Strong Test Modules and Multiplier Ideals

Florian Enescy

Abstract. We introduce the notion of strong test module and show thatrgelnumber of such
modules appear in the tight closure theory of complete dosnahe test ideal (this has already been
known), the parameter test module, and the module of relédist elements. They also appear as certain
multiplier ideals, a concept of interest in algebraic getsyne

1 Introduction

The purpose of this note is to address a few issues relategettight closure of ideals in rings of
characteristiqp > 0. The study regards the concept of strong test ideals intextiby C. Huneke ([7]).
A. Vraciu ([16]), N. Hara and K. E. Smith ([4]) have also intigated it. In this note, we extend the
notion of strong test ideals to modules and generalize sdrtteedknown results. The perspective that
we offer in our study also leads to some algebraic propettiasare shared by the multiplier ideals.
Along the way, we provide a natural interpretation for theduies of relative test elements, a concept
introduced by A. K. Singh ([10]).

Throughout these note$R,m,K) is a local ring of characteristip > 0. We start by recalling the
notions of tight closure for modules, test ideal and strasg ideal.

In positive characteristip, one can define the Frobenius homomorphisnR — R, F(r) = rP. For
everye, the iterated Frobenius m&3 : R— Rsends torP and enableRwith a newR-algebra structure
on the right, denoted big® (on the left,R® = R). It also defines a functor that sendsRimoduleM to
F&(M) := RPQrM.

Let M anR-module andN C M a submodule iM. Thetight closure of N in M denoted byNy;, is
defined as followsm e Ny, if there isc € R° := R— Upewminr)P Such that@me N,{fﬂ] = Im(F¢(N) —
F€(M)), for all e sufficiently large. The elemertz mbelongs td=¢(M) and it is ocasionally denoted by
cmd, whereq = p®. WheneveM = RandN = | an ideal ofR, we simply obtain the tight closure bin
R, denoted by*. In the definition of tight closure, there is no assumpticat b is finitely generated over
R. In fact, there is another notion of tight closure called finitistic tight closurelf N is a submodule of
M, the finitistic tight closure oN in M is denoted b)N,’(,lfg and equals)y (NN M)y, where the union
runs over all finitely generated submoduMSof M. It is easy to see that wheM is finitely generated
overR, Ny, = N,f,lfg. The case wheN is Artinian andN = 0 is especially important. It is conjectured that
in this case the two notions of tight closure coincide (thejecture has been proven in a few cases, [9]).
An important special case of the conjectured is that wker Er(k). For basic tight closure facts we
refer the reader to [5], where the theory is presented inld&tr details on the above stated conjecture
on Artinian modules and related issues we refer the readét.to

*Department of Mathematics, University of Utah, Salt LakéyQitah, 84112, USA, and the Institute of Mathematics of
the Romanian Academy, Bucharest, Romania. MSC: 13A35



Definition 1.1. Let Rbe as above. Thiest idealt(R) is defined asiuAnng(0,), whereM runs through
all finitely generatedR-modules. An element af(R) NR° is called a test element.

We now list the main facts about the test ideal.

Proposition 1.2. Let R be a Noetherian ring of characteristic p. Then

(a) ce t(R) if and only if whenever Nt M and xe Ny, then c® € Nh[j?] forall g. Infactce R°is a
test element if and onlé/ if EiC |, for every ideal | in R.

(b) 1(R) = AnnR(O’,‘ERg), where iR = ®nE(R/m), and m runs through all maximal ideals of R.

(c) If (R,m,K) is local and{l;} is a sequence of m-primary irreducible ideals cofinal with plowers
of m, them(R) = nl; : Ii. Such as sequence exists if and only if R is approximatelgr@eein. If R is
local and complete, theAnng, (T(R)) = Og'°.

The notion of the strong test ideal has been introduced byudeke as follows:
Definition 1.3. Anideal T of Rsuch thafl I* = T| for every ideal is calleda strong test ideal.

