{\prime}(G) \geq \Delta(G)+1$, then maximal $\chi^{\prime}(G)$-dense subgraphs are pairwise vertex-disjoint.

Proof. Let $k=\chi^{\prime}(G)$ and suppose on the contrary that there are two maximal k-dense subgraphs H_{1} and H_{2} with nonempty intersection. Let $H=H_{1} \cap H_{2}$ and $H^{*}=H_{1} \cup H_{2}$. For each $i=1,2$, since $\left|E\left(H_{i}\right)\right|=\left(\left|V\left(H_{i}\right)\right|-1\right) k / 2$, adding any edge to H_{i} will result a graph with chromatic index greater than k, and so $H_{i}=G\left[V\left(H_{i}\right)\right]$ is an induced subgraph of G. Since both H_{1} and H_{2} are maximal and distinct, we have $V\left(H_{1}\right) \backslash V\left(H_{2}\right) \neq \emptyset$ and $V\left(H_{2}\right) \backslash V\left(H_{1}\right) \neq \emptyset$, which in turn gives $H_{1} \subsetneq H^{*}$ and $H_{2} \subsetneq H^{*}$. We consider two cases according to the parity of $|V(H)|$.

Case 1: $|V(H)|$ is odd.
Since $E\left(H^{*}\right)=E\left(H_{1}\right) \cup E\left(H_{2}\right)$ and $E(H)=E\left(H_{1}\right) \cap E\left(H_{2}\right)$, we have

$$
\begin{equation*}
\left|E\left(H^{*}\right)\right|=\left|E\left(H_{1}\right)\right|+\left|E\left(H_{2}\right)\right|-|E(H)|=k\left(\left|V\left(H_{1}\right)\right|+\left|V\left(H_{2}\right)\right|-2\right) / 2-|E(H)| . \tag{1}
\end{equation*}
$$

On the other hand, since both H_{1} and H_{2} are maximal k-dense, H^{*} is not k-dense. Consequently, we have

$$
\begin{equation*}
\left|E\left(H^{*}\right)\right|<k\left(\left|V\left(H^{*}\right)\right|-1\right) / 2=k\left(\left|V\left(H_{1}\right)\right|+\left|V\left(H_{2}\right)\right|-|V(H)|-1\right) / 2 \tag{2}
\end{equation*}
$$

The combination of (1) and (2) gives $|E(H)|>k(|V(H)|-1) / 2$. Consequently, we have $\chi^{\prime}(G) \geq \chi^{\prime}(H)>k$, giving a contradiction.

Case 2: $|V(H)|$ is even.
Let $H_{1}^{*}=H_{1}-V(H)$ and $H_{2}^{*}=H_{2}-V(H)$. Clearly, both H_{1}^{*} and H_{2}^{*} have odd number of vertices. Since both H_{1}^{*} and H_{2}^{*} have k-edge-colorings, the following two inequalities hold.

$$
\begin{align*}
& \left|E\left(H_{1}^{*}\right)\right| \leq k\left(\left|V\left(H_{1}\right)\right|-|V(H)|-1\right) / 2, \tag{3}\\
& \left|E\left(H_{1}^{*}\right)\right| \leq k\left(\left|V\left(H_{2}\right)\right|-|V(H)|-1\right) / 2 .
\end{align*}
$$

Since both H_{1} and H_{2} are k-dense, we have the following inequalities.

$$
\begin{align*}
& k\left(\left|V\left(H_{1}\right)\right|-1\right) / 2=\left|E\left(H_{1}\right)\right|=|E(H)|+\left|E\left(H_{1}^{*}\right)\right|+\left|E\left(H_{1}^{*}, H\right)\right|, \tag{4}\\
& k\left(\left|V\left(H_{2}\right)\right|-1\right) / 2=\left|E\left(H_{2}\right)\right|=|E(H)|+\left|E\left(H_{2}^{*}\right)\right|+\left|E\left(H_{2}^{*}, H\right)\right| .
\end{align*}
$$

The combination of (3) and (4) gives

$$
\begin{aligned}
\left|E\left(H_{1}^{*}, H\right)\right|+|E(H)| & \geq k \cdot|V(H)| / 2, \\
\left|E\left(H_{2}^{*}, H\right)\right|+|E(H)| & \geq k \cdot|V(H)| / 2 .
\end{aligned}
$$

Therefore, $\Delta(G) \cdot|V(H)| \geq \sum_{x \in V(H)} d_{G}(x) \geq\left|E\left(H_{1}^{*}, H\right)\right|+\left|E\left(H_{2}^{*}, H\right)\right|+2|E(H)| \geq$ $k|V(H)|$, contradicting the assumption $\Delta(G)<k$.

Lemma 2.3. Let G be a multigraph with $\chi^{\prime}(G)=k+1 \geq \Delta(G)+2$ and e be a k-critical edge of G. We have the following statements.
(a) $G-e$ has a unique maximal k-dense subgraph H containing $V(e)$, and e is also a k-critical edge of $H+e$;
(b) With respect to any coloring $\varphi \in \mathcal{C}^{k}(G-e), H$ is φ_{H}-elementary and strongly φ-closed;
(c) If $\chi^{\prime}(G)=\Delta(G)+\mu(G)$, then $\Delta(H+e)=\Delta(G), \mu(H+e)=\mu(G)$ and $\operatorname{diam}(H+e) \leq$ $\operatorname{diam}(H) \leq 2$.

Proof. By Lemma 2.1, $G-e$ contains a k-dense subgraph H containing $V(e)$ and e is also a k-critical edge of $H+e$. We may assume that H is a maximal k-dense subgraph, and the uniqueness of H is a direct consequence of Lemma 2.2. This proves (a).

Since H is k-dense, by the definition, $|E(H)|=\frac{|V(H)|-1}{2} k$. Also since H has an odd order, the size of a maximum matching in H has size at most $(|V(H)|-1) / 2$. Therefore, under
any k-edge-coloring φ, each color class in H is a matching of size exactly $(|V(H)|-1) / 2$. Thus every color in $[k]$ is missing at exactly one vertex of H or it appears exactly once in $\partial(H)$. Consequently, $V(H)$ is φ_{H}-elementary and strongly φ-closed. This proves (b).

For (c), by (a) and Vizing's Theorem, $\Delta(G)+\mu(G)=\chi^{\prime}(G)=\chi^{\prime}(H+e) \leq \Delta(H+e)+$ $\mu(H+e) \leq \Delta(G)+\mu(G)$ implying that $\Delta(H+e)=\Delta(G)=\Delta$ and $\mu(H+e)=\mu(G)=\mu$. For any coloring $\varphi \in \mathcal{C}^{k}(G-e), H$ is φ_{H}-elementary by (b). For any $x \in V(H)$, all the colors missing at other vertices present at x. Note that $k=\Delta+\mu-1$. For each vertex $v \in V(H)$, we have that $\left|\bar{\varphi}_{H}(v)\right|=k-d_{H}(v) \geq k-\Delta=\mu-1$ if $v \notin V(e)$, and $\left|\bar{\varphi}_{H}(v)\right|=k-d_{H}(v)+1 \geq k-\Delta+1 \geq(\mu-1)+1$ if $v \in V(e)$. Denote $|V(H)|$ by n. Thus, $d_{H}(x) \geq\left|\bigcup_{y \in V(H), y \neq x} \bar{\varphi}_{H}(y)\right| \geq(k-\Delta)(n-1)+1=(\mu-1)(n-1)+1$.

Since $\mu(H) \leq \mu(G)=\mu$, we get $\left|N_{H}(x)\right| \geq \frac{d_{H}(x)}{\mu} \geq \frac{(\mu-1)(n-1)+1}{\mu}$, where $N_{H}(x)$ is the neighbor set of x in H. Since $\mu \geq 2$, we have $\frac{(\mu-1)(n-1)+1}{\mu} \geq \frac{n}{2}$. Hence, every vertex in H is adjacent to at least half vertices in H. Consequently, every two vertices of H share a common neighbor, which in turn gives $\operatorname{diam}(H) \leq 2$. This proves (c).

For a subgraph H of a graph G, let G / H be the graph obtained from G by contracting $V(H)$ to a single vertex. The following technical lemma will be used several times in our proof.

Lemma 2.4. Let G be a graph with $\chi^{\prime}(G)=k \geq \Delta(G)$, H be a k-dense subgraph, and ψ and φ be k-edge-colorings of H and G / H with the same palette $[k]$, respectively. By permuting color classes of ψ on $E(H)$, we can obtain a k-edge-coloring π of G such that $\pi(f)=\varphi(f)$ for every edge in G / H. If $\chi^{\prime}(G)=k \geq \Delta(G)+1$, for any fixed color $\alpha \in[k]$, then by permuting other color classes of ψ on $E(H)$ we can obtain a coloring π of G agreeing with φ such that all color classes are matchings except the edges with color α.

Proof. We treat φ as a k-edge-coloring of $G-E(H)$. Then, edges in $\partial(H)$ have different colors. Since H is k-dense and $\chi^{\prime}(G)=k, H$ is ψ-elementary. For each $v \in V(H)$, we have $|\bar{\psi}(v)|=k-d_{H}(v) \geq \Delta(G)-d_{H}(v) \geq d_{G-E(H)}(v)=|\varphi(v)|$. So, by permuting color classes of ψ, we may assume that $\varphi(v) \subseteq \bar{\psi}(v)$ for each $v \in V(H)$. The combination of the modified coloring of ψ and φ gives π.

For the second part, under the condition $k \geq \Delta(G)+1$, we have $|\bar{\psi}(v)|=k-d_{H}(v) \geq$ $\Delta(G)+1-d_{H}(v) \geq d_{G-E(H)}(v)+1=|\varphi(v)|+1$. So $|\bar{\psi}(v) \backslash\{\alpha\}| \geq|\varphi(v) \backslash\{\alpha\}|$. Notice that when $\alpha \in \bar{\psi}(v) \cap \bar{\varphi}(v)$, we need $|\bar{\psi}(v)|-1 \geq|\varphi(v)|$ to ensure the inequality above, where the assumption $k \geq \Delta(G)+1$ is applied. By permuting color classes of H except α, we may assume that $\varphi(v) \backslash\{\alpha\} \subseteq \bar{\psi}(v)$ for each $v \in V(H)$. Again, the combination of the modified coloring of ψ and φ gives the desired coloring.

3 Refinements of multi-fans and some consequences

We first recall Kempe-chains and related terminology. Let φ be a k-edge-coloring of G using the palette $[k]$. Given two distinct colors α, β, an (α, β)-chain is a component of the subgraph induced by edges assigned color α or β in G, which is either an even cycle or a path. We call the operation that swaps the colors α and β on an (α, β)-chain the Kempe change. Clearly, the resulting coloring after a Kempe change is still a proper k-edge-coloring. Furthermore, we say that a chain has endvertices u and v if the chain is a path joining vertices u and v. For a vertex $v \in G$, we denote by $P_{v}(\alpha, \beta)$ the unique (α, β)-chain containing the vertex v. For two vertices $u, v \in V(G)$, the two chains $P_{u}(\alpha, \beta)$ and $P_{v}(\alpha, \beta)$ are either identical or disjoint. More generally, let $P_{[a, b]}(\alpha, \beta)$ be a subchain of a (α, β)-chain with endvertices a and b. The operation of swapping colors α and β on the subchain P is still called a Kempe change, but the resulting coloring may no longer be a proper edge coloring.

