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�

Abstract. We introduce the notion of strong test module and show that a large number of such
modules appear in the tight closure theory of complete domains: the test ideal (this has already been
known), the parameter test module, and the module of relative test elements. They also appear as certain
multiplier ideals, a concept of interest in algebraic geometry.

1 Introduction

The purpose of this note is to address a few issues related to the tight closure of ideals in rings of
characteristicp � 0. The study regards the concept of strong test ideals introduced by C. Huneke ([7]).
A. Vraciu ([16]), N. Hara and K. E. Smith ([4]) have also investigated it. In this note, we extend the
notion of strong test ideals to modules and generalize some of the known results. The perspective that
we offer in our study also leads to some algebraic propertiesthat are shared by the multiplier ideals.
Along the way, we provide a natural interpretation for the modules of relative test elements, a concept
introduced by A. K. Singh ([10]).

Throughout these notes,
�
R�m�K � is a local ring of characteristicp � 0. We start by recalling the

notions of tight closure for modules, test ideal and strong test ideal.
In positive characteristicp, one can define the Frobenius homomorphismF : R� R, F

�
r � � r p. For

everye, the iterated Frobenius mapFe : R� Rsendsr to r pe
and enablesRwith a newR-algebra structure

on the right, denoted byRe (on the left,Re � R). It also defines a functor that sends anR-moduleM to
Fe�M� :� Re�

RM.
Let M anR-module andN � M a submodule inM. The tight closure of N in M, denoted byN	M, is

defined as follows:m 
 N	M if there isc 
 Ro :� R� �P
Min�R�P such thatc� m 
 N �q�M :� Im
�
Fe�N� �

Fe�M��, for all esufficiently large. The elementc� mbelongs toFe�M � and it is ocasionally denoted by
cm�q�, whereq � pe. WheneverM � RandN � I an ideal ofR, we simply obtain the tight closure ofI in
R, denoted byI 	. In the definition of tight closure, there is no assumption thatM is finitely generated over
R. In fact, there is another notion of tight closure calledthe finitistic tight closure. If N is a submodule of
M, the finitistic tight closure ofN in M is denoted byN	 f g

M and equals�M�
�
N � M � �	M � , where the union

runs over all finitely generated submodulesM � of M. It is easy to see that whenM is finitely generated
overR, N	M � N	 f g

M . The case whenM is Artinian andN � 0 is especially important. It is conjectured that
in this case the two notions of tight closure coincide (the conjecture has been proven in a few cases, [9]).
An important special case of the conjectured is that whenM � ER

�
k�. For basic tight closure facts we

refer the reader to [5], where the theory is presented in detail. For details on the above stated conjecture
on Artinian modules and related issues we refer the reader to[9].
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Definition 1.1. Let Rbe as above. Thetest idealτ
�
R� is defined as�MAnnR

�
0	M �, whereM runs through

all finitely generatedR-modules. An element ofτ
�
R� � Ro is called a test element.

We now list the main facts about the test ideal.

Proposition 1.2. Let R be a Noetherian ring of characteristic p. Then
(a) c 
 τ

�
R� if and only if whenever N� M and x
 N	M, then cxq 
 N �q�M for all q. In fact c
 Ro is a

test element if and only if cI	 � I, for every ideal I in R.
(b) τ

�
R� � AnnR

�
0	 f g

ER
�, where ER � �mE

�
R�m�, and m runs through all maximal ideals of R.

(c) If
�
R�m�K � is local and�It � is a sequence of m-primary irreducible ideals cofinal with the powers

of m, thenτ
�
R� � �t It : I 	t . Such as sequence exists if and only if R is approximately Gorenstein. If R is

local and complete, thenAnnER

�
τ
�
R�� � 0	 f g

ER
.

The notion of the strong test ideal has been introduced by C. Huneke as follows:

Definition 1.3. An idealT of Rsuch thatTI	 � TI for every idealI is calleda strong test ideal.

The motivation for this definition can be explained as follows. SinceI 	 � I , then for every element
x 
 I 	 there is an integral dependence equation overI that is satisfied byx. If T is a strong test ideal and
R is domain, then an application of the determinant trick (seeTheorem 2.1 in [7]) shows that the minimal
number of generators ofT provides an upper bound for the degree of such an integral dependence equa-
tion. What is significant here is that this bound is uniform for every idealI and everyx 
 I 	, as it depends
only on the idealT. In the general case, the existence of such bound can be reduced to the domain case.
Finding more than one strong test ideal is important in practice as we are not aware of any result that
indicate which one has fewest number of generators. In addition to this, there is another aspect of the
definition. Each time a strong test ideal is exhibited, its defining property gives a uniform special feature
of tight closure of ideals. In some cases, this can be useful in applications (Theorem 5.2 in [1]).

