Average degrees of edge-chromatic critical graphs

Yan Caoa, Guantao Chena, Suyun Jiangb,c†, Huiqing Liud*, Fuliang Lue*

a Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, United States
b Institute for Interdisciplinary Research, Jianghan University, Wuhan, Hubei 430056, China
c School of Mathematics, Shandong University, Jinan, Shandong 250100, China
d Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistic, Hubei University, Wuhan, Hubei 430062, China
e School of Mathematics and Statistics, Linyi University, Linyi, Shandong 276000, China

\textbf{Abstract}

Let G be a simple graph, and let $\Delta(G)$, $\overline{d}(G)$ and $\chi'(G)$ denote the maximum degree, the average degree and the chromatic index of G, respectively. We called G edge-Δ-critical if $\chi'(G) = \Delta(G) + 1$ and $\chi'(H) \leq \Delta(G)$ for every proper subgraph H of G. Vizing in 1968 conjectured that if G is an edge-Δ-critical graph of order n, then $\overline{d}(G) \geq \Delta(G) - 1 + \frac{3}{n}$. We prove that for any edge-Δ-critical graph G, $\overline{d}(G) \geq \min \left\{ \frac{2\sqrt{2}\Delta - 3 - \sqrt{2}}{2\sqrt{2} + 1}, \frac{3\Delta(G)}{4} - 2 \right\}$, that is,

$$\overline{d}(G) \geq \begin{cases} \frac{3}{2}\Delta(G) - 2 & \text{if } \Delta(G) \leq 75; \\ \frac{2\sqrt{2}\Delta - 3 - \sqrt{2}}{2\sqrt{2} + 1} \approx 0.7388\Delta(G) - 1.153 & \text{if } \Delta(G) \geq 76. \end{cases}$$

This result improves the best known bound $\frac{2}{3}(\Delta(G) + 2)$ obtained by Woodall in 2007 for $\Delta(G) \geq 41$.

\textbf{Keywords:} edge-k-coloring; edge-critical graphs; Vizing’s Adjacency Lemma

\section{Introduction}

All graphs in this paper, unless otherwise stated, are simple graphs. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Denote by $\Delta(G)$ the maximum degree of G. An

*Partially supported by NSFC of China (Nos. 11671232, 61501208, 11571096, 61373019, 11671186).
†Corresponding author. E-mail addresses: ycao17@gsu.edu (Y. Cao), gchen@gsu.edu (G. Chen), jiang.suyun@163.com (S. Jiang), hql_2008@163.com (H. Liu), flianglu@163.com (F. Lu).
edge-k-coloring of a graph G is a mapping $\varphi : E(G) \to \{1, 2, \ldots, k\}$ such that $\varphi(e) \neq \varphi(f)$ for any two adjacent edges e and f. We call $\{1, 2, \ldots, k\}$ the color set of φ. Denote by $\mathcal{C}^k(G)$ the set of all edge-k-colorings of G. The chromatic index $\chi'(G)$ is the least integer $k \geq 0$ such that $\mathcal{C}^k(G) \neq \emptyset$. We call G class one if $\chi'(G) = \Delta(G)$. Otherwise, Vizing [13] proved $\chi'(G) = \Delta(G) + 1$ and G is said to be of class two. An edge e is called critical if $\chi'(G - e) < \chi'(G)$, where $G - e$ is the subgraph obtained from G by removing the edge e. A graph G is called (edge-)\Delta-critical if $\chi'(G) = \Delta(G) + 1$ and $\chi'(H) \leq \Delta(G)$ for any proper subgraph H of G. Clearly, if G is \Delta-critical, then G is connected and $\chi'(G - e) = \Delta(G)$ for any $e \in E(G)$. Let $\bar{d}(G)$ denote the average degree of a graph G. Vizing [15] made the following conjecture in 1968.

Conjecture 1. [Vizing’s Average Degree Conjecture] If G is a \Delta-critical graph of n vertices, then $\bar{d}(G) \geq \Delta(G) - 1 + \frac{3}{n}$.

The conjecture has been verified for graphs with $\Delta(G) \leq 6$, see [4, 6, 7, 9]. In general, there are a few results on the lower bound for $\bar{d}(G)$. Let G be a \Delta-critical graph with maximum degree Δ. Fiorini [3] showed, for $\Delta \geq 2$,

$$\bar{d}(G) \geq \begin{cases} \frac{1}{2}(\Delta + 1) & \text{if } \Delta \text{ is odd;} \\ \frac{1}{2}(\Delta + 2) & \text{if } \Delta \text{ is even.} \end{cases}$$

Haile [5] improved the bounds as follows.

$$\bar{d}(G) \geq \begin{cases} \frac{3}{5}(\Delta + 2) & \text{if } \Delta = 9, 11, 13; \\ \Delta - \frac{12}{\Delta+4} & \text{if } \Delta \geq 10, \Delta \text{ is even;} \\ \frac{\Delta+6}{15+\sqrt{29}} & \text{if } \Delta = 15; \\ \frac{\Delta+7}{2} - \frac{16}{\Delta+5} & \text{if } \Delta \geq 17, \Delta \text{ is odd.} \end{cases}$$

Sanders and Zhao [10] showed $\bar{d}(G) \geq \frac{1}{2}(\Delta + \sqrt{2\Delta - 1})$ for $\Delta \geq 2$. Woodall [17] improved the bound to $\bar{d}(G) \geq \frac{t(\Delta+t-1)}{2t-1}$, where $t = \lceil \sqrt{\Delta/2} \rceil$. Improving Vizing’s Adjacency Lemma, Woodall [16] improved the coefficient of Δ from $\frac{1}{2}$ to $\frac{2}{3}$ as follows.

$$\bar{d}(G) \geq \begin{cases} \frac{2}{3}(\Delta + 1) & \text{if } \Delta \geq 2; \\ \frac{2}{4}\Delta + 1 & \text{if } \Delta \geq 8; \\ \frac{2}{3}(\Delta + 2) & \text{if } \Delta \geq 15. \end{cases}$$

In the same paper, Woodall provided an example demonstrating that the above result cannot be improved by the use of his new adjacency Lemmas (see Lemma 2 and Lemma 3).
and Vizing’s Adjacency Lemma alone. By proving a few stronger properties of Δ-critical graphs, we get the following theorem.

Theorem 1. If G is a Δ-critical graph, then $\bar{d}(G) \geq \min\{\frac{\sqrt{2}\Delta - 3 - \sqrt{\Delta}}{2\sqrt{2} + 1}, \frac{\Delta(G) - 2}{4}\}$, that is,

$$\bar{d}(G) \geq \begin{cases} \frac{\Delta(G) - 2}{4} & \text{if } \Delta(G) \leq 75; \\ \frac{2\sqrt{2}\Delta - 3 - \sqrt{\Delta}}{2\sqrt{2} + 1} & \text{if } \Delta(G) \geq 76. \end{cases}$$

We will prove a few technical lemmas in Section 2 and give the proof of Theorem 1 in Section 3. We will use the following terminology and notation. Let G be a graph and x be a vertex of G. Denote by $N(x)$ the neighborhood, and by $d(x)$ the degree of x, i.e., $d(x) = |N(x)|$. For any nonnegative integer m, we call a vertex x an m-vertex if $d(x) = m$, a ($< m$)-vertex if $d(x) < m$, and a ($> m$)-vertex if $d(x) > m$. Similarly, we call a neighbor y of x an m-neighbor, a ($< m$)-neighbor and a ($> m$)-neighbor if $d(y) = m$, $< m$ and $> m$, respectively.

Let G be a graph, $F \subseteq E(G)$ be an edge set, and let $\varphi \in \mathcal{C}^k(G - F)$ be a coloring for some integer $k \geq 0$. For a vertex $v \in V(G)$, define the two color sets $\varphi(v) = \{\varphi(e) : e \text{ is incident with } v \text{ and } e \notin F\}$ and $\bar{\varphi}(v) = \{1, 2, \ldots, k\} \setminus \varphi(v)$. We call $\varphi(v)$ the set of colors seen by v and $\bar{\varphi}(v)$ the set of colors missing at v. A set $X \subseteq V(G)$ is called elementary with respect to φ if $\bar{\varphi}(u) \cap \bar{\varphi}(v) = \emptyset$ for every two distinct vertices $u, v \in X$. For any color α, let E_{α} denote the set of edges assigned color α. Clearly, E_{α} is a matching of G. For any two colors α and β, the components of the spanning subgraph of G with edge set $E_{\alpha} \cup E_{\beta}$, named (α, β)-chains, are even cycles and paths with alternating color α and β. For a vertex v of G, we denote by $P_v(\alpha, \beta, \varphi)$ the unique (α, β)-chain that contains the vertex v. Let $\varphi/P_v(\alpha, \beta, \varphi)$ be the coloring obtained from φ by switching colors α and β on the edges on $P_v(\alpha, \beta, \varphi)$. This operation is called a Kempe change. If v is not incident with any edge of color α or β, then $P_v(\alpha, \beta, \varphi) = \{v\}$ (a path of length 0), and $\varphi/P_v(\alpha, \beta, \varphi) = \varphi$.

2 Lemmas

Let G be a graph and q be a positive number. For each edge $xy \in E(G)$, let $\sigma_q(x, y) = |\{z \in N(y) \setminus \{x\} : d(z) \geq q\}|$, the number of neighbors of y (except x) with degree at least q. Vizing studied the case $q = \Delta(G)$ and obtained the following result.