Let G be a graph with an edge $e \in E_{G}(x, y)$, and φ be a proper edge coloring of G or $G-e$. A sequence $F=\left(x, e_{0}, y_{0}, e_{1}, y_{1}, \ldots, e_{p}, y_{p}\right)$ consisting of vertices and distinct edges is called a (general) multi-fan at x with respect to e and φ if $e_{0}=e, y_{0}=y$, and for $0 \leq i \leq p$, the edge $e_{i} \in E_{G}\left(x, y_{i}\right)$ and $\varphi\left(e_{i}\right) \in \bar{\varphi}\left(y_{j}\right)$ for some $0 \leq j \leq i-1$. Notice that the definition of multi-fan in this paper is slightly general than the one in [15] since the edge e may be colored in G. We say a multi-fan F is maximal if there is no multi-fan containing F as a proper subsequence. Similarly, we say a multi-fan F is maximal without any α-edge if F does not contain any α-edge and there is no multi-fan without any α-edge containing F as a proper subsequence. Let $\mu_{G}(x, y)=\left|E_{G}(x, y)\right|$ for $x, y \in V(G)$. Note that a multi-fan may have repeated vertices, so by $\mu_{F}\left(x, y_{i}\right)$ for some $y_{i} \in V(F)$ we mean the number of edges joining x and y_{i} in F.

A linear sequence at x from y_{0} to y_{s} in G, denoted by $S=\left(x, e_{0}, y_{0}, e_{1}, y_{1}, \ldots, e_{s}, y_{s}\right)$, is a sequence consisting of distinct vertices and distinct edges such that $e_{i} \in E_{G}\left(x, y_{i}\right)$ for $0 \leq i \leq s$ and $\varphi\left(e_{i}\right) \in \bar{\varphi}\left(y_{i-1}\right)$ for $i \in[s]$. Clearly for any $y_{i} \in V(F)$, the multi-fan F contains a linear sequence at x from y_{0} to y_{i}. The following local edge recoloring operation will be used in our proof. A shifting from y_{i} to y_{j} in the linear sequence $S=\left(x, e_{0}, y_{0}, e_{1}, y_{1}, \ldots, e_{s}, y_{s}\right)$ is an operation that replaces the current color of e_{t} by the color of e_{t+1} for each $i \leq t \leq j-1$ with $0 \leq i<j \leq s$. Note that the shifting does not change the color of e_{j} where e_{j} joins x and y_{j}, so it will not be a proper coloring. In our proof we will uncolor or recolor the edge e_{j} to avoid this problem.

Lemma 3.1. $[3,11,15]$ Let G be a graph, $e \in E_{G}(x, y)$ be a k-critical edge and $\varphi \in \mathcal{C}^{k}(G-e)$ with $k \geq \Delta(G)$. And let $F=\left(x, e, y_{0}, e_{1}, y_{1}, \ldots, e_{p}, y_{p}\right)$ be a multi-fan at x with respect to e and φ, where $y_{0}=y$. Then the following statements hold.
(a) $V(F)$ is φ-elementary, and each edge in $E(F)$ is a k-critical edge of G.
(b) If $\alpha \in \bar{\varphi}(x)$ and $\beta \in \bar{\varphi}\left(y_{i}\right)$ for $0 \leq i \leq p$, then $P_{x}(\alpha, \beta)=P_{y_{i}}(\alpha, \beta)$.
(c) If F is a maximal multi-fan at x with respect to e and φ, then x is adjacent to at least $\chi^{\prime}(G)-d_{G}(y)-\mu_{G}(x, y)+1$ vertices z in $V(F) \backslash\{x, y\}$ such that $d_{G}(z)+\mu_{G}(x, z)=\chi^{\prime}(G)$.

Lemma 3.2. Let G be a multigraph with maximum degree Δ and maximum multiplicity $\mu \geq 2$. Let $e \in E_{G}(x, y)$ be an edge of G and $k=\Delta+\mu-1$.

Assume that $\chi^{\prime}(G)=k+1$, e is a k-critical edge and $\varphi \in \mathcal{C}^{k}(G-e)$. Let $F=$ $\left(x, e, y_{0}, e_{1}, y_{1}, \ldots, e_{p}, y_{p}\right)$ be a multi-fan at x with respect to e and φ, where $y_{0}=y$. We have the following statements (a), (b) and (c).
(a) If F is maximal, then x is adjacent to at least $\Delta+\mu-d_{G}(y)-\mu_{G}(x, y)+1$ vertices z in $V(F) \backslash\{x, y\}$ such that $d_{G}(z)=\Delta$ and $\mu_{G}(x, z)=\mu$;
(b) If F is maximal, $d_{G}(y)=\Delta$ and x has only one Δ-neighbor z^{\prime} in $V(F) \backslash\{x, y\}$, then $\mu_{F}(x, z)=\mu_{G}(x, z)=\mu$ for all $z \in V(F) \backslash\{x\}$ and $d_{G}(z)=\Delta-1$ for all $z \in V(F) \backslash\left\{x, y, z^{\prime}\right\} ;$
(c) If F is maximal without any α-edge for $\alpha \notin \bar{\varphi}(y)$, then F not containing any Δ neighbor in $V(F) \backslash\{x, y\}$ implies that $d_{G}(y)=\Delta$, and there exists a vertex $z^{*} \in V(F) \backslash\{x, y\}$ with $\alpha \in \bar{\varphi}\left(z^{*}\right)$ and $d_{G}\left(z^{*}\right)=\Delta-1$.

Assume that $\chi^{\prime}(G)=k, \varphi \in \mathcal{C}^{k}(G)$ and $V(G)$ is φ-elementary. We have the following statement (d).
(d) If a multi-fan F^{\prime} is maximal at x with respect to e and φ in G, then x has no Δ neighbor in $V\left(F^{\prime}\right) \backslash\{x\}$ implies that $d_{G}(z)=\Delta-1$ for all $z \in V\left(F^{\prime}\right) \backslash\{x\}$ and every edge in F^{\prime} is colored by a missing color at some vertex in $V\left(F^{\prime}\right)$. Furthermore, if F^{\prime} is maximal without any α-edge and $\varphi(e) \notin \bar{\varphi}\left(V\left(F^{\prime}\right)\right)$, then F^{\prime} not containing any Δ-neighbor in $V\left(F^{\prime}\right) \backslash\{x\}$ implies that there exists a vertex $z^{*} \in V\left(F^{\prime}\right) \backslash\{x\}$ with $\alpha \in \bar{\varphi}\left(z^{*}\right)$ and $d_{G}\left(z^{*}\right)=\Delta-1$.

Proof. For statements $(a),(b)$ and $(c), V(F)$ is φ-elementary by Lemma 3.1 (a). Statement (a) holds easily by Lemma $3.1(c)$. Assume that there are q distinct vertices in $V(F) \backslash\{x\}$.

For (b), we have

$$
\begin{aligned}
q \mu & \geq \sum_{z \in V(F) \backslash\{x\}} \mu_{G}(x, z) \geq \sum_{z \in V(F) \backslash\{x\}} \mu_{F}(x, z)=1+\sum_{z \in V(F) \backslash\{x\}}|\bar{\varphi}(z)| \\
& \geq 1+(k-\Delta+1)+(k-\Delta)+(q-2)(k-\Delta+1)=q(k-\Delta+1)=q \mu,
\end{aligned}
$$

which implies that all equalities above hold, i.e., $\mu_{F}(x, z)=\mu_{G}(x, z)=\mu$ for each $z \in$ $V(F) \backslash\{x\}$ and $d_{G}(z)=\Delta-1$ for each $z \in V(F) \backslash\left\{x, y, z^{\prime}\right\}$. This proves (b).

Now for (c), we must have that there exists a vertex $z^{*} \in V(F) \backslash\{x, y\}$ with $\alpha \in \bar{\varphi}\left(z^{*}\right)$, since otherwise by (a) x has at least one Δ-neighbor in $V(F) \backslash\{x, y\}$, a contradiction. Since $V(F)$ is φ-elementary, x must be incident with a α-edge. Since now there is no α-edge in F and $\alpha \in \bar{\varphi}\left(z^{*}\right)$, we have

$$
\begin{aligned}
q \mu & \geq \sum_{z \in V(F) \backslash\{x\}} \mu_{G}(x, z) \geq \sum_{z \in V(F) \backslash\{x\}} \mu_{F}(x, z)=1+\left(\left|\bar{\varphi}\left(z^{*}\right)\right|-1\right)+\sum_{z \in V(F) \backslash\left\{x, z^{*}\right\}}|\bar{\varphi}(z)| \\
& \geq k-\Delta+1+(q-1)(k-\Delta+1)=q(k-\Delta+1)=q \mu,
\end{aligned}
$$

which implies that all equalities above hold, i.e., $d_{G}(y)=\Delta, d_{G}(z)=\Delta-1$ for each $z \in V(F) \backslash\{x, y\}$. This proves (c).

Statement (d) follows from similar calculations as (b) and (c).

Let G be a graph with maximum degree Δ and maximum multiplicity μ. Berge and Fournier [6] strengthened the classical Vizing's Theorem by showing that if M^{*} is a maximal matching of G, then $\chi^{\prime}\left(G-M^{*}\right) \leq \Delta+\mu-1$. An edge $e \in E_{G}(x, y)$ is fully saturated with respect to G if $d_{G}(x)=d_{G}(y)=\Delta$ and $\mu_{G}(x, y)=\mu$. Note that for every graph G with $\chi^{\prime}(G)=\Delta+\mu$, there exists a critical subgraph H of G with $\chi^{\prime}(H)=\Delta+\mu$ and $\Delta(H)=\Delta$. Moreover, every graph G with $\chi^{\prime}(G)=\Delta+\mu$ contains at least two fully saturated edges in G by Lemma $3.2(a)$. Stiebitz et al.[page 41 (a), [15]] obtained the following generalization of Vizing's Theorem with an elegant short proof: Let G be a graph and let $k \geq \Delta+\mu$ be an integer. Then there is a k-edge-coloring φ of G such that every edge e with $\varphi(e)=k$ is fully saturated. We observe that their proof actually gives a slightly stronger result which also generalizes the Berge-Fournier theorem as below.

Lemma 3.3. Let G be a graph and M be a matching of G. If M^{\prime} is a maximal matching of $G-V(M)$ such that every edge in M^{\prime} is fully saturated with respect to G, then $\chi^{\prime}(G-(M \cup$ $\left.\left.M^{\prime}\right)\right) \leq \Delta(G)+\mu(G)-1$.

Proof. Let $G^{\prime}=G-\left(M \cup M^{\prime}\right)$. Note that every vertex $v \in V\left(M \cup M^{\prime}\right)$ has $d_{G^{\prime}}(v) \leq$ $\Delta-1$. By the maximality of $M^{\prime}, G-V\left(M \cup M^{\prime}\right)$ contains no fully saturated edges. So, G^{\prime} does not have a fully saturated edge of G. By Lemma $3.2(a), \chi^{\prime}\left(G^{\prime}\right) \leq \Delta+\mu-1$, since otherwise there exist at least two fully saturated edges with respect to G in one multi-fan centered at a Δ-vertex, a contradiction.

Lemma 3.3 has the following consequence.
Corollary 3.4. Let G be a graph. If M is a maximal matching such that every edge in M is fully saturated with respect to G, then $\chi^{\prime}(G-M) \leq \Delta(G)+\mu(G)-1$.

Let M be a matching of a graph G such that $\chi^{\prime}(G-M)=\Delta(G)+\mu(G)$. Let $k=\Delta+\mu-1$. By Lemma 3.3, there is a matching M^{\prime} of $G-V(M)$ with fully saturated edges with respect
to G such that $\chi^{\prime}\left(G-\left(M \cup M^{\prime}\right)\right)=k$. Suppose that M^{\prime} is minimal subject to the properties above. Then each edge $e \in M^{\prime}$ is a k-critical edge of $G-\left(M \cup M^{\prime} \backslash\{e\}\right)$. Moreover, if $\mu \geq 2$, then by Lemma $2.3(a)$ there is a unique maximal k-dense subgraph H_{e} of $G-\left(M \cup M^{\prime}\right)$ such that $V(e) \subseteq V\left(H_{e}\right)$. Clearly, every fully statured edge in $H_{e}+e$ is a fully saturated edge of G, and the converse is not true. Following the above notation, we strengthen Lemma 3.3 for multigraphs with maximum multiplicity at least 2 as below.