The motivation for this definition can be explained as fokovgincel* C I, then for every element
X € I* there is an integral dependence equation bykat is satisfied by. If T is a strong test ideal and
Ris domain, then an application of the determinant trick {Beeorem 2.1 in [7]) shows that the minimal
number of generators @f provides an upper bound for the degree of such an integrandiemce equa-
tion. What is significant here is that this bound is uniformdwery ideal and every € |1*, as it depends
only on the ideall'. In the general case, the existence of such bound can beacktluthe domain case.
Finding more than one strong test ideal is important in jirachs we are not aware of any result that
indicate which one has fewest number of generators. Iniaddid this, there is another aspect of the
definition. Each time a strong test ideal is exhibited, itinileg property gives a uniform special feature
of tight closure of ideals. In some cases, this can be usefpplications (Theorem 5.2 in [1]).

2 Test Modules and Multiplier Ideals

In this section we define the notion of strong test module avel examples of such modules.
A. Vraciu has proven an important property of the test idealamplete rings.

Theorem 2.1 (Vraciu). Let (R,m,K) be a complete local ring. Ther{R) is a strong test ideal.

We will provide a natural generalization of this theorem &nk it to multiplier ideals via the results
of N. Hara ([3]).

Throughout this sectioR is assumed complete. Also, for simplicifg,will be assumed domain in
some results. As illustrated in [7], the issues related nangt test ideals can be reduced to the domain
case in many instances, by reduction modulo each minimaleori

Let M be an Artinian module oveR and denote bV the Matlis dual Hora(M, Er(K)). Clearly,
the duality induces a natural pairing:

MY x M — Er(K). (%)

Using this pairing, let us defimay := {n € M"Y : n0}, = 0}. A similar definition can be formulated
using % instead of §. A module of this type will be denoter{?. A module of the formy, or T2 will



be calleda test module It is likely thatty = r,f,lg in general, as it has been conjectured trié? e Oy
for an Artinian moduleM (see Theorem 8.12 in [9] where the conjecture is proven falldngs with
isolated singularities; the important cdde= Er(K) it also settled there for Cohen-Macaulay local rings,
Gorenstein on their punctured spectrum, Theorem 8.8, [9]).

We would like to state the following useful fact from Matlisality theory (see Lemma 2.1 in [13]
or Lemma 3.3 in [3]).

Lemma 2.2. Let F be a finitely generated module over a local rifRym). Denote its Matlis dual by
FY =Homg(F,ER). Let G (resp. L) be any submodule of F (resp.) Af L = Anngv G, then G= AnneL.
If (R,m) is complete, then the reverse is also true.

Theorem 2.3. Let R be a local complete ring and M an Artinian module over fihdeg the test modules
fg _ +f9 _ .10 i
v andt,;. Then Fty = Ity and I*1yy = I1y, for every ideal | of R.

Proof. To prove the claimed equality it is enough to show that the tvamlules in the statement of the
theorem have the same annihilatoMn(here, we nee® be complete for local duality).

We will start withty.

Anny(I*1) ={me M : I*tm=0} ={me M :1*-mC Anny(1)}. Local duality gives that Anj(t) =
Oy Therefore, Angy(1*t) = {m: ml* C 05y} = (O, : I*). Similarly, Anny(It) = (G, : 1). So, we need
to show that

Oy :17) = (O : ).

The inclusion(0f, : 1*) C (0, : 1) is evident, so we will concentrate on the reverse inclusion:

Let us takeze 1* andme (Gf, : 1). We need to show tham € (Of, : 1*) and hence it suffices to show
thatzme Of,.

Now, z€ I* so there il € R° such thatl & = 5 agX, wherel = (x,...,%). Sinceme M, we get an
elementm? := 1® me F&(M) for everyq = p®. With this notationdZ - mi = 5 aigx' ® M= ¥ ajqg ® Xim.
Since eaclx; € | andme (0, : 1), one has thatm e 0y,. Takec € R° an element which works the tight
closure equations given bym e 0, for every i=1,...,k. Thenc@xm=0 in F¢(M), for alli. So,
cd(zm9 =y ajgc® x;m= 0 sozme Cf;.