Lemma 1. [Vizing’s Adjacency Lemma [14]] If G is a Δ-critical graph, then $\sigma_{\Delta(G)}(x, y) \geq \Delta(G) - d(x) + 1$ for every $xy \in E(G)$.

3
Woodall [16] studied $\sigma_q(x, y)$ for the case $q = 2\Delta(G) - d(x) - d(y) + 2$ and obtained the following two results. For convenience, we let $\sigma(x, y) = \sigma_q(x, y)$ when $q = 2\Delta(G) - d(x) - d(y) + 2$. Let $xy \in E(G)$. To study the difference between $\sigma(x, y)$ and $\Delta(G) - d(x) + 1$, Woodall defined the following two parameters.

$$p_{\min}(x) := \min_{y \in N(x)} \sigma(x, y) - \Delta(G) + d(x) - 1,$$

$$p(x) := \min \left\{ p_{\min}(x), \left\lfloor \frac{d(x)}{2} \right\rfloor - 1 \right\}.$$

(Lemma 2. [Woodall [16]] Let xy be an edge in a Δ-critical graph G. Then there are at least $\Delta(G) - \sigma(x, y) \geq \Delta(G) - d(y) + 1$ vertices $z \in N(x) \setminus \{y\}$ such that $\sigma(x, z) \geq 2\Delta(G) - d(x) - \sigma(x, y)$.

(Lemma 3. [Woodall [16]] Every vertex x in a Δ-critical graph has at least $d(x) - p(x) - 1$ neighbors y for which $\sigma(x, y) \geq \Delta(G) - p(x) - 1$.

Inspired by Woodall’s parameters (1) and (2), for any positive number q, we define the following two parameters.

$$p_{\min}(x, q) := \min_{y \in N(x)} \sigma_q(x, y) - \Delta(G) + d(x) - 1$$
and

$$p(x, q) := \min \left\{ p_{\min}(x, q), \left\lfloor \frac{d(x)}{2} \right\rfloor - 3 \right\}.$$

The following lemma is a generalization of Lemma 2, which serves as a key result.

(Lemma 4. Let xy be an edge in a Δ-critical graph G and q be a positive number. If $\Delta(G)/2 < q \leq \Delta(G) - d(x)/2 - 2$, then x has at least $\Delta(G) - \sigma_q(x, y) - 2$ vertices $z \in N(x) \setminus \{y\}$ such that $\sigma_q(x, z) \geq 2\Delta(G) - d(x) - \sigma_q(x, y) - 4$.

Due to its length, the proof of Lemma 4 will be placed at the end of this section. The following is a consequence of it.

(Lemma 5. Let G be a Δ-critical graph, $x \in V(G)$ and q be a positive number. If $\Delta(G)/2 < q \leq \Delta(G) - d(x)/2 - 2$, then x has at least $d(x) - p(x, q) - 3$ neighbors y for which $\sigma_q(x, y) \geq \Delta(G) - p(x, q) - 5$.

Proof. Let $y \in N(x)$ such that $p_{\min}(x, q) = \sigma_q(x, y) - \Delta(G) + d(x) - 1$, and $\Delta = \Delta(G)$.

If $p(x, q) = p_{\min}(x, q)$, by Lemma 4, x has at least $\Delta - \sigma_q(x, y) - 2 - d(x) - p_{\min}(x, q) - 3$ vertices $z \in N(x) \setminus \{y\}$ such that $\sigma_q(x, z) \geq 2\Delta - d(x) - \sigma_q(x, y) - 4 = \Delta - p_{\min}(x, q) - 5$.

4
If \(p(x, q) = \left\lfloor \frac{d(x)}{2} \right\rfloor - 3 < p_{\min}(x, q) \), then for every \(y \in N(x) \), \(\sigma_q(x, y) > \Delta - d(x) + 1 + \left\lfloor \frac{d(x)}{2} \right\rfloor - 3 \geq \Delta - \left\lfloor \frac{d(x)}{2} \right\rfloor - 3 = \Delta - p(x, q) - 6 \). So \(\sigma_q(x, y) \geq \Delta - p(x, q) - 5 \). \(\square \)

Our approach is inspired by the recent development of the Tashkinov tree technique for multigraphs. Let \(G \) be a multigraph without loops, \(e_1 \) be an edge of \(G \) with endvertices \(y_0 \) and \(y_1 \) and \(\varphi \in C^k(G - e_1) \). A Tashkinov tree \(T \) with respect to \(G, e_1, \varphi \) is an alternating sequence \(T = (y_0, e_1, y_1, \ldots, e_p, y_p) \) with \(p \geq 1 \) consisting of edges \(e_1, e_2, \ldots, e_p \) and vertices \(y_0, y_1, \ldots, y_p \) such that the following two conditions hold.

1. The vertices \(y_0, y_1, \ldots, y_p \) are distinct and \(e_i = y_{i-1}y_i \) for each \(1 \leq i \leq p \), where \(r < i \);

2. for every edge \(e_i \) with \(2 \leq i \leq p \), there is a vertex \(y_h \) with \(0 \leq h < i \) such that \(\varphi(e_i) \in \varphi(y_h) \).

Tashkinov [12] introduced this concept in his work on the well-known Goldberg’s Conjecture. In the above definition, if we replace condition (1) with the edges \(e_1, e_2, \ldots, e_p \) are distinct and \(e_i = y_0y_i \) for every \(i \), then \(T \) is a multi-fan, as defined in [11]; if, in addition, \(\varphi(e_i) \in \varphi(y_{i-1}) \) for every \(i \geq 2 \), then \(T \) is a Vizing fan. Stiebitz et al. [11] showed that all multi-fans are elementary. In the definition of Tashkinov tree, if \(e_i = y_{i-1}y_i \) for every \(i \), i.e., \(T \) is a path with end-vertices \(y_0 \) and \(y_p \), then \(T \) is a Kierstead path, which was introduced by Kierstead [8] in studying edge-colorings of multigraphs. For simple graphs, following Kierstead’s proof, Zhang [18] noticed that for a Kierstead path \(P \) the set \(V(P) \) is elementary if \(G \) is \(\Delta \)-critical and \(d(y_i) < \Delta \) for every \(i \) with \(2 \leq i \leq p \). It is not difficult to see that every Kierstead path \(P \) with three vertices is a Vizing fan, so \(V(P) \) is elementary if \(G \) is \(\Delta \)-critical. Kostochka and Stiebitz studied Kierstead paths with four vertices and obtained the following result.

Lemma 6. [Kostochka and Stiebitz [11]] Let \(G \) be a graph with maximum degree \(\Delta \) and \(\chi'(G) = \Delta + 1 \). Let \(e_1 \in E(G) \) be a critical edge and \(\varphi \in C^\Delta(G - e_1) \). If \(K = (y_0, e_1, y_1, e_2, y_2, e_3, y_3) \) is a Kierstead path with respect to \(e_1 \) and \(\varphi \), then the following statements hold:

1. \(\varphi(y_0) \cap \varphi(y_1) = \emptyset \);

2. if \(d(y_2) < \Delta \), then \(V(K) \) is elementary with respect to \(\varphi \);

3. if \(d(y_1) < \Delta \), then \(V(K) \) is elementary with respect to \(\varphi \);

4. if \(\Gamma = \varphi(y_0) \cup \varphi(y_1) \), then \(|\varphi(y_2) \cap \Gamma| \leq 1 \).
In the definition of Tashkinov tree $T = (y_0, e_1, y_1, e_2, y_2, \ldots, y_p)$, we call T a broom if $e_2 = y_1y_2$ and for each $i \geq 3$, $e_i = y_2y_i$, i.e., y_2 is one of the end-vertices of e_i for each $i \geq 3$. Moreover, we call T a simple broom if $\varphi(e_i) \in \varphi(y_0) \cup \varphi(y_1)$ for each $i \geq 3$, i.e., $(y_0, e_1, y_1, e_2, y_2, e_i, y_i)$ is a Kierstead path.

Lemma 7. [Chen, Chen, Zhao [2]] Let G be a graph with maximum degree Δ and $\chi'(G) = \Delta + 1$. Let $e_1 = y_0y_1 \in E(G)$ be a critical edge and $\varphi \in \mathcal{C}^{\Delta}(G - e_1)$, and let $B = \{y_0, e_1, y_1, e_2, y_2, \ldots, e_p, y_p\}$ be a simple broom. If $|\varphi(y_0) \cup \varphi(y_1)| \geq 4$ and $\min\{d(y_1), d(y_2)\} < \Delta$, then $V(B)$ is elementary with respect to φ.