Lemma 3.5. For a fixed matching M of a graph G, if $\mu(G) \geq 2$ and $\chi^{\prime}(G-M)=\Delta(G)+$ $\mu(G)$, then there is a matching M^{*} of $G-V(M)$ such that $\chi^{\prime}\left(G-\left(M \cup M^{*}\right)\right)=\Delta(G)+\mu(G)-1$ and every edge $e \in M^{*}$ is fully saturated in $H_{e}+e$, where H_{e} is the maximal k-dense subgraph of $G-\left(M \cup M^{*}\right)$ containing $V(e)$.

Proof. Let $k=\Delta+\mu-1$, and M^{\prime} be defined prior to Lemma 3.5 maximizing the number m^{\prime} of edges $e \in M^{\prime}$ that is fully saturated in $H_{e}+e$. We claim $m^{\prime}=\left|M^{\prime}\right|$, which in turn gives Lemma 3.5. Suppose on the contrary there is an edge $e \in M^{\prime}$ that is not fully saturated in $H_{e}+e$. By Lemma $2.3(a), e$ is a k-critical edge of $H_{e}+e$. Let $\varphi \in \mathcal{C}^{k}\left(G-\left(M \cup M^{\prime}\right)\right)$.

Let $V(e)=\{x, y\}$ and F_{x} be a maximum multi-fan at x with respect to e and $\varphi_{H_{e}}$, where $\varphi_{H_{e}}$ is the coloring induced by φ on H_{e}. By Lemma $3.2(a), x$ contains a Δ-neighbor, say x_{1}, in $V\left(F_{x}\right) \backslash\{x, y\}$. By Lemma $3.1(a)$, the edge $e_{x x_{1}} \in E_{G}\left(x, x_{1}\right)$ in F_{x} is also a critical edge of $H_{e}+e$. By Lemma 3.2 (a) again, in a maximum multi-fan at x_{1} there exists a fully saturated edge e^{*} with respect to $H_{e}+e$. Let $M^{*}=\left(M^{\prime} \backslash\{e\}\right) \cup\left\{e^{*}\right\}$. Since every vertex of $V\left(M \cup M^{\prime}\right)$ has degree less than Δ in $G-\left(M \cup M^{\prime}\right)$, it follows that $M \cup M^{*}$ is a matching of G. Let $H_{e^{*}}=H_{e}+e-e^{*}$. Clearly, $H_{e^{*}}$ is also k-dense. Applying Lemma 3.1 (a) again, we see that e^{*} is also a k-critical edge of $H_{e}+e$. Thus $\chi^{\prime}\left(H_{e^{*}}\right)=\omega\left(H_{e^{*}}\right)=k$. By Lemma 2.4, we have $\chi^{\prime}\left(G-\left(M \cup M^{*}\right)\right)=k$.

Since maximal k-dense subgraphs of $G-\left(M \cup M^{\prime}\right)$ are vertex-disjoint, all other maximal k-dense subgraphs of $G-\left(M \cup M^{\prime}\right)$ are also maximal k-dense subgraphs of $G-\left(M \cup M^{*}\right)$. For any fully saturated edge $f \in M^{\prime} \backslash\{e\}$, since $V(f) \cap V\left(e^{*}\right)=\emptyset, f$ is still fully saturated with respect to the corresponding maximal k-dense subgraph. We can use M^{*} instead of M^{\prime}, which contradicts the maximality of M^{\prime}. Thus $m^{\prime}=\left|M^{\prime}\right|$ as desired.

4 Proof of Theorem 1.1

We rewrite Theorem 1.1 as follows.
Theorem 1.1. Let G be a multigraph with $\mu(G) \geq 2$. Using palette $[\Delta(G)+\mu(G)]$, any precoloring of a distance-3 matching M in G can be extended to a proper edge coloring of G.

Proof. Let $k=\Delta+\mu-1$. We fix a precoloring of M, denoted by $\Phi: M \rightarrow[\Delta+\mu]$. Note that $\chi^{\prime}(G-M) \leq k+1$ by Vizing's Theorem. The conclusion of Theorem 1.1 holds easily if $\chi^{\prime}(G-M) \leq k$ with the reason as follows. For any k-edge-coloring ψ of $G-M$, if there exists $e \in E(G-M)$ such that e is adjacent to an edge $f \in M$ and $\psi(e)=\Phi(f)$ in G, we recolor each such e with the color $\Delta+\mu$ and get a new coloring ψ^{\prime} of $G-M$. Under ψ^{\prime}, the edges colored by $\Delta+\mu$ form a matching in G since M is a distance- 3 matching. Thus the combination of Φ and ψ^{\prime} is a $(k+1)$-edge-coloring of G. Therefore, in the remainder of the proof, we assume $\chi^{\prime}(G-M)=k+1$.

Let $M_{\Phi}^{\Delta+\mu}$ be the set of edges colored with $\Delta+\mu$ in M. For any matching $M^{*} \subseteq G-V(M)$ and any $(k+1)$-edge-coloring or k-edge-coloring φ on $G-\left(M \cup M^{*}\right)$, denote the $\Delta+\mu$ color class by $\bar{M}_{\varphi}^{\Delta+\mu}$. In particular, $\bar{M}_{\varphi}^{\Delta+\mu}=\emptyset$ if φ is a k-edge-coloring. We call a triple $\left(M^{*}, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi\right)$ is prefeasible if it satisfies Condition 1: $V\left(M^{*}\right) \cap V\left(\bar{M}_{\varphi}^{\Delta+\mu}\right)=\emptyset$, i.e., all edges in M^{*} are not adjacent to any edge in $\bar{M}_{\varphi}^{\Delta+\mu}$.

With respect to a triple $\left(M^{*}, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi\right)$, we call an edge $f \in E_{G}(u, v)$ in M is firstimproper at u if there exists $f_{1} \in E\left(G-\left(M \cup M^{*}\right)\right)$ such that $\varphi\left(f_{1}\right)=\Phi(f), f$ is adjacent to f_{1} at u, and f_{1} is not adjacent to any edge in M^{*}; we call an edge $f \in E_{G}(u, v)$ in M is second-improper at u if there exists $f_{1} \in E\left(G-\left(M \cup M^{*}\right)\right)$ and $f_{2} \in M^{*}$ such that $\varphi\left(f_{1}\right)=\Phi(f), f$ is adjacent to f_{1} at u, and f_{1} is adjacent to f_{2}. Let A_{φ} and B_{φ} respectively denote the number of first-improper edges and second-improper edges in M (counting twice if one edge is improper at both its endvertices) with respect to the triple $\left(M^{*}, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi\right)$.

For a triple $\left(M^{*}, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi\right)$, let $M_{\varphi}^{A}\left(f_{1}\right)\left(M_{\varphi}^{B}\left(f_{1}\right)\right.$, respectively) be the set of all such edges f_{1} that is adjacent to some first-improper (second-improper, respectively) edge $f \in M$ with $\varphi\left(f_{1}\right)=\Phi(f)$. Observe that $M_{\varphi}^{A}\left(f_{1}\right) \cup M_{\varphi}^{B}\left(f_{1}\right)$ is also a matching since M is distance-3, and $\left|M_{\varphi}^{A}\left(f_{1}\right)\right|=A_{\varphi}$ and $\left|M_{\varphi}^{B}\left(f_{1}\right)\right|=B_{\varphi}$.

For any prefeasible triple $\left(M^{*}, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi\right)$, all edges in M^{*} are uncolored if $\left|M^{*}\right| \geq 1$, $V\left(M^{*}\right) \cap V\left(M_{\Phi}^{\Delta+\mu}\right)=\emptyset$ since $M^{*} \subseteq G-V(M)$ and $V\left(M^{*}\right) \cap V\left(\bar{M}_{\varphi}^{\Delta+\mu}\right)=\emptyset$ by Condition 1. Recall that M is a distance-3 matching. Thus if a prefeasible triple $\left(M^{*}, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi\right)$ also satisfies Condition 2: $A \varphi=B \varphi=0$, i.e., $M_{\varphi_{0}}^{A}\left(f_{1}\right) \cup M_{\varphi_{0}}^{B}\left(f_{1}\right)=\emptyset$, then $M_{\Phi}^{\Delta+\mu} \cup M^{*} \cup \bar{M}_{\varphi}^{\Delta+\mu}$ is a matching. Then by giving the color $\Delta+\mu$ to all the edges in M^{*}, we have a proper ($k+1$)-edge-coloring Ω of G implying that Theorem 1.1 holds, where Ω is the combination of the precoloring Φ on M, the $\Delta+\mu$ coloring ϕ on M^{*} and the coloring φ of $G-\left(M \cup M^{*}\right)$. We call such desired triple $\left(M^{*}, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi\right)$ is feasible if it satisfies Conditions 1 and 2.

The rest of the proof is devoted to showing the existence of a feasible triple ($M^{*}, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi$) of G. Our main strategy is that we first fix a particular prefeasible triple $\left(M_{0}^{*}, \bar{M}_{\varphi_{0}}^{\Delta^{\varphi}}, \varphi_{0}\right)$, then modify it step by step to a feasible triple $\left(M^{*}, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi\right)$ with $\bar{M}_{\varphi}^{\Delta+\mu}=M_{\varphi_{0}}^{A}\left(f_{1}\right) \cup$ $M_{\varphi_{0}}^{B}\left(f_{1}\right)$, which implies that the $\Delta+\mu$ color class in the final $(k+1)$-edge-coloring Ω of G is $M_{\Phi}^{\Delta+\mu} \cup M^{*} \cup M_{\varphi_{0}}^{A}\left(f_{1}\right) \cup M_{\varphi_{0}}^{B}\left(f_{1}\right)$.

By Lemma 3.5, there exsits a matching M_{0}^{*} of $G-V(M)$ such that $\chi^{\prime}\left(G-\left(M \cup M_{0}^{*}\right)\right)=k$ and each edge $e \in M_{0}^{*}$ is fully saturated and k-critical in $H_{e}+e$, where H_{e} is the unique maximal k-dense subgraph of $G-\left(M \cup M_{0}^{*}\right)$ containing $V(e)$. Recall that $\chi^{\prime}(G-M)=k+1$. Thus $\left|M_{0}^{*}\right| \geq 1$. Let φ_{0} be a k-edge-coloring of $G-\left(M \cup M_{0}^{*}\right)$. Note that $\bar{M}_{\varphi_{0}}^{\Delta+\mu}=\emptyset$. Obviously, the triple ($M_{0}^{*}, \emptyset, \varphi_{0}$) is prefeasible that is just our initial triple, and there is neither first-improper nor second-improper $(\Delta+\mu)$-edges in M under φ_{0}.

For $\left(M_{0}^{*}, \emptyset, \varphi_{0}\right)$, if $A_{\varphi_{0}}=B_{\varphi_{0}}=0$, i.e., $M_{\varphi_{0}}^{A}\left(f_{1}\right) \cup M_{\varphi_{0}}^{B}\left(f_{1}\right)=\emptyset$, then we are done. If $A_{\varphi_{0}} \geq 1$ and $B_{\varphi_{0}}=0$, then we give the color $\Delta+\mu$ to every edge in $M_{\varphi_{0}}^{A}\left(f_{1}\right)$, resulting in a new $(k+1)$-edge-coloring φ_{1} of $G-\left(M \cup M_{0}^{*}\right)$ since $M_{\varphi_{0}}^{A}\left(f_{1}\right)$ is a matching. Thus $A_{\varphi_{1}}=B_{\varphi_{1}}=0$ and all edges in M_{0}^{*} are still not adjacent to any edge in $\bar{M}_{\varphi_{1}}^{\Delta+\mu}=M_{\varphi_{0}}^{A}\left(f_{1}\right)$, which implies that the new triple $\left(M_{0}^{*}, M_{\varphi_{0}}^{A}\left(f_{1}\right), \varphi_{1}\right)$ is feasible, so we are also done.

