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Abstract. Carvalho, Lucchesi and Murty (Journal of Combinatorial Theory, Series B 92

(2004) 319-324, Theorem 3.5) presented a proof of a theorem of Reed and Wakabayashi that a

brick G is non-solid if and only if there exists two vertex-disjoint odd cycles C1 and C2 such that

G − V (C1 ∪ C2) has a perfect matching. Consequently, every brick with no two vertex-disjoint

odd cycles is solid. Recently, Lucchesi, Carvalho, Kothari and Murty (SIAM Journal on Discrete

Mathematics, 32(2): (2018)1478-1501) constructed infinite families of solid bricks containing two

vertex-disjoint odd cycles. Noticing that none of these graphs is cubic, they conjectured that

no cubic solid brick contains two vertex-disjoint odd cycles. In this note, we present an infinite

family graphs showing this conjecture fails. We further show that the minimum counterexample

is unique, which has 12 vertices.
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1 Introduction

All graphs considered in this paper are simple graphs, i.e., graphs with finite number of

vertices and no loops or parallel edges. We will generally follow the notation and terminology

used by Bondy and Murty in [1]. Let G = (V,E) be a graph, X ⊂ V , and X = V − X be

the complement of X. The set of boundary edges of X, denoted by ∂(X), is the set of edges

with exact one end in X and one end in X. Clearly, ∂(X) = ∂(X) is an edge-cut of G, which is

called simple edge-cut (SEC) of G. We call X and X the shores of ∂(X). Let G/X and G/X

be obtained from G by contracting X and X, respectively, and call them ∂(X)-contractions of

G. We call SEC ∂(X) trivial if |X| = 1 or |X| = 1.
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A connected graph with at least two vertices is matching covered if each of its edges is

contained in some perfect matching. Let G be a matching covered graph. An SEC ∂(X) of G

is called a separating cut if both the ∂(X)-contractions of G are also matching covered, and is

called a tight cut if |∂(X) ∩M | = 1 for each perfect matching M of G. Obviously, every trivial

cut is a tight cut and every tight cut is separating. We call a matching covered graph a brick

if it is nonbipartite and free of nontrivial tight cuts, and a brace if it is bipartite and free of

nontrivial tight cuts. Edmonds et al. [5] (also see Lovász [7], Szigeti[10] and Carvalho et al. [4])

showed that a graph G is a brick if and only if G is 3-connected and G − x − y has a perfect

matching for any two distinct vertices x, y ∈ V (G).

A matching covered graph is solid if each of its separating cuts is tight. It can be shown that

every bipartite matching covered graph is solid. So, a solid brick is a nonbipartite matching

covered graph containing no non-trivial separating cut. Solid bricks have an interesting inter-

pretation in terms of their perfect matching polytopes. For instance, Lovász [7] proved that

any matching covered graph can be decomposed into a unique list of bricks and braces by a

procedure called the tight cut decomposition procedure. We refer to [2, 3, 8] for literatures on

solid bricks.

A graph is odd-intercyclic if it does not contain two vertex-disjoint odd cycles. Reed and

Wakabayashi obtained the following characterization of solid bricks (unpublished), and Carvalho,

Lucchesi and Murty [2] presented a proof of it.

Theorem 1. A brick G is non-solid if and only if it has two vertex-disjoint odd cycles C1 and

C2 such that G− (V (C1) ∪ V (C2)) has a perfect matching.

Theorem 1 has the following consequence.

Corollary 2. Every odd-intercyclic brick is solid.

Recently, Lucchesi, Carvalho, Kothari and Murty [8] showed the converse of Corollary 2 is

not true by providing an infinite family of solid non-odd-intercyclic bricks. They noticed that

none of these examples are cubic graphs (3-regular graphs). This observation led them to believe

the converse of Corollary 2 holds for cubic graphs and made the following conjecture.

Conjecture 3. Every cubic solid brick is odd-intercyclic.

In this note, we construct an infinite family of graphs G = {Gk | k ≥ 0} and prove that every

Gk is a counterexample to Conjecture 3.
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Figure 1: (a) G0; (b) Gk, (k ≥ 1).

Construction of G. We start with G0, let Q1 = u1u2u3u4u1 and Q2 = v1v2v3v4v1 be two

4-cycles, and let P = u′u and P ′ = v′v be two new edges, that are vertex-disjoint from Q1 and

Q2. Let G0 be obtained from P ∪P ′∪Q1∪Q2 by adding edges uu4, uv2, u
′u2, u

′v4, vu1, vv3, v
′u3

and v′v1. Graph G0 is depicted in Figure 1 (a). In G0, C1 := uu′u2u3u4u and C2 := vv′v1v2v3v

are two vertex-disjoint 5-cycles.