Lemma 8. Let G be a graph with maximum degree Δ and $\chi'(G) = \Delta + 1$, $xy \in E(G)$ be a critical edge and $\varphi \in \mathcal{C}^{\Delta}(G - xy)$. Let q be a positive number with $d(x) < q \leq \Delta - 1$ and $Z = \{z \in N(x) \setminus \{y\} : d(z) > q, \varphi(xz) \in \varphi(y)\}$. Then

$$|Z| \geq \Delta - d(y) + 1 - \frac{d(x) + d(y) - \Delta - 2}{\Delta - q}.$$ \hfill (3)

$$\sum_{z \in Z} (d(z) - q) \geq (\Delta - q)(\Delta - d(y) + 1) - d(x) - d(y) + \Delta + 2.$$ \hfill (4)

and for every $z \in Z$,

$$\sigma_q(x, z) \geq 2\Delta - d(x) - d(y) - \frac{d(x) + d(y) + d(z) - 2\Delta - 2}{\Delta - q}.$$ \hfill (5)

Proof. Since G is not Δ-colorable, $\varphi(x) \cap \varphi(y) = \emptyset$. Let $Z_y := \{z \in N(x) \setminus \{y\} : \varphi(xz) \in \varphi(y)\}$. Clearly, $Z \subseteq Z_y$ and $|Z_y| = \Delta - d(y) + 1$. Since $\{y, x\} \cup Z_y$ forms a multi-fan with center x, it is elementary, so $|\varphi(x)| + |\varphi(y)| + \sum_{z \in Z_y} |\varphi(z)| \leq \Delta$. Since $|\varphi(x)| = \Delta - d(x) + 1$ and $|\varphi(y)| = \Delta - d(y) + 1$, we have

$$\sum_{z \in Z_y} |\varphi(z)| \leq \Delta - |\varphi(x)| - |\varphi(y)| \leq d(x) + d(y) - \Delta - 2.$$ \hfill (6)

Since $d(z) \leq q$ for all $z \in Z_y - Z$, $\sum_{z \in Z_y} |\varphi(z)| \geq (|Z_y| - |Z|)(\Delta - q)$. Combining this with (6), we get $|Z| \geq |Z_y| - \left[\frac{d(x) + d(y) - \Delta - 2}{\Delta - q}\right] = \Delta - d(y) + 1 - \left[\frac{d(x) + d(y) - \Delta - 2}{\Delta - q}\right]$. So (3) holds.

Since $|\varphi(z)| = \Delta - d(z)$ for each $z \in Z_y$, by (6), we get

$$\sum_{z \in Z_y} d(z) \geq |Z_y|\Delta - (d(x) + d(y) - \Delta - 2).$$
Since $d(z) \leq q$ for every $z \in Z_y - Z$, we have

$$\sum_{z \in Z} (d(z) - q) \geq \sum_{z \in Z_y} (d(z) - q) \geq |Z_y| \Delta - (d(x) + d(y) - \Delta - 2) - |Z_y|q.$$

Substituting $|Z_y| = \Delta - d(y) + 1$ in the above inequality, we get (4).

For each $z \in Z$, let $U_z^* = \{u \in N(z) \setminus \{x, y\} : \varphi(zu) \in \varphi(x) \cup \varphi(y)\}$ and $U_z = \{u \in U_z^* : d(u) > q\}$. Since $\varphi(xz) \in \varphi(y)$, $|U_z^*| \geq 2\Delta - d(x) - d(y)$ and $\{y, x, z\} \cup U_z^*$ forms a simple broom. Since $d(x) < q \leq \Delta - 1$, we have $d(x) \leq \Delta - 2$. Thus $|\bar{\varphi}(x) \cup \bar{\varphi}(y)| \geq 4$ and $\min\{d(x), d(z)\} = d(x) < \Delta$. By Lemma 7, $\{y, x, z\} \cup U_z^*$ is elementary with respect to φ. So $\sum_{u \in U_z^*} |\bar{\varphi}(u)| + |\bar{\varphi}(x)| + |\bar{\varphi}(y)| + |\bar{\varphi}(z)| \leq \Delta$, which in turn gives $\sum_{u \in U_z^*} |\bar{\varphi}(u)| \leq d(x) + d(y) + d(z) - 2\Delta - 2$. Since $d(u) \leq q$ for every $u \in U_z^* - U_z$, $\sum_{u \in U_z^*} |\bar{\varphi}(u)| \geq (|U_z^*| - |U_z|)(\Delta - q)$. So,

$$(|U_z^*| - |U_z|)(\Delta - q) \leq d(x) + d(y) + d(z) - 2\Delta - 2.$$

Since $|U_z^*| \geq 2\Delta - d(x) - d(y)$, we get

$$\sigma_q(x, z) \geq |U_z| \geq 2\Delta - d(x) - d(y) - \left\lfloor \frac{d(x) + d(y) + d(z) - 2\Delta - 2}{\Delta - q} \right\rfloor.$$

So the inequality (5) holds. \(\square\)

2.1 Proof of Lemma 4

Lemma 4. Let xy be an edge in a Δ-critical graph G and q be a positive number. If $\Delta(G)/2 < q \leq \Delta(G) - d(x)/2 - 2$, then x has at least $\Delta(G) - \sigma_q(x, y) - 2$ vertices $z \in N(x) \setminus \{y\}$ such that $\sigma_q(x, z) \geq 2\Delta(G) - d(x) - \sigma_q(x, y) - 4$.

Proof. Let graph G, edge $xy \in E(G)$ and q be defined as in Lemma 4. Let $\Delta = \Delta(G)$. A vertex $z \in N(x) \setminus \{y\}$ is called feasible if there exists a coloring $\varphi \in \mathcal{C}^G(G - xy)$ such that $\varphi(xz) \in \varphi(y)$, and such a coloring φ is called z-feasible. Denote by \mathcal{C}_z the set of all z-feasible colorings. For each feasible vertex z and each z-feasible coloring $\varphi \in \mathcal{C}_z$, let

- $Z(\varphi) = \{v \in N(z) \setminus \{x\} : \varphi(vz) \in \varphi(x) \cup \varphi(y)\}$,
- $C_z(\varphi) = \{\varphi(vz) : v \in Z(\varphi) \text{ and } d(v) < q\} \subseteq \varphi(x) \cup \varphi(y)$,
- $Y(\varphi) = \{v \in N(y) \setminus \{x\} : \varphi(vy) \in \varphi(x) \cup \varphi(z)\}$, and
- $C_y(\varphi) = \{\varphi(vy) : v \in Y(\varphi) \text{ and } d(v) < q\} \subseteq \varphi(x) \cup \varphi(z)$.

For each $\varphi \in \mathcal{C}_z$,

$$\sum_{v \in Z(\varphi)} (d(v) - q) \geq \sum_{v \in C_z(\varphi)} (d(v) - q) \geq |C_z(\varphi)| \Delta - (d(x) + d(y) - \Delta - 2) - |C_z(\varphi)|q.$$

Substituting $|C_z(\varphi)| = \Delta - d(z) + 1$ in the above inequality, we get (4).

By the choice of φ, $\sum_{u \in C_z(\varphi)} (d(u) - q) \leq \sum_{u \in C_z(\varphi)} (d(u) - q) \leq |C_z(\varphi)| \Delta - (d(x) + d(y) - \Delta - 2) - |C_z(\varphi)|q$. So $\sigma_q(x, z) \geq |C_z(\varphi)| \geq (|C_z(\varphi)| - |C_y(\varphi)|)(\Delta - q)$. Since $\Delta(G)/2 < q \leq \Delta(G) - d(x)/2 - 2$, we have $\sigma_q(x, z) \geq 2\Delta(G) - d(x) - 2\Delta - 2 - \sigma_q(x, y) - 4$. This completes the proof. \(\square\)
Note that $Z(\varphi)$ and $Y(\varphi)$ are vertex sets while $C_z(\varphi)$ and $C_y(\varphi)$ are color sets. For each color $\alpha \in \varphi(z)$, let $z_\alpha \in N(z)$ such that $\varphi(zz_\alpha) = \alpha$. For each color $\beta \in \varphi(y)$, let $y_\beta \in N(y)$ such that $\varphi(yy_\beta) = \beta$. Let

$$T(\varphi) = \{ \alpha \in \varphi(x) \cap \varphi(y) \cap \varphi(z) : d(y_\alpha) < q \text{ and } d(z_\alpha) < q \}. $$

Since $(\varphi(x) \cap \varphi(y)) \cap (\bar{\varphi}(x) \cup \bar{\varphi}(y)) = \emptyset$ and $(\varphi(x) \cap \varphi(z)) \cap (\bar{\varphi}(x) \cup \bar{\varphi}(z)) = \emptyset$, we obtain that $T(\varphi) \cap (C_z(\varphi) \cup C_y(\varphi)) = \emptyset$.

Since G is Δ-critical and φ is z-feasible, $\{x, y, z\}$ is elementary with respect to φ. So $\bar{\varphi}(x)$, $\bar{\varphi}(y)$, $\bar{\varphi}(z)$ and $\varphi(x) \cap \varphi(y) \cap \varphi(z)$ are mutually exclusive. It is not difficult to see that

$$|Z(\varphi)| = |\bar{\varphi}(x) \cup \bar{\varphi}(y)| - 1 \quad \text{and} \quad |Y(\varphi)| = |\bar{\varphi}(x) \cup \bar{\varphi}(z)|. \quad (7)$$

Also,

$$\bar{\varphi}(x) \cup \bar{\varphi}(y) \cup \bar{\varphi}(z) \cup (\varphi(x) \cap \varphi(y) \cap \varphi(z)) = \{1, 2, \ldots, \Delta\}. \quad (8)$$

Recall that $\sigma_q(x, y)$ and $\sigma_q(x, z)$ are the numbers of vertices with degree at least q in $N(y) \setminus \{x\}$ and $N(z) \setminus \{x\}$, respectively. So, by equations (7) and (8), we have

$$\begin{align*}
\sigma_q(x, y) + \sigma_q(x, z) & \geq |Y(\varphi)| - |C_y(\varphi)| + |Z(\varphi)| - |C_z(\varphi)| + |\varphi(x) \cap \varphi(y) \cap \varphi(z)| - |T(\varphi)| \\
& = |\bar{\varphi}(x) \cup \bar{\varphi}(y)| - 1 - |\varphi(x) \cap \varphi(y) \cap \varphi(z)| - |C_y(\varphi)| - |C_z(\varphi)| - |T(\varphi)| \\
& = \Delta + |\bar{\varphi}(x)| - 1 - |C_y(\varphi)| - |C_z(\varphi)| - |T(\varphi)| \\
& = 2\Delta - d(x) - |C_y(\varphi)| - |C_z(\varphi)| - |T(\varphi)|.
\end{align*}$$

So, Lemma 4 follows from the three statements below.