Now we may assume that $A_{\varphi_{0}} \geq 0$ and $B_{\varphi_{0}} \geq 1$ with respect to the initial triple $\left(M_{0}^{*}, \emptyset, \varphi_{0}\right)$. Let $H_{1}, H_{2}, \ldots, H_{t}$ be all maximal k-dense subgraphs of $G-\left(M \cup M_{0}^{*}\right)$ such that each of them contains both endvertices of some edge of M_{0}^{*}. By Lemmas 2.2-2.3, $H_{1}, H_{2}, \ldots, H_{t}$ are vertex-disjoint. Moreover, each H_{s} with $s \in[t]$ has $\operatorname{diam}\left(H_{s}\right) \leq 2$ and $\chi^{\prime}\left(H_{s}\right)=k$, and is $\left(\varphi_{0}\right)_{H_{s}}$-elementary and strongly φ_{0}-closed in $G-\left(M \cup M_{0}^{*}\right)$. By Lemma 3.5, each edge e in M_{0}^{*} is fully saturated in $H_{s}+e$ for some $s \in[t]$, so all edges in M_{0}^{*} are only adjacent to edges inside $H_{1}, H_{2}, \ldots, H_{t}$. Thus for an edge $f_{u v} \in M$ with $V\left(f_{u v}\right)=\{u, v\}$, if $u, v \notin V\left(H_{s}\right)$ for any $s \in[t]$, then $f_{u v}$ cannot be a second-improper edge.

Since $B_{\varphi_{0}} \geq 1$, we consider one second-improper edge in M, say $f_{u v}$ with $V\left(f_{u v}\right)=\{u, v\}$ and $\Phi\left(f_{u v}\right)=i \in[k]$, and assume that $f_{u v}$ is second-improper at u. Hence there exists some H_{s} with $s \in[t]$ such that $u \in V\left(H_{s}\right)$, where H_{s} contains both endvertices x and y of one edge $e_{x y} \in M_{0}^{*}$ such that $f_{u v}$ and $e_{x y}$ are both adjacent to an i-edge $e_{y u}$ in H_{s}. Since M is distance-3 and $\operatorname{diam}\left(H_{s}\right) \leq 2$, there does not exist another edge of M whose any endvertex is also in $V\left(H_{s}\right)$. Notice that u and v may belong to disjoint H_{s} and $H_{s^{\prime}}$, where $s \neq s^{\prime}$ with $s, s^{\prime} \in[t]$. To make $f_{u v}$ not be second-improper, we consider the following Cases 1-3. See Figures 1 and 2.

Case 1: $f_{u v}$ is not improper at v, or $f_{u v}$ is first-improper at v but $v \notin V\left(H_{s}\right)$.
Let F_{x} be a maximal multi-fan at x with respect to $e_{x y}$ and $\left(\varphi_{0}\right)_{H_{s}}$ in $H_{s}+e_{x y}$. By Lemma $3.2(a)$, in F_{x} there exist at least one Δ-vertex in $V\left(F_{x}\right) \backslash\{x, y\}$, say x_{1}, and a linear sequence S from y to x_{1} with last edge $e_{x x_{1}} \in E_{H_{s}}\left(x, x_{1}\right)$. Notice that x_{1} is not incident with any edge in $M \cup M_{0}^{*}$ since $d_{H_{s}}\left(x_{1}\right)=\Delta$. We will do the following operations in three subcases to make sure that $f_{u v}$ is no longer second-improper at u.

Subcase 1.1: S does not contain both an i-edge and a boundary vertex of $V\left(H_{s}\right)$ that is incident with an i-edge of $\partial\left(H_{s}\right)$ in $G-\left(M \cup M_{0}^{*}\right)$.

Figure 1: One possibility for the location of $f_{u v}$ relative to H_{s} in Case 1.

For this subcase, we do Operation I as follows. Do a shifting in S from y to x_{1} which gives a color in $[k]$ to the edge $e_{x y}$, uncolor the edge $e_{x x_{1}}$, and replace $e_{x y}$ by $e_{x x_{1}}$ in M_{0}^{*} since x_{1} is not incident with any edge in $M \cup M_{0}^{*}$. Obviously, $H_{s}+e_{x y}-e_{x x_{1}}$ is also k-dense. By Lemma $3.1(a), e_{x x_{1}}$ is also a k-critical edge of $H_{s}+e_{x y}$ and $\chi^{\prime}\left(H_{s}+e_{x y}-e_{x x_{1}}\right)=k$. Thus we can permute color classes of $E\left(H_{s}+e_{x y}-e_{x x_{1}}\right)$ but keep the color i unchanged to match all boundary edges by Lemma 2.4. As a result, we obtain a new matching $M_{1}^{*}=$ $\left(M_{0}^{*} \backslash\left\{e_{x y}\right\}\right) \cup\left\{e_{x x_{1}}\right\} \subseteq G-V(M)$ and a new k-edge-coloring φ_{1} of $G-\left(M \cup M_{1}^{*}\right)$ such that $f_{u v}$ is no longer a second-improper edge (but becomes a first-improper edge) at u with respect to the new triple $\left(M_{1}^{*}, \emptyset, \varphi_{1}\right)$ that is also prefeasible.

Subcase 1.2: For any Δ-vertex in $V\left(F_{x}\right) \backslash\{x, y\}$, any linear sequence from y to this Δ-vertex contains an i-edge and a boundary vertex that is incident with one i-edge in $\partial\left(H_{s}\right)$.

By Lemma $3.2(c)$, there exists a vertex w with $d_{H_{s}}(w)=\Delta-1$ and $d_{G-\left(M \cup M_{0}^{*}\right)}(w)=\Delta$. So the i-edge, denoted by h, is the only edge in $\partial\left(H_{s}\right)$ at w and w is not incident with any edge in $M \cup M_{0}^{*}$. Next we fix the linear sequence S corresponding to the Δ-vertex x_{1}, and consider the following two subcases about the boundary i-edge h.

Subcase 1.2.1: $h \notin M_{\varphi_{0}}^{A}\left(f_{1}\right)$, i.e., h is not adjacent to any precolored i-edge in M.
For this subcase, we do Operation II as follows. Let $e_{x w} \in E_{H_{s}}(x, w)$ be the edge with $V\left(e_{x w}\right)=\{x, w\}$ in S. Do a shifting in S from y to w which gives a color in $[k]$ to the edge $e_{x y}$, uncolor the edge $e_{x w}$, and replace $e_{x y}$ by $e_{x w}$ in M_{0}^{*} since w is not incident with any edge in $M \cup M_{0}^{*}$. Obviously, $H_{s}+e_{x y}-e_{x w}$ is also k-dense. By Lemma $3.1(a), e_{x w}$ is also a k-critical edge of $H_{s}+e_{x y}$ and $\chi^{\prime}\left(H_{s}+e_{x y}-e_{x w}\right)=k$. Thus we can permute color classes of $E\left(H_{s}+e_{x y}-e_{x w}\right)$ but keep the color i unchanged to match all boundary edges by Lemma 2.4. As a result, we obtain a new matching $M_{1}^{*}=\left(M_{0}^{*} \backslash\left\{e_{x y}\right\}\right) \cup\left\{e_{x w}\right\} \subseteq G-V(M)$ and a new k-edge-coloring φ_{1} of $G-\left(M \cup M_{1}^{*}\right)$ such that $f_{u v}$ is no longer a second-improper edge (but
becomes a first-improper edge) at u with respect to the new prefeasible triple $\left(M_{1}^{*}, \emptyset, \varphi_{1}\right)$.
Subcase 1.2.2: $h \in M_{\varphi_{0}}^{A}\left(f_{1}\right)$, i.e., h is adjacent to some precolored i-edge in M.
For this subcase, we do Operation III as follows. First recolor h from the color i to the color $\Delta+\mu$. Do a shifting in S from y to x_{1} which gives a color in $[k]$ to the edge $e_{x y}$, uncolor the edge $e_{x x_{1}}$, and permute color classes of $E\left(H_{s}+e_{x y}-e_{x x_{1}}\right)$ but keep the color i unchanged to match all boundary edges by Lemma 2.4. Now we obtain a new matching $M_{1}^{*}=\left(M_{0}^{*} \backslash\left\{e_{x y}\right\}\right) \cup\left\{e_{x x_{1}}\right\} \subseteq G-V(M)$ and a new $(k+1)$-edge-coloring φ_{1} of $G-\left(M \cup M_{1}^{*}\right)$ such that $f_{u v}$ is no longer a second-improper edge (but becomes a first-improper edge) at u with respect to the new triple $\left(M_{1}^{*}, \bar{M}_{\varphi_{1}}^{\Delta+\mu}, \varphi_{1}\right)$ with $\bar{M}_{\varphi_{1}}^{\Delta+\mu}=\{h\}$. Notice that the triple $\left(M_{1}^{*}, \bar{M}_{\varphi_{1}}^{\Delta+\mu}, \varphi_{1}\right)$ is also prefeasible since h is not adjacent to any edge in M_{1}^{*}. Moreover, giving the color $\Delta+\mu$ to h will not be a problem since $h \in M_{\varphi_{0}}^{A}\left(f_{1}\right)$ and we will give the color $\Delta+\mu$ to all edges in $M_{\varphi_{0}}^{A}\left(f_{1}\right)$ in the final process.

For Operations I-III, we have the following observations.
(1) $M \cup M_{1}^{*}=M \cup\left(M_{0}^{*} \backslash\left\{e_{x y}\right\}\right) \cup\left\{e_{x x_{1}}\right\}$ or $M \cup M_{1}^{*}=M \cup\left(M_{0}^{*} \backslash\left\{e_{x y}\right\}\right) \cup\left\{e_{x w}\right\}$ is also a matching, where $d_{H_{s}}\left(x_{1}\right)=\Delta, d_{H_{s}}(w)=\Delta-1$ and w is incident with one boundary i-edge h;
(2) The subgraph $H_{s}^{1}=H_{s}+e_{x y}-e_{x x_{1}}$ or $H_{s}^{1}=H_{s}+e_{x y}-e_{x w}$ is also k-dense and $\left(\varphi_{1}\right)_{H_{s}^{1}}$ elementary, where $V\left(H_{s}^{1}\right)=V\left(H_{s}\right), \partial\left(H_{s}^{1}\right)=\partial\left(H_{s}\right)$ and $d_{H_{s}^{1}}(w)=\Delta-2$;
(3) The new triple $\left(M_{1}^{*}, \bar{M}_{\varphi_{1}}^{\Delta+\mu}, \varphi_{1}\right)$ is also prefeasible, where $\bar{M}_{\varphi_{1}}^{\Delta+\mu}=\emptyset$ or $\{h\} \subseteq\left(\partial\left(H_{s}\right) \cap\right.$ $\left.M_{\varphi_{0}}^{A}\left(f_{1}\right)\right)$ with some vertex $w_{0} \in S$ and $i \in \bar{\varphi}_{1}\left(w_{0}\right)$.

Moreover, $B_{\varphi_{1}}=B_{\varphi_{0}}-1$ and $A_{\varphi_{1}}=A_{\varphi_{0}}+1$ since $f_{u v}$ is no longer a second-improper edge (but becomes a first-improper edge) at u and the edges $e_{x x_{1}}$ and $e_{x w}$ cannot make new second-improper edges.

Case 2: $f_{u v}$ is second-improper at v with $v \in V\left(H_{s^{\prime}}\right)$ for a maximal k-dense subgraph $H_{s^{\prime}}$ other than H_{s}.