In the case ot,':,lg the reasoning is similar. Keeping the notations as abovéjave now thakim e
OK,lfg for everyi = 1,...,k. This means that there is a finitely generated submohitilef M such that
xime 0y, for all i. Now, we can use a test element dR to show, as above, thame 0‘,:,|fg.

]

Definition 2.4. Let T be anR-module. The property thaf = |*T, for every ideal in R, will be called
the strong test module propert faithful module T with the strong test module property is called a
strong test module.

Remark 2.5. The minimal number of generatos of a strong test modufgovides a uniform bound
(depending only on the modulk) on the degree of the equation of integral dependence thatean
mentx € 1* satisfies ovet, for everyl and every suckx. This can be obtained by a straightforward
generalization of the argument given in Theorem 2.1 [7].

Two special cases of the Theorem stand out. The first parteofdxt Corollary recovers Vraciu’'s
result. The second part refers to tharameter test modulepa(wr), a notion introduced by Karen
E. Smith ([13]). Let us recall thatpar(wr) = AnNgy( for an excellent local Cohen-Macaulay
ring.

har)



Corollary 2.6. Let R as above.

1) The test ideat(R) is a strong test ideal.

2) Assume that R is also Cohen-Macaulay and domain. The deartest modulepa(wr) has the
strong test module property.

Proof. The Theorem 2.3 applies in both cases. Alsa;(wr) is a faithful module as a submodule ©k
which is torsion-free in our case.
O

Now, we take a look athe module of relative test elemeffig a finite extension of reducde-finite
local rings (A, my, k) — (R,m,K). The concept was introduced by Anurag K. Singh in [10] and is
defined asT (R,A) = AnnMv(O’h‘,lfg) for M = Ea(k) ®a R under the duality(x). Therefore, the module
of relative test elements fok — R is a particular type of test module f&. It is worth noticing that
HomR(EA(k) RaR, ER(K)) ~ HomA(R, A) and thatT(R,A) C HomA(R, A).

Corollary 2.7. Let (A, my,k) — (R m,K) be a finite extension of F-finite local rings. Assume that R is
complete and domain. Then the module of relative test elenigR, A) is a strong test module.

Proof. The strong test module property BfR, A) follows immediately from Theorem 2.3. To show that
T(R,A) is faithful we would like to remark that HopiR, A) is torsion-free, ifRis domain. It is enough
to show tharRN A # 0, for everyr € R (this implies that eacli € Homa(R,A) is injective). SinceRis
module finite ovelA it follows thatr in integral overA. Hence, there is an equation of minimal degree
of the formr"+a,_1r" 1+ ...+ a;r + a, = 0. ButRis a domain anch has been chosen minimal, so
0#£a, erRNA.

O

In some cases, the multiplier ideals can occur as test medule what follows we explain this
assertion. We make use of the results of N. Hara ([3]) whoegmtpin particular, that the test ideal is a
certain multiplier ideal (this has also been proved indepetly by K. E. Smith, [14]).

First we need to describe the setup which is needed to statésHasults. It involves reduction to
positive characteristic from characteristic zero. Theugawvill be described without any proofs. All the
assertions are addressed in detail in [3] and the readetdshonsult his paper (sections 4.6, 5.1 and
5.7).

Let R be a finitely generated algebra over a field of characters#io and letl be a divisorial
ideal such that™ ~ R for somen € N. ConsiderD a Q-Cartier Weil divisor on Spd®) such that
HO(Spe¢R), O(D)) = 1. The round-up oD is denoted by D™ and the round-down byD_. Let f : X —
Spe¢R) be a desingularization with exceptional divisor with simmpbrmal crossing.

Fix an isomorphism (" ~ Rand define two cyclic coverings:

S=@" 311 andY = Speg (B3 Ox(Lif*DJ)). Also leth: Y — Y be a resolution of singularities
of Y. Itis known thaty has only rational singularities.