I. For any $\varphi \in C_z$, $|C_z(\varphi)| \leq 1$ and $|C_y(\varphi)| \leq 1$;

II. there exists a $\varphi \in C_z$ such that $|T(\varphi)| \leq 2$; and

III. there are at least $\Delta - \sigma_q(x, y) - 2$ feasible vertices $z \in N(x) \setminus \{y\}$.

For every z-feasible coloring $\varphi \in \mathcal{C}^z(G - xy)$, let $\varphi^d \in \mathcal{C}^z(G - xz)$ be obtained from φ by assigning $\varphi^d(xy) = \varphi(xz)$ and keeping all colors on other edges unchanged. Clearly, φ^d is a y-feasible coloring and $Z(\varphi^d) = Z(\varphi)$, $Y(\varphi^d) = Y(\varphi)$, $C_z(\varphi^d) = C_z(\varphi)$ and $C_y(\varphi^d) = C_y(\varphi)$. We call φ^d the dual coloring of φ. Considering dual colorings, we see that some properties for vertex z also hold for vertex y.

Since $q \leq \Delta - d(x)/2 - 2$, we have
\[(\Delta - q) + (\Delta - d(x) + 1) - 5 \geq \Delta. \quad (9)\]

So, for any \(\varphi \in C^\Delta(G - xy)\) and any elementary set \(X\) with \(x \in X\),
\[X \setminus \{x\}\) contains at most one vertex with degree at most \(q\).
\[
(10)
\]

Let \(z \in N(x) \setminus \{y\}\) be a feasible vertex and \(\varphi \in C_z\). By the definition of \(Z(\varphi)\), \(\{y, x, z\} \cup Z(\varphi)\) is the vertex-set of a simple broom, and so this set is elementary with respect to \(\varphi\). Thus, \(|C_z(\varphi)| \leq 1\) by (10). By considering its dual \(\varphi^d\), we have \(|C_y(\varphi)| = |C_y(\varphi^d)| \leq 1\). Hence, I holds. The proofs of II and III are much more complicated. Let \(R(\varphi) = C_z(\varphi) \cup C_y(\varphi)\). In the remainder of the proof, we let \(Z = Z(\varphi), Y = Y(\varphi), C_z = C_z(\varphi), C_y = C_y(\varphi), R = R(\varphi)\) and \(T = T(\varphi)\) if the coloring \(\varphi\) is clear. Note that \(T \cap R = \emptyset, \varphi(xz) \notin T \cup R\) and \(|R| \leq 2\).

A coloring \(\varphi \in C_z\) is called optimal if \(|C_z(\varphi)| + |C_y(\varphi)|\) is maximum over all \(z\)-feasible colorings. Note that a \(z\)-feasible coloring \(\varphi\) is optimal if and only if its dual coloring \(\varphi^d\) is an optimal \(y\)-feasible coloring.

2.1.1 Proof of Statement II.

Suppose on the contrary that \(|T(\varphi)| \geq 3\) for every \(\varphi \in C_z\). Let \(\varphi\) be an optimal \(z\)-feasible coloring and assume, without loss of generality, \(\varphi(xz) = 1\). Since \(\chi'(G) > \Delta\) and \(1 \in \varphi(y)\), it follows that
\[
\text{for every color } i \in \varphi(x), \quad P_x(1, i, \varphi) = P_y(1, i, \varphi). \quad (11)
\]

Otherwise, an edge-\(\Delta\)-coloring of \(G\) can be gotten by \(\varphi / P_x(1, i, \varphi)\) and then coloring \(xy\) with 1, a contradiction.

Claim A. For each \(i \in \varphi(x) \setminus R\) and \(k \in T(\varphi)\), \(P_x(i, k, \varphi)\) contains both \(y\) and \(z\).

Proof. We first show that \(z \in V(P_x(i, k, \varphi))\). Otherwise, \(P_x(i, k, \varphi)\) is disjoint from \(P_x(i, k, \varphi)\). Let \(\varphi' = \varphi / P_x(i, k, \varphi)\). Since \(1 \notin \{i, k\}\), \(\varphi'\) is also \(z\)-feasible. Since colors in \(R\) are unchanged and \(d(z_k) < q\), \(C_z(\varphi') = C_z(\varphi) \cup \{i\}\) and \(C_y(\varphi') \supseteq C_y(\varphi)\), giving a contradiction to the maximality of \(|C_y(\varphi)| + |C_z(\varphi)|\). By considering the dual coloring \(\varphi^d\), we can verify that \(y \in V(P_x(i, k, \varphi))\).

Note that \(|T(\varphi)| \geq 3\). For each 3-element subset \(S(\varphi)\) of \(T(\varphi)\), we may assume
$S(\varphi) = \{k_1, k_2, k_3\}$, let
\[
V(S(\varphi)) = \{z_{k_1}, z_{k_2}, z_{k_3}\} \cup \{y_{k_1}, y_{k_2}, y_{k_3}\};
\]
\[
W(S(\varphi)) = \{u \in V(S(\varphi)) : \varphi(u) \cap \varphi(x) \setminus R = \emptyset\},
\]
\[
M(S(\varphi)) = \{u \in V(S(\varphi)) : \varphi(u) \cap \varphi(x) \setminus R \neq \emptyset\},
\]
\[
E(S(\varphi)) = \{zz_{k_1}, zz_{k_2}, zz_{k_3}, yy_{k_1}, yy_{k_2}, yy_{k_3}\},
\]
\[
E_W(S(\varphi)) = \{e \in E(S(\varphi)) : e \text{ is incident to a vertex in } W(S(\varphi))\},
\]
\[
E_M(S(\varphi)) = \{e \in E(S(\varphi)) : e \text{ is incident to a vertex in } M(S(\varphi))\}.
\]

Clearly, $V(S(\varphi)) = W(S(\varphi)) \uplus M(S(\varphi))$ and $E(S(\varphi)) = E_W(S(\varphi)) \uplus E_M(S(\varphi))$, where \uplus denotes disjoint union. For convenience, we let $W = W(S(\varphi)), M = M(S(\varphi)), E_W = E_W(S(\varphi))$ and $E_M = E_M(S(\varphi))$ if $S(\varphi)$ is clear. Note that one of y and z has degree at least q by (10), thus $\{y, z\} \not\subseteq V(S(\varphi))$.

We assume that $|E_W(S(\varphi))|$ is minimum over all optimal z-feasible colorings φ and all 3-element subsets $S(\varphi)$ of $T(\varphi)$. For each $v \in M$, pick a color $\alpha_v \in \varphi(v) \cap \varphi(x) \setminus R$. Let $C_M = \{\alpha_v : v \in M\}$. Clearly, $|C_M| \leq |M|$. By (9) and the condition $q > \Delta/2$, we have
\[
|\varphi(x)| = \Delta - d(x) + 1 \geq \Delta - 2(\Delta - q) + 5 > 5.
\]
(12)

Since $|R| \leq 2$, we have
\[
\varphi(x) \setminus (R \cup C_M) \neq \emptyset \text{ if } |C_M| \leq 3.
\]
(13)

Note that $\{z_{k_1}, z_{k_2}, z_{k_3}\} \cap \{y_{k_1}, y_{k_2}, y_{k_3}\}$ may be not empty, $\frac{|E_W|}{2} \leq |W| \leq |E_W|$ and $\frac{|E_M|}{2} \leq |M| \leq |E_M|$.

Claim B. Let u and v be two vertices of $V(S(\varphi))$. If $\varphi(u) \cap \varphi(v) \cap \varphi(x) \setminus R \neq \emptyset$, then the following statements hold.

(i) If $u, v \in W$, then $\varphi(x) \setminus (R \cup C_M) = \emptyset$.

(ii) There exists an optimal z-feasible coloring φ^* with $V(S(\varphi^*)) = V(S(\varphi))$ such that $|E_W(S(\varphi^*))| \leq |E_W|$ and $\{u, v\} \cap M(S(\varphi^*)) \neq \emptyset$.