For this case, we first do the same operations for u in H_{s} as we did in Case 1. Recall that $V\left(H_{s}\right) \cap V\left(H_{s^{\prime}}\right)=\emptyset, M$ is distance- 3 and $M_{\varphi_{0}}^{A}\left(f_{1}\right)$ is a matching. Then do the same operations for v in $H_{s^{\prime}}$ as we did for u in H_{s}. Thus $f_{u v}$ is no longer second-improper (but becomes first-improper) at both u and v with respect to one prefeasible triple ($M_{2}^{*}, \bar{M}_{\varphi_{2}}^{\Delta+\mu}, \varphi_{2}$), where $\bar{M}_{\varphi_{2}}^{\Delta+\mu} \subseteq\left\{h_{u}, h_{v}\right\}$ with some edge $h_{u} \in \partial\left(H_{s}\right) \cap M_{\varphi_{0}}^{A}\left(f_{1}\right)$ and some edge $h_{v} \in \partial\left(H_{s^{\prime}}\right) \cap M_{\varphi_{0}}^{A}\left(f_{1}\right)$ by Case 1. Moreover, $V\left(h_{u}\right) \cap V\left(h_{v}\right)=\emptyset, B_{\varphi_{2}}=B_{\varphi_{0}}-2$ and $A_{\varphi_{2}}=A_{\varphi_{0}}+2$.

Case 3: $f_{u v}$ is first-improper or second-improper at v with $v \in V\left(H_{s}\right)$.

Figure 2: Two possibilities for the location of $f_{u v}$ relative to H_{s} in Case 3.

If $f_{u v}$ is a first-improper edge at v with $v \in V\left(H_{s}\right)$, then let $e_{b v} \in E_{H_{s}}(b, v)$ be the i-edge incident with v in H_{s}. If $d_{H_{s}}(b)<\Delta$, then we do the same operations for u as we did in Case 1, which does not influence the vertex b by the observation (1) in Case 1. Thus $f_{u v}$ is no longer second-improper (but becomes first-improper) at u. We will discuss the other subcase $d_{H_{s}}(b)=\Delta$ in the next paragraph.

If $f_{u v}$ is a second-improper edge at v with $v \in V\left(H_{s}\right)$. We use $e_{a b} \in M^{*}$ with $V\left(e_{a b}\right)=$ $\{a, b\}$ to denote the edge that is adjacent to an i-edge $e_{b v} \in E_{H_{s}}(b, v)$. Note that $d_{H_{s}}(a)<\Delta$ and $d_{H_{s}}(b)<\Delta$. We do the same operations for u as we did in Case 1, which does not influence the vertices a and b. Thus $f_{u v}$ is no longer second-improper (but becomes firstimproper) at u with respect to one prefeasible triple $\left(M_{1}^{*}, \bar{M}_{\varphi_{1}}^{\Delta+\mu}, \varphi_{1}\right)$, where $\bar{M}_{\varphi_{1}}^{\Delta+\mu}=\emptyset$ or $\{h\}$ with some boundary vertex w and its incident i-edge $h \in \partial\left(H_{s}\right) \cap M_{\varphi_{0}}^{A}\left(f_{1}\right)$ by the observation (3) in Case 1. In particular, the situation under $\left(M_{1}^{*}, \emptyset, \varphi_{1}\right)$ is actually the same as the subcase $d_{H_{s}}(b)=\Delta$ in the previous paragraph since $d_{H_{s}^{1}}(y)=\Delta$, where H_{s}^{1} is the new k-dense subgraph after the operations for u in H_{s} by the observation (2) in Case 1.

Note that we also have $d_{H_{s}^{1}+e_{a b}}(a)=d_{H_{s}^{1}+e_{a b}}(b)=\Delta$ and $\varphi_{1}\left(e_{y u}\right)=i$. Now consider a maximal multi-fan F_{a} at a with respect to $e_{a b}$ and $\left(\varphi_{1}\right)_{H_{s}^{1}}$ in $H_{s}^{1}+e_{a b}$. Clearly we can do the same operations in Case 1 for v to make sure that $f_{u v}$ is no longer a second-improper edge at v, unless these operations would have to put one edge $e_{a y} \in E_{H_{s}^{1}}(a, y)$ into M_{1}^{*}, so $f_{u v}$ would become second-improper at u again. Therefore, by Operations I-III in Case 1 we may have the following two assumptions for the rest of our proof.
(1) y is the only Δ-vertex in $V\left(F_{a}\right) \backslash\{a, b\}$;
(2) If a linear sequence in F_{a} from b to y contains a boundary vertex w^{\prime}, where $d_{H_{s}^{1}}\left(w^{\prime}\right)=$ $\Delta-1$ and w^{\prime} is incident with one i-edge h^{\prime} in $\partial\left(H_{s}^{1}\right)$, then $h^{\prime} \in M_{\varphi_{0}}^{A}\left(f_{1}\right)$.

Let F_{b} be the maximal multi-fan at b with respect to $e_{a b}$ and $\left(\varphi_{1}\right)_{H_{s}^{1}}$ in $H_{s}^{1}+e_{a b}$. We consider the following Subcases 3.1-3.3.

Subcase 3.1: F_{b} contains a linear sequence S from a to y with no i-edge.
Let $S=\left(b, e_{0}, a_{0}, e_{1}, a_{1}, \ldots, e_{p}, a_{p}\right)$ be a linear sequence from a to y, where $e_{0}=e_{a b}$, $a_{0}=a, e_{p}=e_{b y} \in E_{H_{s}^{1}}(b, y), a_{p}=y$, and S does not contain i-edges. For this subcase we do a shifting in S from a to y which gives a color in $[k]$ to $e_{a b}$, uncolor the edge $e_{b y}$, and permute color classes of $E\left(H_{s}^{1}+e_{a b}-e_{b y}\right)$ but keep the color i unchanged to match all the boundary edges by Lemma 2.4. Now we obtain a new matching $M_{2}^{*}=\left(M_{1}^{*} \backslash\left\{e_{a b}\right\}\right) \cup\left\{e_{b y}\right\}$ and a new k-edge-coloring φ_{2} of $G-\left(M \cup M_{2}^{*}\right)$, where $f_{u v}$ is a second-improper edge at both u and v, but here $\Phi\left(f_{u v}\right)=i, \varphi_{2}\left(e_{b v}\right)=\varphi_{2}\left(e_{y u}\right)=i$, and the edge $e_{b y}$ is uncolored. So by giving the color i to $e_{b y}$ and recoloring $e_{b v}$ and $e_{y u}$ with the color $\Delta+\mu$, we obtain a new matching $M_{3}^{*}=M_{2}^{*} \backslash\left\{e_{b y}\right\}=M_{1}^{*} \backslash\left\{e_{a b}\right\} \subseteq G-V(M)$ and a new $(k+1)$-edge-coloring φ_{3} of $G-\left(M \cup M_{3}^{*}\right)$. Thus $f_{u v}$ is no longer a second-improper edge or even a first-improper edge neither at u nor at v with respect to the new triple $\left(M_{3}^{*}, \bar{M}_{\varphi_{3}}^{\Delta+\mu}, \varphi_{3}\right)$, where $\bar{M}_{\varphi_{3}}^{\Delta+\mu}=\left\{e_{b v}, e_{y u}\right\}$ if $\bar{M}_{\varphi_{1}}^{\Delta+\mu}=\emptyset$ or $\bar{M}_{\varphi_{3}}^{\Delta+\mu}=\left\{h, e_{b v}, e_{y u}\right\}$ if $\bar{M}_{\varphi_{1}}^{\Delta+\mu}=\{h\}$. Notice that $\bar{M}_{\varphi_{3}}^{\Delta+\mu}$ is also a matching since $\bar{M}_{\varphi_{3}}^{\Delta+\mu} \subseteq\left(M_{\varphi_{0}}^{A}\left(f_{1}\right) \cup M_{\varphi_{0}}^{B}\left(f_{1}\right)\right)$, and the triple $\left(M_{3}^{*}, \bar{M}_{\varphi_{3}}^{\Delta+\mu}, \varphi_{3}\right)$ is also prefeasible since $h, e_{b v}$ and $e_{y u}$ are not adjacent to any edge in M_{3}^{*}. Moreover, $B_{\varphi_{2}}=B_{\varphi_{1}}-1=B_{\varphi_{0}}-2$ and $A_{\varphi_{2}}=A_{\varphi_{1}}-1=A_{\varphi_{0}}$.

Subcase 3.2: F_{b} contains a vertex $w^{\prime \prime}$ with $d_{H_{s}^{1}}\left(w^{\prime \prime}\right)=\Delta-1$ and $i \in\left(\bar{\varphi}_{1}\right)_{H_{s}^{1}}\left(w^{\prime \prime}\right)$.
In this subcase, the i-edge $e_{b v}$ is in F_{b} by the maximality of F_{b}. Note that there exists a linear sequence $S=\left(b, e_{0}, a_{0}, e_{1}, a_{1}, \ldots, e_{p-1}, a_{p-1}, e_{p}, a_{p}\right)$ from a to v in F_{b}, where $e_{0}=e_{a b}$, $a_{0}=a, e_{p-1}=e_{b w^{\prime \prime}} \in E_{H_{s}^{1}}\left(b, w^{\prime \prime}\right), a_{p-1}=w^{\prime \prime}, e_{p}=e_{b v}$ and $a_{p}=v$.

If $i \in \bar{\varphi}_{1}\left(w^{\prime \prime}\right)\left(w^{\prime \prime}\right.$ may be the vertex $\left.a\right)$, or $w^{\prime \prime}$ is incident with an i-edge $h^{\prime \prime} \in \partial\left(H_{s}\right) \cap$ $M_{\varphi_{0}}^{A}\left(f_{1}\right)$, then we first do a shifting in S from a to v which gives a color in $[k]$ to $e_{a b}$, recolor the edge $e_{b w^{\prime \prime}}$ with i and uncolor the edge $e_{b v}$. Then recolor $h^{\prime \prime}$ from i to $\Delta+\mu$ if there exists $h^{\prime \prime}$, and permute color classes of $E\left(H_{s}^{1}+e_{a b}-e_{b v}\right)$ but keep the color i unchanged to match all the boundary edges by Lemma 2.4. Finally give the color $\Delta+\mu$ to the edge $e_{b v}$. Note that $h \neq h^{\prime \prime}$ since $\varphi_{1}(h)=\Delta+\mu \neq i=\varphi_{1}\left(h^{\prime \prime}\right)$, and h and $h^{\prime \prime}$ cannot both exist in $\partial\left(H_{s}\right)=\partial\left(H_{s}^{1}\right)$ since otherwise $\varphi_{0}(h)=\varphi_{0}\left(h^{\prime \prime}\right)=i$ contradicting that H_{s} is strongly φ_{0}-closed. As a result, we obtain a new matching $M_{2}^{*}=M_{1}^{*} \backslash\left\{e_{a b}\right\} \subseteq G-V(M)$ and a new $(k+1)$-edge-coloring φ_{2} of $G-\left(M \cup M_{2}^{*}\right)$ such that $f_{u v}$ is no longer a second-improper edge or even a first-improper edge at v with respect to the new prefeasible triple ($M_{2}^{*}, \bar{M}_{\varphi_{2}}^{\Delta+\mu}, \varphi_{2}$), where $\bar{M}_{\varphi_{2}}^{\Delta+\mu}=\left\{e_{b v}\right\}$ if $\bar{M}_{\varphi_{1}}^{\Delta+\mu}=\emptyset$ but $h^{\prime \prime}$ does not exist, $\bar{M}_{\varphi_{2}}^{\Delta+\mu}=\left\{e_{b v}, h^{\prime \prime}\right\}$ if $\bar{M}_{\varphi_{1}}^{\varphi_{2}+\mu}=\emptyset$ and $h^{\prime \prime}$ exists, or $\bar{M}_{\varphi_{2}}^{\Delta+\mu}=\left\{e_{b v}, h\right\}$ if $\bar{M}_{\varphi_{1}}^{\Delta+\mu}=\{h\}$. Moreover, $M_{\varphi_{2}}^{\Delta+\mu} \subseteq\left(M_{\varphi_{0}}^{A}\left(f_{1}\right) \cup M_{\varphi_{0}}^{B}\left(f_{1}\right)\right)$, $B_{\varphi_{2}}=B_{\varphi_{1}}-1=B_{\varphi_{0}}-2$ and $A_{\varphi_{2}}=A_{\varphi_{1}}=A_{\varphi_{0}}+1$.