We have the following commutative diagram:

Y - Y — Spe¢

\J \J
X — Spe¢R)

We reduce all the data to characterighic>> 0 (and also localize at a prime ideal of the new algebra
whenever we refer to the local case). As part of the set-upcameassume that the above diagram is
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defined over a perfect field of characteristiqp > 0 which does not divide. We will keep the notations
unchanged.
If (R,m) is local,Sis semilocal. We will denote;, i = 1,..., s, the maximal ideals dandn = N;n;.

Z denotes the fiber o Spe¢R) andZ; denotes the fiber of EN Spe¢S) overn;, andZ' = U;Z;.

It can be seen thad°(Y, wy) = ®MFHO(X, wx ("—if*D7)) andws = @FHom(I1) wr) (these for-
mulae differ by a sign from those in [3], as this is what comasfoom the direct application of the
adjunction formula).

Theorem 2.8. (Hara) Assume thafR, m) is local, normal and of dimension d which is obtained from
characteristic zero by reduction to characterstic>fD as above. Then we have that

ey = Ker(HE(1) 2 HI(0x (L F*D.))),
whered denotes an edge map of the Leray spectral sequep¢e HX, Ox (L f*D.))) = Hiz+j (Ox(LF*DL)).

Remark 2.9. The map5 is the degree one part of the graded miagHS(S) — H3 (Oy), which is also an
edge map of the spectral sequetieg(H!(Y, Oy)) = HL ' (Oy).The kernel of the map' equals Ba(s):
For an explanation of these claims, we refer the reader ta'slpaper, [3].

Let us define now the multiplier ideal.

Definition 2.10. LetV be an irreducible norm#&-Gorenstein variety defined over a fiddadf character-

istic zero. LetD = Ky + A be aQ-divisor onV andX i>V be a proper birational map such tHfan+ E
is a simple normal crossing divisofhe multiplier ideal sheaf associated (. D) is defined as

J(V,A) = f,(Ox("Kx — f*D™))

WhenD is effective, the definition gives an ideal sheaf. In the gaelnease, one has a fractional ideal
sheaf.

We would like to study the multiplier ideal in positive chetaristic. To be able to define the mul-
tiplier ideal in characteristip > 0, we start in characteristic zero and reduce the data t@actearstic
p. As mentioned above, this has been explained at length in T@summarize the procedure, we in-
dicate briefly its main points for the ca¥e= Spe¢R), with R finitely generated algebra ovkra field
of characteristic zero (the case that we will be using lat&e keep the notations just introduced in
Definition 2.10. First choose a finitely generatégubalgebra of k and construct a finitely generated

flat A-algebraRa, a smoothA-schemeX,, a birational morphismfa @ Xa %) (Ra), together withAa

Q-divisor on SpefRa) andEp, the exceptional fiber, such th§fAa + Ea has simple normal crossing

and, by tensoring back witk, one obtains the initial data SE&), X, f,A,E. By choosing a general

closed pointsin Spe¢A) one gets the corresponding fibd&s X, fs etc., and the data are defined now

over the residue field &which is of positive characteristip. With all these data at hand one can define

the multiplier ideal in characteristip > 0 as above, in manner similar to the characteristic zera case
For more details on multiplier ideals in characteristicozgrlease consult [8].

The Theorem 2.8 gives the following Corollary. We would lideerecall that, forM an Artinian
R-module,t)s denotes the test module earlier defined.



Corollary 2.11. Let(R,m) be a local, normal, complet&-Gorenstein of dimension d of characteristic
p > 0 (obtained by reduction from characteristic zero). Using ame notations and hypotheses as
above,

Thgy = HOX, Ox (TKx — £*D7))

seen as submodule Bbmg(l, wR) via the natural inclusion.
In particular, the multiplier ideal F(X, Ox("Kx — f*D7)) is a strong test module.

Remark 2.12. The proof of the first assertion of the Corollary follows @bsthe proof of Theorem 5.9
in Hara (which represents in fact the cdde- KR).

Proof. By Hara's Theorem,

haqy = Ker(Hg(D) 2 HE(Ox (L T*DL))).