For each integer k ≥ 1, let Gk be obtained from G0 by replacing edges P = u′u and P ′ = v′v

with two new paths of 2k + 2 vertices: P = u′x1x2 . . . x2ku and P ′ = v′y1y2 · · · y2kv, and adding

2k edges {x1y1, x2y2, . . . , x2ky2k}. Clearly, in Gk, C1 := uPu′u2u3u4u and C2 := vP ′v′v1v2v3v

are two vertex-disjoint odd cycles with 2k + 5 vertices.

The following result shows that each Gk in G is a counterexample to Conjecture 3.

Theorem 4. For each k ≥ 0, Gk is a solid brick.

Moreover, the following result shows that G0 is the unique counterexample with minimum

number of vertices.

Theorem 5. Every cubic solid brick that is not odd-intercyclic has 12 or more vertices. More-

over, if it has precisely 12 vertices then it is isomorphic to G0.

The proofs of Theorems 4 and 5 will be given in Section 3 after we present some properties

concerning matching covered cubic graphs in Section 2.

2 Preliminaries

In this section, we present some properties of cubic matching covered graphs which will be

used in the proof of the main result. Let k be a positive integer. Recall that a graph G is k-edge-

connected if |∂(X)| ≥ k for every edge cut of G. A graph G is essentially (k + 1)-edge-connected

if it is k-edge-connected, and |∂(X)| ≥ k + 1 for every non-trivial edge cut ∂(X). For any m, an

edge cut with m edges is called an m-cut. The following is a corollary of the well-known Tutte’s

Perfect Matching Theorem.
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Lemma 6 (Plesńık [9]). Every 2-edge-connected cubic graph is matching covered.

Note that if a 2-edge-connected cubic graph contains a 2-cut, then it contains a non-trivial

3-cut. So, a 2-edge-connected cubic graph is essentially 4-edge-connected if it does not contain

nontrivial 3-cuts. The brick C6 (the complement graph of a cycle with six vertices) shows that a

cubic brick maybe not essentially 4-edge-connected. However, by adding the condition of being

solid, we have the following result.

Lemma 7. Every solid cubic brick is essentially 4-edge-connected.

Proof. Suppose on the contrary there exists a solid cubic brick G that contains a nontrivial edge

cut D = ∂(X) with |D| ≤ 3. Since all bricks are 3-connected, D contains three independent

edges. Thus, each D-contraction of G is a simple cubic graph. Now, we claim that each D-

contraction of G is 2-edge-connected. Otherwise, assume without loss generality that e is a

cut-edge of G/X. Since G is 3-connected, one end of e must be new contracted vertex of X.

Again, since G is 3-connected, G[X] is connected, which in return shows e is not a cut-edge

of G/X, giving a contradiction. By Lemma 6, each D-contraction of G is matching covered.

Whence D is a non-trivial separating cut of G. So G is not solid, giving a contradiction.

Since a triangle of a cubic graph always leads to a 3-cut, the following simple observation is

an immediate consequence of the Lemma 7.

Lemma 8. If a cubic solid brick contains a triangle, then it is K4.

Let G be a graph, and let e := xy and e′ := x′y′ be two independent edges of G. The

following two-step operation is called a strict edge-extension of G: (1) subdividing edges e and

e′ by inserting new vertices v and v′, respectively, and (2) adding a new edge vv′.

Lemma 9 (Bondy and Murty [1], Exercise 9.4.7). A strict edge-extension of an essentially

4-edge-connected cubic graph G is also essentially 4-edge-connected.

Recently, Kothari, Carvalho, Little and Lucchesi [6] proved that each tight cut of a 2-edge-

connected cubic graph is a 3-cut. This implies the following theorem immediately.

Theorem 10. [6] Every essentially 4-edge-connected cubic nonbipartite graph is a brick.

3 Proofs of Theorems 4 and 5

3.1 Proof of Theorem 4.

We first prove the following three claims.

Claim 1. Every graph in G is essentially 4-edge-connected.

4



Proof. For each positive integer n ≥ 3, let Qn denote the n-hypercube graph. It is well-known

that Qn is essentially 4-edge-connected. Note that the graph G0 ∈ G is a strict edge-extension

of Q3. By Lemma 9, G0 is essentially 4-edge-connected. Furthermore, each member Gi ∈ G,

where i ≥ 1, is a strict edge-extension of the preceding member Gi−1. Thus, by Lemma 9, each

member of G is essentially 4-edge connected.