Now we may assume that $w^{\prime \prime}$ is incident with an i-edge $h^{\prime \prime} \in \partial\left(H_{s}\right)$ but $h^{\prime \prime} \notin M_{\varphi_{0}}^{A}\left(f_{1}\right)$. Then we have $\bar{M}_{\varphi_{1}}^{\Delta+\mu}=\emptyset$. Note that the vertex $w^{\prime \prime} \notin V\left(F_{a}\right)$ by the assumption (2). Moreover, $w^{\prime \prime}$ is not incident with any edge in $M \cup M_{1}^{*}$ and $w^{\prime \prime}$ is only incident with the i-edge $h^{\prime \prime}$ in $\partial\left(H_{s}^{1}\right)$. Since $d_{G-\left(M \cup M_{1}^{*}\right)}\left(w^{\prime \prime}\right)=\Delta$ and φ_{1} is a k-edge-coloring of $G-\left(M \cup M_{1}^{*}\right)$ with
$k \geq \Delta+1$, there exists a color $\alpha \in \bar{\varphi}_{1}\left(w^{\prime \prime}\right)$ with $\alpha \neq i$. Since H_{s}^{1} is $\left(\varphi_{1}\right)_{H_{s}^{1}}$-elementary, there exists a α-edge e_{0}^{\prime} incident with the vertex a. Thus we can define a maximal multi-fan at a with respect to e_{0}^{\prime} and $\left(\varphi_{1}\right)_{H_{s}^{1}}$ in H_{s}^{1}, denoted by $F_{a}^{\prime}=\left(a, e_{0}^{\prime}, b_{0}, \ldots, e_{q}^{\prime}, b_{q}\right)$, such that $\left(\varphi_{1}\right)_{H_{s}^{1}}\left(e_{j}^{\prime}\right) \in\left(\bar{\varphi}_{1}\right)_{H_{s}^{1}}\left(b_{l-1}\right)$ for $j \in[q]$ and some $l \in[j]$. Moreover, $V\left(F_{a}^{\prime}\right)$ is $\left(\varphi_{1}\right)_{H_{s}^{1}}$-elementary since $V\left(H_{s}^{1}\right)$ is $\left(\varphi_{1}\right)_{H_{s}^{1}}$-elementary. By the assumption (1) and Lemma 3.2 (b), we have $\mu_{F_{a}}\left(a, b^{\prime}\right)=\mu_{H_{s}^{1}+e_{a b}}\left(a, b^{\prime}\right)=\mu$ for any vertex b^{\prime} in $V\left(F_{a}\right) \backslash\{a\}$. Therefore, $V\left(F_{a}^{\prime}\right) \backslash\{a\}$ and $V\left(F_{a}\right) \backslash\{a\}$ are vertex-disjoint, since otherwise we have $V\left(F_{a}^{\prime}\right) \subseteq V\left(F_{a}\right)$ and $\alpha \in\left(\bar{\varphi}_{1}\right)_{H_{s}^{1}}\left(b^{\prime}\right)$ for some $b^{\prime} \in V\left(F_{a}\right)$ implying $b^{\prime}=w^{\prime \prime} \in V\left(F_{a}\right)$, a contradiction. Note that if $w^{\prime \prime} \notin V\left(F_{a}^{\prime}\right)$, then $V\left(F_{a}^{\prime}\right) \backslash\{a\}$ must contain a Δ-vertex in H_{s}^{1}, since otherwise Lemma $3.2(d)$ and the fact $\left(\varphi_{1}\right)_{H_{s}^{1}}\left(e_{0}^{\prime}\right)=\alpha \in \bar{\varphi}_{1}\left(w^{\prime \prime}\right)$ imply that $w^{\prime \prime} \in V\left(F_{a}^{\prime}\right)$, a contradiction. Thus F_{a}^{\prime} contains a linear sequence $S^{\prime}=\left(a, e_{l_{1}}^{\prime}, b_{l_{1}}, \ldots, e_{l_{t}}^{\prime}, b_{l_{t}}\right)$, where $e_{l_{1}}^{\prime}=e_{0}^{\prime}, b_{l_{1}}=b_{0}, b_{l_{t}} \in V\left(F_{a}^{\prime}\right)$ is a Δ-vertex if $w^{\prime \prime} \notin V\left(F_{a}^{\prime}\right)$, and $b_{l_{t}}$ is $w^{\prime \prime}$ if $w^{\prime \prime} \in V\left(F_{a}^{\prime}\right)$. Notice that $b_{l_{t}}$ is not incident with any edge in $M \cup M_{1}^{*}$ by our choice of $b_{l_{t}}$. Moreover, $b_{l_{t}} \neq y$ since $V\left(F_{a}^{\prime}\right) \backslash\{a\}$ and $V\left(F_{a}\right) \backslash\{a\}$ are vertexdisjoint. Let $\beta(\beta \neq i)$ be a color in $\bar{\varphi}_{1}(b)$. By Lemma $3.1(b)$, we have $P_{b}(\beta, \alpha)=P_{w^{\prime \prime}}(\beta, \alpha)$. We then consider the following two subcases according to the set $\left(V\left(S^{\prime}\right) \backslash\{a\}\right) \cap(V(S) \backslash\{a\})$.

We first assume that $\left(V\left(S^{\prime}\right) \backslash\{a\}\right) \cap(V(S) \backslash\{a\})$ is either $\left\{b_{l_{t}}\right\}$ or \emptyset. If $e_{0}^{\prime} \notin P_{b}(\beta, \alpha)$, then we do Kempe changes on $P_{\left[b, w^{\prime \prime}\right]}(\beta, \alpha)$, uncolor e_{0}^{\prime} and color $e_{a b}$ with α. If $e_{0}^{\prime} \in P_{b}(\beta, \alpha)$ and $P_{b}(\beta, \alpha)$ meets b_{0} before a, then we do Kempe changes on $P_{\left[b, b_{0}\right]}(\beta, \alpha)$, uncolor e_{0}^{\prime} and color $e_{a b}$ with α. If $e_{0}^{\prime} \in P_{b}(\beta, \alpha)$ and $P_{w^{\prime \prime}}(\beta, \alpha)$ meets b_{0} before a, then we uncolor e_{0}^{\prime}, do Kempe changes on $P_{\left[w^{\prime \prime}, b_{0}\right]}(\beta, \alpha)$, do a shifting in S from a to $w^{\prime \prime}$ and recolor the edge $e_{b w^{\prime \prime}}$ with β. In all three cases above, the edge $e_{a b}$ is colored with a color in $[k]$ and e_{0}^{\prime} is uncolored. Finally we do a shifting in S^{\prime} from b_{0} to $b_{l_{t}}$ which gives a color in $[k]$ to e_{0}^{\prime}, and uncolor $e_{l_{t}}^{\prime}$. Notice that the above shifting in S^{\prime} does nothing if $b_{0}=b_{l_{t}}$. Since $H_{s}^{1}+e_{a b}-e_{l_{t}}^{\prime}$ is also k-dense and $\chi^{\prime}\left(H_{s}^{1}+e_{a b}-e_{l_{t}}^{\prime}\right)=k$, we can permute color classes of $E\left(H_{s}^{1}+e_{a b}-e_{l_{t}}^{\prime}\right)$ but keep the color i unchanged to match all the boundary edges by Lemma 2.4. Now we obtain a new matching $M_{2}^{*}=\left(M_{1}^{*} \backslash\left\{e_{a b}\right\}\right) \cup\left\{e_{l_{t}}^{\prime}\right\}$ and a new k-edge-coloring φ_{2} of $G-\left(M \cup M_{2}^{*}\right)$ such that $f_{u v}$ is no longer a second-improper edge (but becomes a first-improper edge) at v with respect to the new prefeasible triple $\left(M_{2}^{*}, \emptyset, \varphi_{2}\right)$. Moreover, $B_{\varphi_{2}}=B_{\varphi_{0}}-2$ and $A_{\varphi_{2}}=A_{\varphi_{0}}+2$.

Then we assume that there exists $b_{l_{i}}=a_{j} \in\left(V\left(S^{\prime}\right) \backslash\{a\}\right) \cap(V(S) \backslash\{a\})$ for some $i \in[t-1]$. In this case we assume a_{j} is the closest vertex to the vertex a along S. Note that $b_{l_{i}} \neq b$ as $V\left(F_{a}^{\prime}\right) \backslash\{a\}$ and $V\left(F_{a}\right) \backslash\{a\}$ are vertex-disjoint. Let $\alpha_{i}=\left(\varphi_{1}\right)_{H_{s}^{1}}\left(e_{l_{i+1}}^{\prime}\right) \in\left(\bar{\varphi}_{1}\right)_{H_{s}^{1}}\left(b_{l_{i}}\right)$. By Lemma 3.1 (b), we have $P_{b}\left(\beta, \alpha_{i}\right)=P_{b_{l_{i}}}\left(\beta, \alpha_{i}\right)$. If $e_{l_{i+1}}^{\prime} \notin P_{b}\left(\beta, \alpha_{i}\right)$, then we do Kempe changes on $P_{\left[b, b_{i}\right]}\left(\beta, \alpha_{i}\right)$, uncolor $e_{l_{i+1}}^{\prime}$ and color $e_{a b}$ with α_{i}. If $e_{l_{i+1}}^{\prime} \in P_{b}\left(\beta, \alpha_{i}\right)$ and $P_{b}\left(\beta, \alpha_{i}\right)$ meets $b_{l_{i+1}}$ before a, then we do Kempe changes on $\left.P_{\left[b, b_{i+1}\right]}\right]\left(\beta, \alpha_{i}\right)$, uncolor $e_{l_{i+1}}^{\prime}$ and color $e_{a b}$ with α_{i}. If $e_{l_{i+1}}^{\prime} \in P_{b}\left(\beta, \alpha_{i}\right)$ and $P_{b_{l_{i}}}\left(\beta, \alpha_{i}\right)$ meets $b_{l_{i+1}}$ before a, then we uncolor $e_{l_{i+1}}^{\prime}$, do Kempe changes on $\left.P_{\left[b_{l_{i}}, b_{l_{i+1}}\right]}\right]\left(\beta, \alpha_{i}\right)$, do a shifting in S from a to $b_{l_{i}}$ and recolor the edge $e_{l_{i}}$ with β. In all three cases above, the edge $e_{a b}$ is colored with a color in $[k]$ and $e_{l_{i+1}}^{\prime}$ is uncolored. Finally we do a shifting in S^{\prime} from $b_{l_{i+1}}$ to $b_{l_{t}}$, which gives a color in $[k]$ to $e_{l_{i+1}}^{\prime}$, and uncolor $e_{l_{t}}^{\prime}$. Notice that the above shifting in S^{\prime} does nothing if $b_{l_{i+1}}=b_{l_{t}}$. Since $H_{s}^{1}+e_{a b}-e_{l_{t}}^{\prime}$ is also k-dense and $\chi^{\prime}\left(H_{s}^{1}+e_{a b}-e_{l_{t}}^{\prime}\right)=k$, we can permute color classes of
$E\left(H_{s}^{1}+e_{a b}-e_{l_{t}}^{\prime}\right)$ but keep the color i unchanged to match all the boundary edges by Lemma 2.4. Now we obtain a new matching $M_{2}^{*}=\left(M_{1}^{*} \backslash\left\{e_{a b}\right\}\right) \cup\left\{e_{l_{t}}^{\prime}\right\} \subseteq G-V(M)$ and a new k-edge-coloring φ_{2} of $G-\left(M \cup M_{2}^{*}\right)$ such that $f_{u v}$ is no longer a second-improper edge (but becomes a first-improper edge) at v with respect to the new prefeasible triple ($M_{2}^{*}, \emptyset, \varphi_{2}$). Moreover, $B_{\varphi_{2}}=B_{\varphi_{0}}-2$ and $A_{\varphi_{2}}=A_{\varphi_{0}}+2$.