Now,
HF (Ox (L F*D1)) = HE (0 (—"Kx — £*D7)),

which is Matlis dual taH%(X, Ox("Kx — f*D7)). Also, HA(1)" = Homg(l, wr).

There is a natural inclusion dfi°(Y,wy) < ws. Its degree one part gives a natural inclusion
HO(X, Ox("Kx — f*D7)) < Homg(l, wRr).

We have that

Homg(l, wRr)

HO(X, Ox (K — D)) &

0 — HO(X, Ox("Kx — f*D7)) — Homg(l, wr) —

By taking the Matlis dual, we get that
Fa) = C" = Annya ) HO(X, Ox ("Kx — £*D7)).

Using again duality (as in Lemma 2.2), we get the first parhef@orollary. Theorem 2.3 can be used
now to conclude the proof. O

Remark 2.13. For each multiplier ideal as above, its minimum number ofegators will provide a
uniform bound (depending only dR) on the degree of the integral dependence equatiorowérl, for
eachxe 1* C 1.

3 A fewremarks on the parameter test ideal

Many of the questions in tight closure theory that addresstéist ideal can also be formulated for an
alternate notion of test ideal, the parameter test ideahe@dly, considering parameter ideals instead of
arbitrary ideals provides questions with answers that bhaeging on arbitrary ideals. In fact, tight clo-
sure is better understood in the case of ideals generatearbynpters and many fundamental conjectures
have been proven in these particular case (see for exampladin 5.1 in [12]).

This final section deals with two natural questions thateainsthe study of strong test ideals. The
guestions regard the parameter test ideal, so we will pcbbgelefining it (see Definition 8.7 in [6]).



Definition 3.1. Let R be an equidimensional local ring of positive characteripti We define thepa-
rameter test ideatpa(R) to ben(l : 1*), wherel runs through all ideals generated by a system of
parameters.

Let us recall the basic properties of the parameter test &eia [6].

Proposition 3.2. Let(R,m,K) be an excellent equidimensional local ring of charactésigt

(a) If ce R®, then ce 1pa(R) if and only if for every ideal generated by a system of paransetfor
all x € R we have that % I* implies ¢ ¢ 119 for all q.

(b) If R is Cohen-Macaulay,ix...,Xq is an s.0.p. and = (X,...,x{,)R, thent par(R) = N (It : 17).

(c) If R is Cohen-Macaulay and | is any ideal generated by maats in a system of parameters,
thentpar (R)(1*) C 1.

The parameter test ideal and its elements have also beeadstmdK. E. Smith ([13]) and J. Vélez
([15]) with focus on Cohen-Macaulay excellent rings. Intgadar, K. E. Smith has shown thag, (R) =
AnnRO’lﬁl% R = AnnRO’“fg (Proposmon 4.2, [13)).

The two questlons are
Question 3.3.1s the parameter ideal a strong test ideal for the familypatar ideals? More precisely,
is it true thattpar(R)1* = Tpa/l for all idealsl generated by systems of parameters?

In response to Question 3.3, we prove thak(R)I* = Tpal for a large family of ideals generated
by systems of parameters.

Question 3.4. It is known that ifR is complete, then D ,, = Anng. (1(R)). Itis true that Qar) =
AnNnyg gy (Tpar(R))?

Denote byN := Annya g (Tpar(R)). Clearly, Giar) € N. (WheneveR is excellent and analitically

irreducible, Q|d is the unique maximal propdt-stable submodule dfi¢(R) as shown in [11]). An
affirmative answer to our Question 3.4 would imply thats F-stable, becausq:g) R is F-stable. The
problem of the--stability of N has appeared in the work of K. E. Smith ( [13]) and has remadmesh.
(N is F-stable for Gorenstein rings, as the parameter test idasdledhe test ideal in that case.) If
N is F-stable, thertpa(R) is what is called arF-ideal of R. (For more on the notion of-ideals,
see [12, 13]). We produce an example that settles the is@egiray Question 3.4, showing thgfx(R)
is not necessarily aR-ideal, wheneveR is complete, Cohen-Macaulay and reduced