Proof. Noting that $\varphi(u) \cap \varphi(v) \cap \varphi(x) \setminus R \neq \emptyset$, we assume $\alpha \in \varphi(u) \cap \varphi(v) \cap \varphi(x) \setminus R$. If $\{u, v\} \cap M \neq \emptyset$, we are done (with $\varphi^* = \varphi$). So suppose $u, v \in W$. Let β be an arbitrary color in $\varphi(x) \setminus (R \cup C_M)$ if this set is nonempty; otherwise, let β be a color in $\varphi(x) \setminus R$, which is nonempty by (12) since $|R| \leq 2$. Since $u, v \in W$, we have $\beta \in \varphi(u) \cap \varphi(v)$. So, both u and v are endvertices of (α, β)-chains. Assume without loss of generality that $P_u(\alpha, \beta, \varphi)$ is disjoint from $P_x(\alpha, \beta, \varphi)$. Let $\varphi^* = \varphi/P_u(\alpha, \beta, \varphi)$. Let φ^*...
First, we note that $T(\varphi^*) \supseteq T(\varphi)$. This is obvious if $\alpha \not\in T(\varphi)$, and if $\alpha \in T(\varphi)$ it holds because in this case \{z, y, z_\alpha, y_\alpha\} $\subseteq V(P_z(\alpha, \beta, \varphi))$ by Claim A and so \{z, y, z_\alpha, y_\alpha\} $\cap V(\mu_\alpha(\alpha, \beta, \varphi)) = \emptyset$. So we can choose $S(\varphi^*) = S(\varphi)$, and then $V(S(\varphi^*)) = V(S(\varphi))$.

Next, we claim that φ^* is an optimal z-feasible coloring. Note that $\varphi^*(xz) = 1 \in \tilde{\varphi}^*(y)$. This is obvious if $\alpha \neq 1$ (since $\beta \neq 1$), and if $\alpha = 1$ it holds because in this case $P_\alpha(\alpha, \beta, \varphi) = P_y(\alpha, \beta, \varphi)$ by (11) and so $V(P_\alpha(\alpha, \beta, \varphi)) \cap \{x, y, z\} = \emptyset$. So φ^* is z-feasible.

Since $\alpha, \beta \notin R = C_y \cup C_z$, it follows that $C_y \subset C_y(\varphi^*)$ and $C_z \subset C_z(\varphi^*)$. Since φ is optimal, we have $C_y(\varphi^*) = C_y, C_z(\varphi^*) = C_z, R(\varphi^*) = R$ and so φ^* is optimal.

Since $\alpha \in \varphi(u)$, it follows that $\beta \in \varphi^*(u) \cap \varphi^*(x) \setminus R(\varphi^*)$, so $u \in M(S(\varphi^*))$ (that is, u has moved from W to $M(S(\varphi^*))$). To avoid the contradiction that $|E_W(S(\varphi^*))| < |E_W|$, it is necessary that $P_u(\alpha, \beta, \varphi)$, which starts with an edge of color β at u, must end with an edge of color α at a vertex $w \in M$ such that β is the unique color in $\varphi(w) \cap \varphi(x) \setminus R$, thus $\varphi^*(w) \cap \varphi^*(x) \setminus R(\varphi^*) = \emptyset$ (that is, w has moved from M to $W(S(\varphi^*))$). But then we must have chosen $\alpha_w = \beta$, so $\beta \in C_M$. By the choice of β, we have $\varphi(x) \setminus (R \cup C_M) = \emptyset$. Thus (i) holds. By (13), we have $|C_M| \geq 4$. Since $u, v \in W$, $|V(S(\varphi))| \leq 6$ and $|C_M| \leq |M|$, we have $|V(S(\varphi))| = 6, |W| = 2$ and $|M| = 4$. Thus $|E_W(S(\varphi^*))| = |E_W|$. Hence, (ii) holds.

Claim C. There exist a color $k \in \{k_1, k_2, k_3\}$, three distinct colors i, j, l and an optimal z-feasible coloring φ^* with $\varphi^*(xz) = 1$ such that $i \in \varphi^*(z_k) \cap \varphi^*(x) \setminus R(\varphi^*)$, $j \in \varphi^*(y_k) \cap \varphi^*(x) \setminus R(\varphi^*)$ and $l \in (\varphi^*(z_k) \cup \varphi^*(y_k)) \cap (\varphi^*(x) \cup \{1\} \setminus R(\varphi^*))$.

Proof. First we show that there exists a color $k \in \{k_1, k_2, k_3\}$ such that

\[
\varphi(z_k) \cap \varphi(x) \setminus R \neq \emptyset \quad \text{and} \quad \varphi(y_k) \cap \varphi(x) \setminus R \neq \emptyset.
\]

(14)

If $|E_M| \geq 4$, by the definition of M and E_M, it is not difficult to see that the above statement holds. Thus we may assume that $|E_M| \leq 3$. So $|E_W| \geq 3$ and then we have $|W| \geq 2$ as $|W| \geq |E_W|/2$. Let $u, v \in W$. Since $|C_M| \leq |M| \leq |E_M| \leq 3$, we have $\varphi(x) \setminus (R \cup C_M) \neq \emptyset$ by (13). By Claim B (i), we have

\[
\varphi(u) \cap \varphi(v) \cap \varphi(x) \setminus R = \emptyset.
\]

(15)

On the other hand, since $u, v \in W \subseteq V(S(\varphi))$ and $S(\varphi) \subseteq T(\varphi)$, we note that $d(u) < q$ and $d(v) < q$. Since $|R| \leq 2$, by (9), we have

\[
|\varphi(u) \setminus R| + |\varphi(v) \setminus R| + |\varphi(x)| > 2(\Delta - q - 2) + \Delta - d(x) + 1 > \Delta.
\]

Moreover, by the definition of W and $u, v \in W$, we have $(\varphi(u) \setminus R) \cap \varphi(x) = (\varphi(v) \setminus R) \cap \varphi(x) = \emptyset$. This implies that $(\varphi(u) \setminus R) \cap (\varphi(v) \setminus R) \cap \varphi(x) \neq \emptyset$, which contradicts (15).
This contradiction shows that there exists a color \(k \in \{ k_1, k_2, k_3 \} \) such that (14) holds. Now we claim that

\[
\bar{\varphi}(z_k) \cap \bar{\varphi}(y_k) \cap \bar{\varphi}(x) \setminus R = \emptyset.
\]

(16)

For otherwise, we assume \(i \in \bar{\varphi}(z_k) \cap \bar{\varphi}(y_k) \cap \bar{\varphi}(x) \setminus R \), then by Claim A, the path \(P_x(i, k, \varphi) \) contains three endvertices \(x, z_k \) and \(y_k \), a contradiction.

By (14) and (16), we can find two distinct colors \(i, j \) such that \(i \in \bar{\varphi}(z_k) \cap \bar{\varphi}(x) \setminus R \) and \(j \in \bar{\varphi}(y_k) \cap \bar{\varphi}(x) \setminus R \). If there still exists another color \(\ell \in (\bar{\varphi}(z_k) \cup \bar{\varphi}(y_k)) \cap (\bar{\varphi}(x) \cup \{1\} \setminus R) \), then Claim C holds with \(\varphi^* = \varphi \). Thus color \(\ell \) does not exist, that is,

\[
\bar{\varphi}(z_k) \cap \bar{\varphi}(x) \setminus R = \{i\}, \mbox{ } \bar{\varphi}(y_k) \cap \bar{\varphi}(x) \setminus R = \{j\} \mbox{ and } 1 \notin \bar{\varphi}(z_k) \cup \bar{\varphi}(y_k),
\]

which implies that

\[
((\bar{\varphi}(z_k) \setminus (R \cup \{i\})) \cup (\bar{\varphi}(y_k) \setminus (R \cup \{j\}))) \cap (\bar{\varphi}(x) \cup R \cup \{1\}) = \emptyset.
\]

(17)

By the definition of \(T(\varphi) \), we have \(d(z_k) < q \) and \(d(y_k) < q \). Since \(|R| \leq 2 \), by (9), we have

\[
|\bar{\varphi}(z_k) \setminus (R \cup \{i\})| + |\bar{\varphi}(y_k) \setminus (R \cup \{j\})| + |\bar{\varphi}(x) \cup (R \cup \{1\})| > 2(|R| - q - |R| - 1) + |R| - d(x) + 2 \geq \Delta.
\]

So there exists a color \(\alpha \) in the intersection of sets \(\bar{\varphi}(z_k) \setminus (R \cup \{i\}) \) and \(\bar{\varphi}(y_k) \setminus (R \cup \{j\}) \) by (17). Thus \(\alpha \in \bar{\varphi}(z_k) \cap \bar{\varphi}(y_k) \cap \varphi(x) \setminus (R \cup \{i, j, 1\}) \).

Since \(|R| \leq 2 \), by (12), there exists a color \(\beta \in \bar{\varphi}(x) \setminus (R \cup \{i, j\}) \). By (17), we have \(\beta \in \varphi(\bar{z}_k) \cap \varphi(y_k) \). We may assume that \(P_{zk}(\alpha, \beta, \varphi) \) is disjoint from \(P_z(\alpha, \beta, \varphi) \). Let \(\varphi^* = \varphi/P_{zk}(\alpha, \beta, \varphi) \). Similar to the proof of Claim B, \(\varphi^* \) is an optimal \(z \)-feasible coloring with \(R(\varphi^*) = R \) and we can choose \(V(S(\varphi^*)) = V(S(\varphi)) \). Note that \(\bar{\varphi}^*(x) = \bar{\varphi}(x) \).