Subcase 3.3: F_{b} does not contain a linear sequence from a to y with no i-edge, and F_{b} does not contain a vertex $w^{\prime \prime}$ with $d_{H_{s}^{1}}\left(w^{\prime \prime}\right)=\Delta-1$ and $i \in\left(\bar{\varphi}_{1}\right)_{H_{s}^{1}}\left(w^{\prime \prime}\right)$.

We claim that F_{b} contains a linear sequence S^{*} from a to $y^{*}\left(y^{*} \neq y\right)$, where $d_{H_{s}^{1}}\left(y^{*}\right)=\Delta$ and there is no i-edge in S^{*}. By Lemma $3.2(a)$, the multi-fan F_{b} contains at least one Δ-vertex in H_{s}^{1}. Now if F_{b} does not contain any linear sequence without i-edges from a to any Δ-vertex in H_{s}^{1}, then by Lemma $3.2(c)$, the multi-fan F_{b} contains a vertex $w^{\prime \prime}$ with $d_{H_{s}^{1}}\left(w^{\prime \prime}\right)=\Delta-1$ and $i \in\left(\bar{\varphi}_{1}\right)_{H_{s}^{1}}\left(w^{\prime \prime}\right)$, contradicting the condition of Subcase 3.3. So F_{b} contains a linear sequence S^{*} from a to a vertex y^{*}, where $d_{H_{s}^{1}}\left(y^{*}\right)=\Delta$ and there is no i-edge in S^{*}. Note that $y^{*} \neq y$, since otherwise we also have a contradiction to the condition of Subcase 3.3. Thus the claim is proved.

Assume that $S^{*}=\left(b, e_{0}, a_{0}, e_{1}, a_{1}, \ldots, e_{p}, a_{p}\right)$ from a to y^{*}, where $e_{0}=e_{a b}, a_{0}=a$, $e_{p}=e_{b y^{*}} \in E_{H_{s}^{1}}\left(b, y^{*}\right), a_{p}=y^{*}$, and S^{*} contains no i-edge. Let $\theta \in \bar{\varphi}_{1}\left(y^{*}\right)$.

Subcase 3.3.1: $\theta=i$.
We do a shifting in S^{*} from a to y^{*}, uncolor the edge $e_{b y^{*}}$, and permute color classes of $E\left(H_{s}^{1}+e_{a b}-e_{b y^{*}}\right)$ but keep the color i unchanged to match all the boundary edges by Lemma 2.4. Then color the edge $e_{b y^{*}}$ with i and recolor the edge $e_{b v}$ from i to $\Delta+\mu$, which results in a new matching $M_{2}^{*}=M_{1}^{*} \backslash\left\{e_{a b}\right\} \subseteq G-V(M)$ and a new $(k+1)$-edge-coloring φ_{2} of $G-\left(M \cup M_{2}^{*}\right)$. Then $f_{u v}$ is no longer a second-improper edge or even a first-improper edge at v with respect to the new prefeasible triple $\left(M_{2}^{*}, \bar{M}_{\varphi_{2}}^{\Delta+\mu}, \varphi_{2}\right)$ with $\bar{M}_{\varphi_{2}}^{\Delta+\mu}=\left\{e_{b v}\right\}$ if $\bar{M}_{\varphi_{1}}^{\Delta+\mu}=\emptyset$, or $\bar{M}_{\varphi_{2}}^{\Delta+\mu}=\left\{e_{b v}, h\right\}$ if $\bar{M}_{\varphi_{1}}^{\Delta+\mu}=\{h\}$ (when $y^{*} \in V\left(F_{x}\right) \cap V\left(F_{b}\right)$) by the observation (3) in Case 1. Moreover, $\bar{M}_{\varphi_{2}}^{\Delta+\mu} \subseteq\left(M_{\varphi_{0}}^{A}\left(f_{1}\right) \cup M_{\varphi_{0}}^{B}\left(f_{1}\right)\right), B_{\varphi_{2}}=B_{\varphi_{0}}-2$ and $A_{\varphi_{2}}=A_{\varphi_{0}}+1$.

Subcase 3.3.2: $\theta \neq i$.

Since $V\left(H_{s}^{1}\right)$ is $\left(\varphi_{1}\right)_{H_{s}^{1}}$-elementary, there exists a θ-edge e_{0}^{\prime} incident with the vertex a. Thus similarly as in Subcase 3.2, we can define a maximal multi-fan at a with respect to e_{0}^{\prime} and $\left(\varphi_{1}\right)_{H_{s}^{1}}$ in H_{s}^{1}, denoted by $F_{a}^{\prime}=\left(a, e_{0}^{\prime}, b_{0}, \ldots, e_{q}^{\prime}, b_{q}\right)$, such that $\left(\varphi_{1}\right)_{H_{s}^{1}}\left(e_{j}^{\prime}\right) \in\left(\bar{\varphi}_{1}\right)_{H_{s}^{1}}\left(b_{l-1}\right)$ for $j \in[q]$ and some $l \in[j]$. By the assumption (1) and Lemma 3.2 (b), we have $\mu_{F_{a}}\left(a, b^{\prime}\right)=$ $\mu_{H_{s}^{1}+e_{a b}}\left(a, b^{\prime}\right)=\mu$ for any vertex b^{\prime} in $V\left(F_{a}\right) \backslash\{a\}$. Therefore, $V\left(F_{a}^{\prime}\right) \backslash\{a\}$ and $V\left(F_{a}\right) \backslash\{a\}$ are vertex-disjoint, since otherwise we have $V\left(F_{a}^{\prime}\right) \subseteq V\left(F_{a}\right)$ and $\left(\varphi_{1}\right)_{H_{s}^{1}}\left(e_{0}^{\prime}\right)=\theta \in\left(\bar{\varphi}_{1}\right)_{H_{s}^{1}}\left(b^{\prime}\right)$ for some $b^{\prime} \in V\left(F_{a}\right)$ implying $y^{*}=b^{\prime} \in V\left(F_{a}\right)$, which contradicts the assumption (1).

Note that $V\left(F_{a}^{\prime}\right) \backslash\{a\}$ must contain a Δ-vertex in H_{s}^{1}, since otherwise Lemma $3.2(d)$ and the fact $\left(\varphi_{1}\right)_{H_{s}^{1}}\left(e_{0}^{\prime}\right)=\theta \in \bar{\varphi}_{1}\left(y^{*}\right)$ imply that $y^{*} \in V\left(F_{a}^{\prime}\right)$, which contradicts $d_{H_{s}^{1}}\left(y^{*}\right)=\Delta$. Moreover, if F_{a}^{\prime} does not contain any linear sequence to a Δ-vertex in H_{s}^{1} without i-edges, then by Lemma $3.2(d)$ the multi-fan F_{a}^{\prime} contains a vertex w^{*} with $i \in\left(\bar{\varphi}_{1}\right)_{H_{s}^{1}}\left(w^{*}\right)$ and $d_{H_{s}^{1}}\left(w^{*}\right)=\Delta-1$, so w^{*} is not incident with any edge in $M \cup M_{1}^{*}$. Thus F_{a}^{\prime} contains a linear sequence $S^{\prime}=\left(a, e_{l_{1}}^{\prime}, b_{l_{1}}, \ldots, e_{l_{t}}^{\prime}, b_{l_{t}}\right)$, where $e_{l_{1}}^{\prime}=e_{0}^{\prime}, b_{l_{1}}=b_{0}, b_{l_{t}}$ is w^{*} if there exists a vertex $w^{*} \in V\left(F_{a}^{\prime}\right)$ with $d_{H_{s}^{1}}(w)=\Delta-1$ such that w^{*} is incident with a boundary i-edge $h^{*} \in \partial\left(H_{s}^{1}\right)$ but $h^{*} \notin M_{\varphi_{0}}^{A}\left(f_{1}\right)$, and $b_{l_{t}}$ is a Δ-vertex in H_{s}^{1} otherwise. Notice that $b_{l_{t}}$ is not incident with any edge in $M \cup M_{1}^{*}$ by our choice of $b_{l_{t}}$. Moreover, if $b_{l_{t}}=w^{*}$ as defined above, then $b_{l_{t}}=w^{*}$ is not a vertex in $V\left(F_{b}\right)$ by the condition of Subcase 3.3. And $b_{l_{t}} \neq y$ since $V\left(F_{a}^{\prime}\right) \backslash\{a\}$ and $V\left(F_{a}\right) \backslash\{a\}$ are vertex-disjoint. Let $\beta(\beta \neq i)$ be a color in $\bar{\varphi}_{1}(b)$. By Lemma $3.1(b)$, we have $P_{b}(\beta, \theta)=P_{y^{*}}(\beta, \theta)$. We then consider the following two subcases according to the set $\left(V\left(S^{\prime}\right) \backslash\{a\}\right) \cap\left(V\left(S^{*}\right) \backslash\{a\}\right)$.

We first assume that $\left(V\left(S^{\prime}\right) \backslash\{a\}\right) \cap\left(V\left(S^{*}\right) \backslash\{a\}\right)$ is either $\left\{b_{l_{t}}\right\}$ or \emptyset. If $e_{0}^{\prime} \notin P_{b}(\beta, \theta)$, then we do Kempe changes on $P_{\left[b, y^{*}\right]}(\beta, \theta)$, uncolor e_{0}^{\prime} and color $e_{a b}$ with θ. If $e_{0}^{\prime} \in P_{b}(\beta, \theta)$ and $P_{b}(\beta, \theta)$ meets b_{0} before a, then we do Kempe changes on $P_{\left[b, b_{0}\right]}(\beta, \theta)$, uncolor e_{0}^{\prime} and color $e_{a b}$ with θ. If $e_{0}^{\prime} \in P_{b}(\beta, \theta)$ and $P_{y^{*}}(\beta, \theta)$ meets b_{0} before a, then we uncolor e_{0}^{\prime}, do Kempe changes on $P_{\left[y^{*}, b_{0}\right]}(\beta, \theta)$, do a shifting in S^{*} from a to y^{*} and recolor $e_{b y^{*}}$ with β. In all three cases above, the edge $e_{a b}$ is colored with a color in $[k]$ and e_{0}^{\prime} is uncolored. Then we do a shifting in S^{\prime} from b_{0} to $b_{l_{t}}$ which gives a color in $[k]$ to e_{0}^{\prime}, and uncolor $e_{l_{t}}^{\prime}$, and permute color classes of $E\left(H_{s}^{1}+e_{a b}-e_{l_{t}}^{\prime}\right)$ but keep the color i unchanged to match all the boundary edges except i-edges by Lemma 2.4 . Finally recolor h^{*} with the color $\Delta+\mu$ if w^{*} is incident with a boundary i-edge $h^{*} \in \partial\left(H_{s}\right) \cap M_{\varphi_{0}}^{A}\left(f_{1}\right)$. Now we obtain a new matching $M_{2}^{*}=\left(M_{1}^{*} \backslash\left\{e_{a b}\right\}\right) \cup\left\{e_{l_{t}}^{\prime}\right\} \subseteq G-V(M)$ and a new proper $(k+1)$-edge-coloring φ_{2} of $G-\left(M \cup M_{2}^{*}\right)$ such that $f_{u v}$ is no longer a second-improper edge (but becomes a firstimproper edge) with respect to the new prefeasible triple ($M_{2}^{*}, \bar{M}_{\varphi_{2}}^{\Delta+\mu}, \varphi_{2}$), where $\bar{M}_{\varphi_{2}}^{\Delta+\mu}=\emptyset$ or $\{h\}$ or $\left\{h^{*}\right\}$. Moreover, $\bar{M}_{\varphi_{2}}^{\Delta+\mu} \subseteq M_{\varphi_{0}}^{A}\left(f_{1}\right), B_{\varphi_{2}}=B_{\varphi_{0}}-2$ and $A_{\varphi_{2}}=A_{\varphi_{0}}+2$.