We would like to show now thatpa(R)1* = Tpar(R)I for certain ideals generated by systems of
parameters under some additional conditions on theRings previous authors did, we will concentrate
on the case wheR is Cohen-Macaulay. First we need to state the following:

Lemma 3.5. Let (R,m,K) be a local Cohen-Macaulay ring and suppose ttepth(tpa(R)) > 2. Then
for every ideal I= (c1d1,C2d2, X3, ..., Xg) generated by a system of parameters, witltgare parameter
test elements,

[*C —I—(dldz)(Cl,Cg,Xg,...,Xd)*.

1after discussing the contents of our paper with Nobuo Haesinformed us that, using some geometrical constructions,
he can obtain an example that is not only reduced, but alsnalpand for whichN is notF-stable.



Proof. Because eact) is a parameter test element dnd generated by a system of parameters, we have
cl*Cl. So,l* Cl:(cy,Cp). It can be shown thdt: (c1,c) = (di1d2, X3, -.-, Xd)-
Each element of | can be then written in the forfn=i+d1dyr, wherei € | andr € R. This gives that
r € 1* : dyd,. For everygwe have that for some a test element(rd;d;)( € 119, Using the properties
of regular sequences, it follows thaf € (¢, Cp, X3, ..., Xq)!¥, for everyq > 0. So,r € (C1,Cp, X3, ..., Xd)*
and this ends our proof. O

Now we can state one of the main results of this section:

Theorem 3.6. If (R,m,K) is Cohen-Macaulay andepth(tpar(R)) > 2, then there exist a large family of
ideals | generated by systems of parameters such that

Tpar(R)I* = Tpar(R)I.

More preciselyTpar(R)I* = Tpar(R)I, for every ideal parameter ideal # (c1d1,C202,%3, ..., X4), Where
Ci,d; are parameter test elements.

Proof. Keep all the notations introduced in the above Lemma. Lesssrae that = (c1d;, Cod2, X3, ..., Xd)
is generated by a system of parameters witlt,, d;, d, parameter test elements,
According to our Lemma,

Tpar(R)I* C Tpar(R)I + (dldz)rpar(R)(Cl,Cz,X3,..,Xd)*

We have that
(dldz)Tpar(R)(Cl,Cz,Xg, ,Xd)* C (dldz) (C]_,Cz,Xg, ,Xd)
because the parameter test ideal has the property thattiphiag the tight closure of every parameter
ideal into the ideal itself.
In conclusion,

Tpar(R)l * C Tpar(R)l + (dldz)(C]_, C2,X3, ...,Xd) C Tpar(R)I.

using here in an essential way tithtd, belong totpar(R).
S0, Tpar(R)I* C Tpar(R)I.
]

The following Proposition is similar to results of Hara anaigh who proved that the test ideg(R)
is a strong test ideal whenevglR) = m (Theorem 1.1 in [4])

Proposition 3.7. Let (R,m,k) Cohen-Macaulay and assume ttigk(R) = m. Then mi = ml for all
ideals | generated by systems of parameters.

Proof. Fix | an ideal generated by a system of parameters and assummlthgt ml. This means
that there exisk € 1* andy € m such thatyx ¢ ml. However,Tpo, = m andy € m, thereforeyx € |.
Sinceyx e | —ml, it follows thatyx can be taken as part of a minimal system of generators, feay
| = (Y X2,...,Xq). Clearly,yx x,...,Xg form a system of parameters, hence they are a regular sefjuenc
inR.

Let us write thatx € 1*, by usingy as parameter test element. We get that, for egetthere exist
Aq such thatyxd — Agy3x9 € (Xp, ..., %) . That is,xd- (y —Agy?) € (Xz, -, Xa)[9. But, X, X2, ...,Xq form a
regular sequence iR. S0,y—Aqy? € (X, ..., Xa)!9, and hencey € (y,%a, ..., Xq4)! for everyq. So,y=0
which is impossible.