Since \(\alpha \in \bar{\varphi}(z_k) \), we have \(\beta \in \bar{\varphi}^*(z_k) \cap \bar{\varphi}^*(x) \setminus (R(\varphi^*) \cup \{i, j\}) \). Moreover, we have \(i \in \bar{\varphi}^*(z_k) \cap \bar{\varphi}^*(x) \setminus R(\varphi^*) \) and \(j \in \bar{\varphi}^*(y_k) \cap \bar{\varphi}^*(x) \setminus R(\varphi^*) \) as \(\alpha, \beta \notin \{i, j\} \). Thus \(i, j, \beta \) are the required colors and then Claim C holds.

Let \(k, i, j, \ell \) and \(\varphi^* \) be as stated in Claim C. If \(\ell \neq 1 \), we consider the coloring obtained from \(\varphi^* \) by interchanging colors \(1 \) and \(\ell \) for edges not on the path \(P_x(1, \ell, \varphi^*) \), and rename it as \(\varphi^* \). This is valid, by the argument in the proof of Claim B, since \(1, l \notin R(\varphi^*) \cup T(\varphi^*) \), \(1 \in \varphi^*(x) \) and \(l \in \varphi^*(x) \). So we may assume \(1 \in \varphi^*(y_k) \cup \varphi^*(z_k) \).

We first consider the case of \(1 \in \varphi^*(y_k) \). Note that \(i, j \in \varphi^*(x) \setminus R(\varphi^*) \). By Claim A, the paths \(P_x(i, k, \varphi^*) \) and \(P_x(j, k, \varphi^*) \) both contain \(y, z \). Since \(\varphi^*(yy_k) = \varphi^*(zz_k) = k \), these two paths also contain \(y_k, z_k \). Since \(i \in \varphi^*(z_k) \), it follows that \(x \) and \(z_k \) are the two endvertices of \(P_x(i, k, \varphi^*) \). So, \(i \in \varphi^*(y) \cap \varphi^*(z) \cap \varphi^*(y_k) \). Similarly, we have \(j \in \varphi^*(y) \cap \varphi^*(z) \cap \varphi^*(z_k) \). We now consider the following sequence of colorings of \(G - xy \).
Let φ_1 be obtained from φ^* by assigning $\varphi_1(yy_k) = 1$. Since 1 was missing at both y and y_k, φ_1 is an edge-Δ-coloring of $G - xy$. Now k is missing at y and y_k, and i is still missing at x and z_k. Since G is not Δ-colorable, $P_x(i, k, \varphi_1) = P_y(i, k, \varphi_1)$; otherwise $\varphi_1/P_y(i, k, \varphi_1)$ can be extended to an edge-Δ-coloring of G by coloring xy with i, giving a contradiction. Furthermore, $z_k, y_k \notin V(P_x(i, k, \varphi_1))$ since either i or k is missing at these two vertices, which in turn shows that $z \notin V(P_x(i, k, \varphi_1))$ since $\varphi_1(zz_k) = k$.

Let $\varphi_2 = \varphi_1/P_x(i, k, \varphi_1)$. We have $k \in \bar{\varphi}_2(x), i \in \bar{\varphi}_2(y) \cap \bar{\varphi}_2(z_k)$ and $j \in \bar{\varphi}_2(x) \cap \bar{\varphi}_2(y_k)$. Since G is not edge-Δ-colorable, we have $P_x(i, j, \varphi_2) = P_y(i, j, \varphi_2)$, which contains neither y_k nor z_k.

Let $\varphi_3 = \varphi_2/P_x(i, j, \varphi_2)$. Then $k \in \bar{\varphi}_3(x)$ and $j \in \bar{\varphi}_3(y) \cap \bar{\varphi}_3(y_k)$.

Let φ_4 be obtained from φ_3 by recoloring yy_k by j. Then $1 \in \bar{\varphi}_4(y)$, $\varphi_4(xz) = 1$, $k \in \bar{\varphi}_4(x)$, $\varphi_4(zz_k) = k$. Since $\varphi_4(xz) = 1 \in \varphi_4(y)$, φ_4 is z-feasible. Since $i, j, k \notin R = C_y \cup C_z$, the colors in R are unchanged during this sequence of re-colorings, so $C_y(\varphi_4) \supseteq C_y$ and $C_z(\varphi_4) \supseteq C_z$. Since $\varphi_4(zz_k) = k \in \bar{\varphi}_4(x)$ and $d(z_k) < q$, we have $k = \varphi_4(zz_k) \in C_z(\varphi_4)$. So, $C_z(\varphi_4) \supseteq C_z \cup \{k\}$. We therefore have $|C_y(\varphi_4)| + |C_z(\varphi_4)| \geq |C_y| + |C_z| + 1$, giving a contradiction.

For the case of $1 \in \bar{\varphi}^*(z_k)$, we consider the dual coloring φ^{*d} of $G - xz$ obtained from φ^* by uncoloring xz and coloring xy with color 1. Following the exact same argument above, we can reach a contradiction to the maximum of $|C_y| + |C_z|$. This completes the proof of Statement II.

2.1.2 Proof of Statement III.

For a coloring $\varphi \in C^\Delta(G - xy)$, let $X(\varphi) = \{z \in N(x) \setminus \{y\} : \varphi(xz) \in \bar{\varphi}(y)\}$ and $S(\varphi) = \{z \in N(x) \setminus (X(\varphi) \cup \{y\}) : d(y_{\varphi(xz)}) < q\}$, where $y_j \in N(y)$ with $\varphi(yy_{y_j}) = j$ for any color j. We call vertices in $S(\varphi)$ semi-feasible vertices of φ. Note that the vertices in $X(\varphi)$ are feasible. Statement III clearly follows from the following claim.

Claim 2.1. For any coloring $\varphi \in C^\Delta(G - xy)$, the following two statements hold.

a. $|X(\varphi) \cup S(\varphi)| \geq \Delta - \sigma_q(x, y) - 1$;

b. With one possible exception, for each $z \in S(\varphi)$ there exists a coloring $\varphi^* \in C^\Delta(G - xy)$ such that $\varphi^*(xz) \in \bar{\varphi}^*(y)$.

Proof. Let $\varphi \in C^\Delta(G - xy)$. Since G is Δ-critical, it is easy to see that $\bar{\varphi}(y) \subseteq \varphi(x)$ and $\bar{\varphi}(x) \subseteq \varphi(y)$. To prove a, we divide $\varphi(y)$ into two subsets:

$\varphi(y, \geq q) = \{i \in \varphi(y) : d(y_i) \geq q\}$ and $\varphi(y, < q) = \{i \in \varphi(y) : d(y_i) < q\}$.
Clearly, $\sigma_q(x, y) = |\varphi(y, \geq q)|$ and $|\bar{\varphi}(y)| = |\varphi(y, < q)| = \Delta - \sigma_q(x, y)$. Also, $|X(\varphi)| = |\bar{\varphi}(y) \cap \varphi(x)| = |\bar{\varphi}(y)|$ since $\bar{\varphi}(y) \subseteq \varphi(x)$, and $|S(\varphi)| = |\varphi(y, < q) \cap \varphi(x)|$. Since edge xy and the edges incident to y with colors in $\varphi(x)$ form a multi-fan F, the vertex set $V(F)$ is elementary with respect to φ. By (10), $V(F) \setminus \{x\}$ contains at most one vertex with degree less than q. Thus $|\bar{\varphi}(x) \cap \varphi(y, < q)| \leq 1$ and so $|S(\varphi)| \geq |\varphi(y, < q)| - 1$, and this proves \textbf{a}.

To prove \textbf{b}, we show that for any two distinct vertices $z_k, z_\ell \in S(\varphi)$, there is a coloring $\varphi^* \in \mathcal{C}^\Delta(G - xy)$ such that at least one of $\varphi^*(xz_k)$ and $\varphi^*(xz_\ell)$ is in $\bar{\varphi}^*(y)$. We assume $\varphi(xz_k) = k$ and $\varphi(xz_\ell) = \ell$. Let $y_k, y_\ell \in N(y) \setminus \{x\}$ such that $\varphi(yy_k) = k$ and $\varphi(yy_\ell) = \ell$.

By the definition of $S(\varphi)$, we have $d(y_k) < q$ and $d(y_\ell) < q$. It follows from (9) that

\begin{equation}
|\bar{\varphi}(x)| + |\bar{\varphi}(y_k)| + |\bar{\varphi}(y_\ell)| > \Delta. \tag{18}
\end{equation}

Let z be an arbitrary vertex in $X(\varphi)$, which exists since $|X(\varphi)| = |\bar{\varphi}(y)| > 0$, and assume $\varphi(xz) = 1$, so that (11) holds. We claim that there exists a coloring $\varphi' \in \mathcal{C}^\Delta(G - xy)$ such that $\varphi'(xz) = 1 \in \bar{\varphi}'(y)$, $\varphi'(xz_k) = \varphi'(yy_k) = k$, $\varphi'(xz_\ell) = \varphi'(yy_\ell) = \ell$, and

\begin{equation}
\bar{\varphi}'(x) \cap (\bar{\varphi}'(y_k) \cup \bar{\varphi}'(y_\ell)) \neq \emptyset. \tag{19}
\end{equation}

Suppose (19) does not hold with $\varphi' = \varphi$. Then $\bar{\varphi}(y_k) \cup \bar{\varphi}(y_\ell) \subseteq \varphi(x)$, and so by (18) there exists a color $r \in \varphi(x) \cap \bar{\varphi}(y_k) \cap \bar{\varphi}(y_\ell)$. Choose a color $i \in \varphi(x)$. Note that $\{i, r\} \cap \{1, k, l\} = \emptyset$ unless $r = 1$. Since at least one of colors i and r is missing at each of x, y_k and y_ℓ, we may assume $P_{y_k}(i, r, \varphi)$ is disjoint from $P_x(i, r, \varphi)$, and also from $P_y(i, r, \varphi)$ if $r = 1$, by (11). Then (19) holds with $\varphi' = \varphi/P_{y_k}(i, r, \varphi)$, since in this coloring i is missing at both x and y_k.