Claim 2. Every graph in G is a brick.

Proof. Let Gk ∈ G. Clearly, Gk ∈ G is cubic. Since Gk contains two vertex-disjoint odd cycles,

it is nonbipartite. By Claim 1, Gk is essentially 4-edge-connected. Then, by Theorem 10, Gk is

a brick.

Claim 3. Every graph in G is solid.

Proof. Let Gk be an arbitrary graph in G. Following the definition of Gk, ek and fk, we see that

G − ek − fk is a bipartite graph. Let C1 and C2 be two arbitrary vertex-disjoint odd cycles of

Gk. Then, each of C1 and C2 contains precisely one of ek or fk. We may thus assume that C1

contains ek and C2 contains fk. Notice that in G− V (Q1 ∪Q2), two vertex-disjoint paths from

{u, v} to {u′, v′} are uniquely determined, which are ux2kx2k−1 . . . x1u
′ and vy2ky2k−1 . . . y1v

′;

and in G∗ = G− {x1, y2, . . . , x2k, y2k}, if R1 and R2 are two vertex-disjoint paths connecting u

to u′ and v to v′, respectively, then either R1 ∩ Q1 = ∅ and R2 ∩ Q2 = ∅ or R1 ∩ Q2 = ∅ and

R2 ∩Q1 = ∅, and in either case G∗ − V (R1 ∪R2) ∼= K2 is the union of two isolate vertices. So,

G − V (C1 ∪ C2) is a union of two isolate vertices which does not have a perfect matching. By

Theorem 1, Gk is solid.

Combining Claims 2 and 3, we see that Gk is a cubic solid brick, which completes the proof

of Theorem 4.

Following, the proof of Theorem 5 will be given.

3.2 Proof of Theorem 5

Let G = (V,E) be a non-odd-intercyclic cubic solid brick with minimum number of ver-

tices. Let n = |V |. By Lemma 8, G does not contain a triangle, so the length of any odd cycle of G

is at least 5. Let C1 and C2 be any two vertex-disjoint odd cycles of G. So, n ≥ |C1|+|C2| ≥ 10. If

n = 10, then |C1| = |C2| = 5. This implies that G−V (C1)−V (C2) is the empty graph. Therefore,

G is non-solid by Theorem 1, which giving a contradiction. Thus, n ≥ 12.

Suppose n = 12. We show that G is isomorphic to G0. If one of cycles C1 and C2 has more

than 5 vertices, then V (G) = V (C1 ∪C2). By Theorem 1, G is non-solid, a contradiction. Thus,

|C1| = |C2| = 5 and, again by Theorem 1, G − V (C1) − V (C2) ∼= K2 is the union two isolated

vertices, say x and y. Let C1 = x1x2 · · ·x5x1 and C2 = y1y2 · · · y5y1. Since G is triangle-free

by Lemma 8, both C1 and C2 are induced cycles, and the vertex x is adjacent to exactly two
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vertices in one of C1 and C2, and one vertex in the other. So does y. If both x and y are adjacent

to two vertices in the same cycle, say C1, then C2 has a chord (since G is cubic), giving a

contradiction. So, we may assume that N(x) ∩ V (C1) = {x1, x3}, N(y) ∩ V (C2) = {y1, y3}. Let

C ′1 := G[(V (C1) ∪ x) \ x2] and C ′2 := G[(V (C2) ∪ y) \ y2].

Claim 4. {x, y, x2, y2} is an independent vertex set of G.

Proof. Note that in G[{x, y, x2, y2}], there are only three possible edges x2y2, xy2 and yx2.

If x2y2 ∈ E, then G−V (C ′1∪C ′2) has a perfect matching x2y2; if xy2 ∈ E, then G−V (C1∪C ′2)
has a perfect matching xy2; if x2y ∈ E, then G − V (C ′1 ∪ C2) has a perfect matching x2y. In

either of the above three cases, by Theorem 1, G is non-solid, a contradiction.

Since G is cubic and triangle-free, there is a perfect matching between X = {x, x2, x4, x5}
and Y = {y, y2, y4, y5}. Relabeling vertices in V (C1) and vertices in V (C2) if necessary, we may

assume xy5 ∈ E and yx5 ∈ E. Then, x2y4 ∈ E and x4y2 ∈ E. So, G is isomorphic to G0, where

cycle xx1x2x3x4x5yy1y2y3y4y5x corresponds to cycle u1u2u3u4uu
′v4v3v2v1v

′vu1.
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