O



Theorem 3.6 and Propostion 3.7 make us believe that Que3t®has an affirmative answer for
Cohen-Macaulay rings.

) , f
Now, we would like to study our second question: Is AR (Tpar(R)) = Oﬂg,(R) ’;%%R)

(R,m,K) is a Cohen-Macaulay ring. (It is known thaH%QR) = O;;%R), but we will not use this here.)

Let us denote bW := Annya(g)(Tpar(R)). It is clear that gg(R) C N. If one has equality, then it
follows thatN is F-stable inH3(R), because ;Q%(R is a proper submodule ¢{4(R) that is stable under
the action of Frobenius. We will provide an example that shtvat this is not true in general. However,
our example is not analytically irreducible (as we ment@marlier, for rings that are excellent and
analitically irreducible Qg(R) has the feature that it is a maximal profestable submodule iHZ(R)).

Let K be a field of characteristip andx,y, z w indeterminates ove. Let R be the ringf)[([;"yyizz"\’,"v])] .

This local ring is the completion of the Stanley-Reisnegitx,y,z, w]/(xy,yz zw) at the maximal ideal
(x,¥,z,w). Ris reduced, not domain with minimal prim&s = (x,2), P> = (y,2), P; = (y,w). Tight
closure theory for Stanley-Reisner rings has been studietany authors and formulae for the parameter
test ideal and the test ideal have been given in terms of thamal primes of the ring (see for example
Theorem 3.7 in [2]). We can apply thisRand obtair yar(R) = T(R) = PLNP,+ PN P+ PN Ps. Inour
casePLNP, = (xy,2), NP3 = (y,zwW) andP NP3 = (xy, xw; zy, zW) and henceyar(R) = T(R) = (Y, Z xw).
Let us remark that difR) = 2 and h{tpa(R)) = 1.

Our ring R is Cohen-Macaulay with a system of parameters giver by, X—y—z Denote byl
the ideal generated by these elements and not&Ritiat K[y, 2/ (y?,yz 2).

We would like to show that there exists an elemggtN for which the image via the Frobenius action
onHY(R), F(n), does not belong thl. This will show thatN is notF-stable and therefore that it contains

’Q%(R strictly. Taken = [(xw)P~1 4+ (xP —wP,xP —yP — z°)]. We regardH3(R) as lim R/l;, where

ly = (X —wh, Xt —yt —Z) and the map®/l; — R/l;;1, in our direct system, are given by multiplication
by (x—w)(x—y—2). Now,

, Where

N = [(oxw) Pt 4 (P —wP, xP —yP — 2°)]
is written as an element &/ (xP —wP,xP —yP — z°) c H4(R), and
F(n) = ()PP 4 (6 —w?, X —yP" — )]

is written as an element &/ (x** —w",xP —y?* — 2P} c HY(R).
To show that o (R)N = 0 we need to show thaiwn = 0, because it is already clear tlygt= zn =0,
asyx=zw=0inR. It remains to check that

(xw)P € (xP —wP,xP —yP — 2P xy yz zw)

in K[[x,y,zw]]. Sinceyx e (xP —wP xP —yP — 7P xy yz zw), we get thatwPy = xPy — y(xP —wP) €
(XP —wP,xP —yP — 7P xy yz zw). SincewPy,wz, andwP(xP —yP —zP) € (xP —wP, xP —yP — Z° xy,yz zw),
we get thafwx)P € (xP —wP,xP —yP — 7P xy yz zw) which is our claim.

Now we need to show th#&t(n) ¢ N, that istpa(R)F(n) # 0. We will show that

XWOW) PP ¢ (7 — WP X —yP — 27 xyyz 2w)
in K[[x,y,z,w]]. Let us assume the contrary and tgke z= 0. This gives that

XW(XW) p(p—1) € (Xp2 _sz,xpz) — (sz’sz)

9



in K[[x, w]] which is certainly impossible.

This concludes our proof that is notF-stable in this example.

Acknowledgments: | would like to thank Nobuo Hara, Mel Hochster and Paul Rabéot their
helpful comments.
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