By (19), we may assume that there exists a color $i \in \bar{\varphi}'(x) \cap \bar{\varphi}'(y_k)$. Applying (11) to φ', we have $P_x(1, i, \varphi') = P_y(1, i, \varphi')$, and so $P_{y_k}(1, i, \varphi')$ is disjoint from $P_x(1, i, \varphi')$ and $P_y(1, i, \varphi')$. Thus in the coloring $\varphi'' = \varphi'/P_{y_k}(1, i, \varphi')$, color 1 is missing at both y and y_k.

Form φ^* from φ'' by changing the color of yy_k from k to 1. Then $\varphi^*(xz_k) = k \in \bar{\varphi}^*(y)$. This proves \textbf{b}, and so completes the proofs of both Claim 2.1 and \textbf{III}. \hfill \Box

3 Proof of Theorem 1

Let G be a Δ-critical graph with maximum degree Δ. Let $n = |V(G)|$ and $m = |E(G)|$.

Clearly, $\bar{d}(G) = 2m/n$. Let q be a positive number less than Δ. Note that $2\Delta/3 \geq 3\Delta/4 - 1$ if $\Delta < 12$. By Woodall’s result [16], Theorem 1 holds if $\Delta < 12$. In this section, we
assume $\Delta \geq 12$. We initially assign to each vertex x of G a charge $M(x, q) = d(x)$ and redistribute the charge according to the following 2-step discharging rule:

Step 1: each $(> q)$-vertex y distributes its surplus charge of $d(y) - q$ equally among all $(< q)$-neighbors of y.

Assume each vertex x now have charge $M_1(x, q)$, and call x deficient if $M_1(x, q) < q$.

Step 2: For every vertex x such that $d(x) \geq \Delta - 1$ and every neighbor of x has degree at least q, if x is at distance 2 from a 2-vertex or a deficient 3-vertex: x sends $\frac{1}{4}$ to each such 2-vertex and $\frac{1}{8}$ to each such deficient 3-vertex.

Denote by $M_2(x, q)$ the resulting charge on each vertex x. Clearly, $\sum_{x \in V(G)} M_2(x, q) = \sum_{x \in V(G)} M_1(x, q) = \sum_{x \in V(G)} M(x, q) = 2m$, and for each x with $d(x) \leq q_1$ we have $M_2(x, q_1) \geq M_2(x, q_2)$ if $q_1 \leq q_2$. We show that $M_2(x, q) \geq q$ for all vertices $x \in V(G)$ if $q = \min\{\frac{2\sqrt{2\Delta-3}\sqrt{\Delta}}{2\sqrt{\Delta+1}}, \frac{3}{4}\Delta - 2\}$, which gives $d(G) \geq \min\{\frac{2\sqrt{2\Delta-3}\sqrt{\Delta}}{2\sqrt{\Delta+1}}, \frac{3}{4}\Delta - 2\}$. Denote by $d_{<q}(y)$ the number of $(< q)$-neighbors of y.

Claim 4.2 in [1] shows that if $4 \leq d(x) \leq \frac{\Delta}{4}$, then $M_1(x, \frac{3\Delta}{4} - 8) \geq \frac{3\Delta}{4} - 8$. Actually, in the proof, it showed that $M_1(x, \frac{3\Delta}{4} - 1) \geq \frac{3\Delta}{4} - 1$. By using Step 2, Claim 4.3 and Claim 4.4 in [1] showed that $M_2(x, \frac{3\Delta}{4} - 1) \geq \frac{3\Delta}{4} - 1$ if x is a 2-vertex, a deficient 3-vertex, or a $(\geq \Delta - 1)$ vertex. In the remainder of this proof, let $q = \min\{\frac{2\sqrt{2\Delta-3}\sqrt{\Delta}}{2\sqrt{\Delta+1}}, \frac{3}{4}\Delta - 2\}$. If $4 \leq d(x) < \Delta - 1$, we only use Step 1, it is easy to check that $M_2(x, q) = M_1(x, q)$ and $M_2(x, q) = M_1(x, q) \geq q$ if $q \leq d(x) < \Delta - 1$. We show that for all vertices x with $\frac{\Delta}{4} < d(x) < q$, $M_2(x, q) = M_1(x, q) \geq q$.

Claim 3.1. If $\frac{\Delta}{4} < d(x) \leq \Delta - q + 1$, then $M_2(x, q) = M_1(x, q) \geq q$.

Proof. Since $q > \frac{\Delta+1}{2}$, $d(x) \leq \Delta - q + 1 < q$. Let y be an arbitrary neighbor of x. Since $2\Delta - d(x) - d(y) + 2 \geq \Delta - d(x) + 2 > q$, we have $\sigma_q(x, y) \geq \sigma(x, y)$. We will use lower bounds of $\sigma(x, y)$ to estimate $\sigma_q(x, y)$. By (1) and (2), we have

$$1 \leq d_{<q}(y) \leq d(y) - \sigma(x, y) \leq d(y) - (\Delta - d(x) + p(x) + 1).$$

(20)

By Lemma 3, x has at least $d(x) - p(x) - 1$ neighbors y for which $\sigma(x, y) \geq \Delta - p(x) - 1$, so for these neighbors y we have

$$1 \leq d_{<q}(y) \leq d(y) - \sigma(x, y) \leq d(y) - (\Delta - p(x) - 1).$$

(21)

By the hypothesis of Claim 3.1 and (20), we have $q \leq \Delta - d(x) + 1 \leq \Delta - d(x) + p(x) + 1 < d(y)$. Since $\frac{d(y) - a}{d(y) - b}$ with $a \leq b$ is a decreasing function of $d(y)$, for each $y \in N(x)$, x
receives at least
\[
\frac{d(y) - q}{d(y) - (\Delta - d(x) + p(x) + 1)} \geq \frac{\Delta - q}{d(x) - p(x) - 1}.
\]

And there are at least \(d(x) - p(x) - 1\) neighbors \(y\) of \(x\) giving \(x\) at least
\[
\frac{d(y) - q}{d(y) - (\Delta - p(x) - 1)} \geq \frac{\Delta - q}{p(x) + 1},
\]
where the inequality holds because \(q \leq \Delta - d(x) + 1 \leq \Delta - p(x) - 1\) as \(p(x) \leq \lfloor \frac{d(x)}{2} \rfloor - 1\).

Thus \(x\) receives at least
\[
(d(x) - p(x) - 1) \frac{\Delta - q}{p(x) + 1} + (p(x) + 1) \frac{\Delta - q}{d(x) - p(x) - 1} = (\theta + \theta^{-1})(\Delta - q) \geq 2(\Delta - q),
\]
where \(\theta = \frac{d(x) - p(x) - 1}{p(x) + 1}\). It follows that \(M_1(x, q) \geq M(x, q) + 2(\Delta - q) \geq \frac{\Delta}{4} + 2(\Delta - q) > q\). \(\Box\)

Claim 3.2. If \(\Delta - q + 1 < d(x) < q\), then \(M_2(x, q) = M_1(x, q) \geq q\).

Proof. Let \(y\) be a neighbor of \(x\). Then there exists a coloring \(\varphi \in C^\Delta(G - xy)\) as \(G\) is \(\Delta\)-critical. Let \(Z_q = \{z \in N(x) : d(z) > q\}\), \(Z_y = \{z \in N(x) \setminus \{y\} : \varphi(xz) \in \varphi(y)\}\) and \(Z_y^* = Z_q \cap Z_y\). Note that \(Z_y^*\) was called \(Z\) in Lemma 8, thus (3), (4) and (5) in Lemma 8 also hold for \(Z_y^*\). Moreover, by the definition of \(Z_q\) and the discharging rule, for each \(z \in Z_q\), \(x\) receives charge at least \(\frac{d(z) - q}{d(z) - \sigma_q(x, z)}\). Thus \(M_1(x, q) \geq d(x) + \sum_{z \in Z_q} \frac{d(z) - q}{d(z) - \sigma_q(x, z)}\).

Since \(\Delta \geq 12\), we have \(\Delta - q \geq 5\) and so \(\Delta - q + 1 \leq 2(\Delta - q) - 4\). We consider the following three cases to complete the proof.

Case 1. \(\Delta - q + 1 < d(x) < q\) and \(x\) has a neighbor \(y\) such that \(d(y) \leq q\).