Then we assume that there exists $b_{l_{i}}=a_{j} \in\left(V\left(S^{\prime}\right) \backslash\{a\}\right) \cap\left(V\left(S^{*}\right) \backslash\{a\}\right)$ for some $i \in[t-1]$. In this case we assume a_{j} is the closest vertex to a along S^{*}. Note that $b_{l_{i}} \neq b$ as $V\left(F_{a}^{\prime}\right) \backslash\{a\}$ and $V\left(F_{a}\right) \backslash\{a\}$ are vertex-disjoint. Let $\theta_{i}=\left(\varphi_{1}\right)_{H_{s}^{1}}\left(e_{l_{i+1}}^{\prime}\right) \in\left(\bar{\varphi}_{1}\right)_{H_{s}^{1}}\left(b_{l_{i}}\right)$. By Lemma $3.1(b)$, $P_{b}\left(\beta, \theta_{i}\right)=P_{b_{l_{i}}}\left(\beta, \theta_{i}\right)$. If $e_{l_{i+1}}^{\prime} \notin P_{b}\left(\beta, \theta_{i}\right)$, then we do Kempe changes on $\left.P_{\left[b, b_{l_{i}}\right]}\right]\left(\beta, \theta_{i}\right)$, uncolor $e_{l_{i+1}}^{\prime}$ and color $e_{a b}$ with θ_{i}. If $e_{l_{i+1}}^{\prime} \in P_{b}\left(\beta, \theta_{i}\right)$ and $P_{b}\left(\beta, \theta_{i}\right)$ meets $b_{l_{i+1}}$ before a, then we do Kempe changes on $P_{\left[b, b_{i+1}\right]}\left(\beta, \theta_{i}\right)$, uncolor $e_{l_{i+1}}^{\prime}$ and color $e_{a b}$ with θ_{i}. If $e_{l_{i+1}}^{\prime} \in P_{b}\left(\beta, \theta_{i}\right)$ and $P_{b_{l_{i}}}\left(\beta, \theta_{i}\right)$ meets $b_{l_{i+1}}$ before a, then we uncolor $e_{l_{i+1}}^{\prime}$, do Kempe changes on $P_{\left[b_{l_{i}}, b_{l_{i+1}}\right]}\left(\beta, \theta_{i}\right)$, do a shifting in S^{*} from a to $b_{l_{i}}$ and recolor the edge $e_{l_{i}}=e_{b b_{l_{i}}} \in E_{H_{s}^{1}}\left(b, b_{l_{i}}\right)$ with β. In all three cases above, the edge $e_{a b}$ is colored with a color in $[k]$ and $e_{l_{i+1}}^{\prime}$ is uncolored. Then we do a shifting in S^{\prime} from $b_{l_{i+1}}$ to $b_{l_{t}}$ which gives a color in $[k]$ to $e_{l_{i+1}}^{\prime}$, and uncolor the edge $e_{l_{t}}^{\prime}$, and permute color classes of $E\left(H_{s}^{1}+e_{a b}-e_{l_{t}}^{\prime}\right)$ but keep the color i unchanged to match all the boundary edges except i-edges by Lemma 2.4 . Finally recolor h^{*} with $\Delta+\mu$ if w^{*} is incident with a boundary i-edge $h^{*} \in \partial\left(H_{s}\right) \cap M_{\varphi_{0}}^{A}\left(f_{1}\right)$. Now we obtain a new
matching $M_{2}^{*}=\left(M_{1}^{*} \backslash\left\{e_{a b}\right\}\right) \cup\left\{e_{l_{t}}^{\prime}\right\} \subseteq G-V(M)$ and a new proper $(k+1)$-edge-coloring φ_{2} of $G-\left(M \cup M_{2}^{*}\right)$ such that $f_{u v}$ is no longer a second-improper edge (but becomes a firstimproper edge) with respect to the new prefeasible triple $\left(M_{2}^{*}, \bar{M}_{\varphi_{2}}^{\Delta+\mu}, \varphi_{2}\right)$, where $\bar{M}_{\varphi_{2}}^{\Delta+\mu}=\emptyset$ or $\{h\}$ or $\left\{h^{*}\right\}$. Moreover, $\bar{M}_{\varphi_{2}}^{\Delta+\mu} \subseteq M_{\varphi_{0}}^{A}\left(f_{1}\right), B_{\varphi_{2}}=B_{\varphi_{0}}-2$ and $A_{\varphi_{2}}=A_{\varphi_{0}}+2$.

In all above Cases 1-3, the second-improper edge $f_{u v}$ in M is no longer a second-improper edge with respect to one new prefeasible triple, say $\left(M^{*^{\prime}}, \bar{M}_{\varphi^{\prime}}^{\Delta+\mu}, \varphi^{\prime}\right)$ uniformly. Observe that all our operations in Cases 1-3 are inside $G\left[V\left(H_{s}\right)\right]$ and $G\left[V\left(H_{s}^{\prime}\right)\right]$, and on at most two possible edges respectively in $\partial\left(H_{s}\right) \cap M_{\varphi_{0}}^{A}\left(f_{1}\right)$ and $\partial\left(H_{s^{\prime}}\right) \cap M_{\varphi_{0}}^{A}\left(f_{1}\right)$. Recall that $M_{\varphi_{0}}^{A}\left(f_{1}\right)$ is a matching and all maximal k-dense subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ are vertex-disjoint. Thus all other maximal k-dense subgraphs of $G-\left(M \cup M_{0}^{*}\right)$ distinct with H_{s} and $H_{s^{\prime}}$ are also maximal k-dense subgraphs of $G-\left(M \cup M^{*^{\prime}}\right)$. For any other edges in M_{0}^{*} is still fully saturated with respect to the corresponding maximal k-dense subgraphs distinct with H_{s} and $H_{s^{\prime}}$. Recall that M is a distance-3 matching, and each maximal k-dense subgraph of $H_{1}, H_{2}, \ldots, H_{t}$ has diameter at most 2. Thus for all other second-improper edges distinct with $f_{u v}$ in M, we can do the same operations as we did for $f_{u v}$ in Cases 1-3 such that the number of second-improper edges becomes zero with respect to one new prefeasible triple, say $\left(M^{*^{\prime \prime}}, \bar{M}_{\varphi^{\prime \prime}}^{\Delta+\mu}, \varphi^{\prime \prime}\right)$. By operations in Cases $1-3$ we have $\bar{M}_{\varphi^{\prime \prime}}^{\Delta+\mu} \subseteq\left(M_{\varphi_{0}}^{A}\left(f_{1}\right) \cup M_{\varphi_{0}}^{B}\left(f_{1}\right)\right)$, Then by giving the color $\Delta+\mu$ to all edges in $M_{\varphi^{\prime \prime}}^{A}\left(f_{1}\right)=\left(M_{\varphi_{0}}^{A}\left(f_{1}\right) \cup M_{\varphi_{0}}^{B}\left(f_{1}\right)\right) \backslash \bar{M}_{\varphi^{\prime \prime}}^{\Delta+\mu}$, the number of first-improper edges also becomes zero, and we get the final feasible triple $\left(M^{*}, \bar{M}_{\varphi}^{\Delta+\mu}, \varphi\right)$, where $\bar{M}_{\varphi}^{\Delta+\mu}=M_{\varphi_{0}}^{A}\left(f_{1}\right) \cup M_{\varphi_{0}}^{B}\left(f_{1}\right)$. The proof is now finished.

References

[1] M.O. Albertson, You can't paint yourself into a corner, J. Combin. Theory Ser. B, 73:189-194, 1998.
[2] M.O. Albertson and E.H. Moore, Extending graph colorings using no extra colors, Discrete Math., 234:125-132, 2001.
[3] L.D. Andersen, On edge-colourings of graphs, Math. Scand., 40:161-175, 1977.
[4] M. Behzad, Graphs and their chromatics numbers, ProQuest LLC, Ann Arbor, MI, 1965. Dissertation (Ph.D.)-Michigan State University.
[5] L.W. Beineke and R.J. Wilson, editor, Topics in chromatic graph theory, volume 156 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2015, Academic consultant: Bjarne Toft.
[6] C. Berge and J. C. Fournier, A short proof for a generalization of Vizing's theorem, Discrete Math., 15(3):333-336, 1991.
[7] G. Chen, G. Jing and W. Zang, Proof of the Goldberg-Seymour Conjecture on edgecolorings of multigraphs. Submitted.
[8] K. Edwards, A. Girão, J. Heuvel, R.J. Kang, G.J. Puleo and J. Sereni, Extension from precoloured sets of edges, Electron. J. Combin., 25:P3.1, 2018.
[9] A. Girão and R.J. Kang, A precolouring extension of Vizing's theorem, J. Graph Theory, 1-6, 2019.
[10] M.K. Goldberg, On multigraphs of almost maximal chromatic class (in Russian), Diskret. Analiz, 23:3-7, 1973.
[11] M.K. Goldberg, A remark on the chromatic class of a multigraph (in Russian), Vycisl. Mat. i. Vycisl. Tehn. (Kharkow), 5:128-130, 1974.
[12] M.K. Goldberg, Edge-coloring of multigraphs:recolring technique, J. Graph Theory, 8(1)123-137, 1984.
[13] R.G. Gupta, Studies in the Theory of Graphs, PhD dissertation, Tata Institute of Fundamental Research, Bombay, 1967.
[14] P.D. Seymour, On Multi-Colourings of Cubic Graphs, and Conjectures of Fulkerson and Tutte, Proc. London Math. Soc., 38:423-460, 1979.
[15] M. Stiebitz, D. Scheide, B. Toft and L.M. Favrholdt, Graph edge coloring, Wiley Series in Discrete Mathematics and Optimization. John Wiley \& Sons, Inc., Hoboken, NJ, 2012. Vizing's theorem and Goldberg's conjecture, With a preface by Stiebitz and Toft.
[16] C. Thomassen, Color-critical graphs on a fixed surface, J. Combin. Theory Ser. B, 70:67-100, 1997.
[17] V.G. Vizing, Critical graphs with given chromatic class, Diskret. Analiz, 3:29-39, 1965.
[18] V.G. Vizing, Some unsolved problems in graph theory, Uspehi Mat. Nauk, 23:117-134, 1968.

[^0]: *yacao@mail.wvu.edu. Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA.
 ${ }^{\dagger}$ gchen@gsu.edu. Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA. Partially supported by NSF grant DMS-1855716.
 ${ }^{\ddagger}$ gjing@augusta.edu. Department of Mathematics, Augusta University, Augusta, GA 30912, USA. Partially supported by NSF grant DMS-2001130.
 ${ }^{\text {§ }}$ qixuli-1212@163.com. Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA. Partially supported by NSFC grant 11801135.
 ${ }^{\text {§ }}$ sshan12@ilstu.edu. Department of Mathematics, Illinois State University, Normal, IL 61790, USA.