It is easy to see that, for any vertex \(z\),
\[
d(x) + d(y) + d(z) - 2\Delta - 2 < 2q - \Delta < 2(\Delta - q),
\]
since \(q < \frac{3}{4}\Delta\). It follows from this and (5) in Lemma 8 that, for each vertex \(z \in Z_y^*\), \(\sigma_q(x, z) \geq 2\Delta - d(x) - d(y) - 1\), and so \(d(z) - \sigma_q(x, z) \leq d(x) + d(y) - \Delta + 1\). Also, by (4) in Lemma 8, \(\sum_{z \in Z_y^*} (d(z) - q) \geq (\Delta - q)(\Delta - d(y) + 1) + 3 - (d(x) + d(y) - \Delta + 1)\).
So, using \(d(y) \leq q \) in the second line, we have

\[
M_1(x, q) \geq d(x) + \sum_{z \in Z_y^*} \frac{d(z) - q}{d(z) - \sigma_q(x, z)} \\
> d(x) + \frac{(\Delta - q)(\Delta - d(y) + 1)}{d(x) + d(y) - \Delta + 1} - 1 \\
\geq d(x) + q - \Delta + 1 + \frac{(\Delta - q)(\Delta - q + 1)}{d(x) + q - \Delta + 1} + \Delta - q - 2 \\
\geq 2\sqrt{(\Delta - q)(\Delta - q + 1)} + \Delta - q - 2 \\
> 3(\Delta - q) - 2 > q,
\]

where in the penultimate line we used \(a + b \geq 2\sqrt{ab} \) for all \(a, b > 0 \), and in the final line that \(3(\Delta - q) \geq q + 8 \) since \(q \leq \frac{3}{4}\Delta - 2 \).

Case 2. \(2(\Delta - q) - 4 < d(x) < q \) and \(d(y) > q \) for every \(y \in N(x) \).

Let \(y \in N(x) \) such that the degree of \(y \) is minimum in \(N(x) \). Let \(u \) be an arbitrary vertex in \(N(x) \). Then \(d(u) \geq d(y) \) by the choice of \(y \). By Lemma 1, we have \(\sigma_q(x, u) \geq \sigma_\Delta(x, u) \geq \Delta - d(x) + 1 \). Since \(d(u) \geq d(y) \) and \(q > \Delta - d(x) + 1 \), we have

\[
\frac{d(u) - q}{d(u) - \sigma_q(x, u)} \geq \frac{d(u) - q}{d(u) - (\Delta - d(x) + 1)} \geq \frac{d(y) - q}{d(y) - (\Delta - d(x) + 1)},
\]

where the inequality holds because \(\frac{d(u) - a}{d(u) - b} \) with \(a > b > 0 \) is a increasing function of \(d(u) \).

Note that \(|N(x) \setminus Z_y^*| \geq |N(x) \setminus Z_y| = d(x) - (\Delta - d(y) + 1) \). Combining this with the above inequality, we have

\[
\sum_{u \in N(x) \setminus Z_y^*} \frac{d(u) - q}{d(u) - \sigma_q(x, u)} \geq d(y) - q. \tag{22}
\]

For any vertex \(z \), since \(d(y) \leq \Delta, d(z) \leq \Delta \) and \(q < \frac{3}{4}\Delta \),

\[
d(x) + d(y) + d(z) - 2\Delta - 2 < d(x) < q < 3(\Delta - q).
\]

For each \(z \in Z_y^* \), by (5) in Lemma 8,

\[
\sigma_q(x, z) \geq 2\Delta - d(x) - d(y) - \left[\frac{d(x) + d(y) + d(z) - 2\Delta - 2}{\Delta - q} \right] \\
\geq 2\Delta - d(x) - d(y) - 2,
\]

17
and so $d(z) - \sigma_q(x, z) \leq d(x) + d(y) - \Delta + 2$. Combining this with (4) in Lemma 8, (22) and using $\Delta - d(y) + 1 = d(x) + 3 - (d(x) + d(y) - \Delta + 2)$ in the next line, gives

$$M_1(x, q) \geq d(x) + \sum_{z \in Z^*_y} \frac{d(z) - q}{d(z) - \sigma_q(x, y)} + \sum_{u \in N(x) \setminus Z^*_y} \frac{d(u) - q}{d(u) - \sigma_q(x, u)}$$

$$\geq d(x) + \frac{(\Delta - q)(\Delta - d(y) + 1) + 4}{d(x) + d(y) - \Delta + 2} - 1 + d(y) - q$$

$$= d(x) + d(y) - \Delta + 2 + \frac{(\Delta - q)(d(x) + 3) + 4}{d(x) + d(y) - \Delta + 2} - 3$$

$$\geq 2\sqrt{\Delta - q}(d(x) + 3) + 4 - 3$$

$$> 2\sqrt{2}(\Delta - q - \frac{1}{2}) - 3 \geq q.$$

where in the penultimate line we used $a + \frac{b}{a} \geq 2\sqrt{b}$ for all $a, b > 0$, and in the final line we used $(\Delta - q)(d(x) + 3) + 4 > 2(\Delta - q - \frac{1}{2})^2$ since $d(x) > 2(\Delta - q) - 4$ and we also used $q \leq \frac{2\sqrt{2}\Delta - 3 - \sqrt{2}}{2\sqrt{2} + 1}$.

Case 3. $\Delta - q + 1 < d(x) \leq 2(\Delta - q) - 4$ and $d(y) > q$ for every $y \in N(x)$.

In this case, we let $p' := p(x, q)$ since it will be used heavily here. So, $p' = \min\{ p_{\min}(x, q), \lfloor \frac{d(x)}{2} \rfloor - 3 \}$, where $p_{\min}(x, q) = \min_{y \in N(x)} \sigma_q(x, y) - \Delta + d(x) - 1$. So $\sigma_q(x, y) \geq \Delta - d(x) + p' + 1$ for every $y \in N(x)$.

Since $d(x) \leq 2(\Delta - q) - 4$ and $p' \leq \lfloor \frac{d(x)}{2} \rfloor - 3$, we have $q \leq \Delta - \frac{d(x)}{2} - 2 \leq \Delta - p' - 5$.

By Lemma 5, x has at least $d(x) - p' - 3$ neighbors y for which $\sigma_q(x, y) \geq \Delta - p' - 5$, so for these neighbors y,

$$\frac{d(y) - q}{d(y) - \sigma_q(x, y)} \geq \frac{d(y) - q}{d(y) - (\Delta - p' - 5)} \geq \frac{\Delta - q}{p' + 5}. \quad (23)$$
If \(q > \Delta - d(x) + p' + 1 \), i.e., \(p' < d(x) + q - \Delta - 1 \), then

\[
M_1(x, q) \geq d(x) + (d(x) - p' - 3)\frac{\Delta - q}{p' + 5} \geq d(x) + \frac{(\Delta - q - 2)(\Delta - q)}{d(x) + q - \Delta + 4}.
\]

\[
= (d(x) + q - \Delta + 4) + \frac{(\Delta - q)(\Delta - q - 2)}{d(x) + q - \Delta + 4} - (q - \Delta + 4) \geq 2\sqrt{(\Delta - q)(\Delta - q - 2)} + \Delta - q - 4 \geq 3(\Delta - q) - 8 \geq q,
\]

since \(q \leq \frac{3}{4}\Delta - 2 \).

We now consider the case \(q \leq \Delta - d(x) + p' + 1 \). Since \(\sigma_q(x, y) \geq \Delta - d(x) + p' + 1 \) for every \(y \in N(x) \),

\[
\frac{d(y) - q}{d(y) - \sigma_q(x, y)} \geq \frac{d(y) - q}{d(y) - (\Delta - d(x) + p' + 1)} \geq \frac{\Delta - q}{d(x) - p' - 1}.
\] \hspace{1cm} (24)

By (23), (24), the fact that \(d(x) > \Delta - q + 1 \) and the inequality \(\theta + \theta^{-1} \geq 2 (\theta = \frac{d(x) - p' - 3}{p' + 5}) \), we have

\[
M_1(x, q) \geq d(x) + (d(x) - p' - 3)\frac{\Delta - q}{p' + 5} + (p' + 3)\frac{\Delta - q}{d(x) - p' - 1}
\geq \Delta - q + 1 + (\Delta - q)\left(\frac{d(x) - p' - 3}{p' + 5} + \frac{p' + 3}{d(x) - p' - 1}\right)
\geq \Delta - q + 1 + (\Delta - q)(2 - \left(\frac{p' + 5}{d(x) - p' - 3} - \frac{p' + 3}{d(x) - p' - 1}\right)).
\]

Since \(d(x) - p' - 1 \geq \frac{d(x)}{2} + 2 \) and \(d(x) - p' - 3 \geq \frac{d(x)}{2} \geq \frac{\Delta - q + 1}{2} \), we get

\[
\frac{p' + 5}{d(x) - p' - 3} - \frac{p' + 3}{d(x) - p' - 1} \leq \frac{2d(x) + 4}{(d(x) - p' - 3)(d(x) - p' - 1)} \leq \frac{8(d(x) + 2)}{(\Delta - q + 1)(d(x) + 4)} < \frac{8}{\Delta - q}.
\]

Thus,

\[
M_1(x, q) > \Delta - q + 1 + (\Delta - q)(2 - \frac{8}{\Delta - q}) = 3(\Delta - q) - 7 > q.
\]

\[\square \]
4 Acknowledgement

Theorem 1 is obtained from a suggestion of one of the anonymous referees. We thank him/her and all other referees for their thoughtful comments and suggestions.

References