2 Test Modules and Multiplier Ideals

In this section we define the notion of strong test module and give examples of such modules.
A. Vraciu has proven an important property of the test ideal in complete rings.

Theorem 2.1 (Vraciu). Let
�
R�m�K � be a complete local ring. Thenτ

�
R� is a strong test ideal.

We will provide a natural generalization of this theorem andlink it to multiplier ideals via the results
of N. Hara ([3]).

Throughout this sectionR is assumed complete. Also, for simplicity,R will be assumed domain in
some results. As illustrated in [7], the issues related to strong test ideals can be reduced to the domain
case in many instances, by reduction modulo each minimal prime.

Let M be an Artinian module overR and denote byM� the Matlis dual HomR
�
M �ER

�
K ��. Clearly,

the duality induces a natural pairing:

M� �M � ER
�
K � � ���

Using this pairing, let us defineτM :� �n 
 M� : n0	M � 0�� A similar definition can be formulated
using 0	 f g

M instead of 0	M . A module of this type will be denotedτ f g
M . A module of the formτM or τ f g

M will
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be calleda test module. It is likely that τM � τ f g
M in general, as it has been conjectured that 0	 f g

M � 0	M
for an Artinian moduleM (see Theorem 8.12 in [9] where the conjecture is proven for local rings with
isolated singularities; the important caseM � ER

�
k� it also settled there for Cohen-Macaulay local rings,

Gorenstein on their punctured spectrum, Theorem 8.8, [9]).
We would like to state the following useful fact from Matlis duality theory (see Lemma 2.1 in [13]

or Lemma 3.3 in [3]).

Lemma 2.2. Let F be a finitely generated module over a local ring
�
R�m�. Denote its Matlis dual by

F � � HomR
�
F�ER�. Let G (resp. L) be any submodule of F (resp. F�). If L � AnnF �G, then G� AnnFL.

If
�
R�m� is complete, then the reverse is also true.

Theorem 2.3. Let R be a local complete ring and M an Artinian module over R defining the test modules
τM andτ f g

M . Then I	τM � IτM and I	τ f g
M � Iτ f g

M for every ideal I of R.

Proof. To prove the claimed equality it is enough to show that the twomodules in the statement of the
theorem have the same annihilator inM (here, we needRbe complete for local duality).

We will start withτM.
AnnM

�
I 	τ� � �m
 M : I 	τm� 0� � �m
 M : I 	 �m� AnnM

�
τ��. Local duality gives that AnnM

�
τ� �

0	M . Therefore, AnnM
�
I 	τ� � �m : mI	 � 0	M � � �

0	M : I 	 � � Similarly, AnnM
�
Iτ� � �

0	M : I �. So, we need
to show that �

0	M : I 	 � � �
0	M : I � �

The inclusion
�
0	M : I 	 � � �

0	M : I � is evident, so we will concentrate on the reverse inclusion:
Let us takez 
 I 	 andm 
 �

0	M : I �. We need to show thatm 
 �
0	M : I 	 � and hence it suffices to show

thatzm
 0	M .
Now, z 
 I 	 so there isd 
 Ro such thatdzq � ∑aiqxq

i , whereI � �
x1 � ����xk�. Sincem 
 M, we get an

elementmq :� 1� m
 Fe�M� for everyq � pe. With this notation,dzq �mq � ∑aiqxq
i
� m� ∑aiq

� xim.
Since eachxi 
 I andm 
 �

0	M : I �, one has thatxim 
 0	M . Takec 
 Ro an element which works the tight
closure equations given byxim 
 0	M for every i� 1� ����k. Thenc� xim � 0 in Fe�M �, for all i. So,
cd

�
zm�q � ∑aiqc� xim� 0 sozm
 0	M .
In the case ofτ f g

M the reasoning is similar. Keeping the notations as above, wehave now thatxim 

0	 f g

M for every i � 1� ����k. This means that there is a finitely generated submoduleM � of M such that
xim 
 0	M � for all i. Now, we can usec a test element ofR to show, as above, thatzm
 0	 f g

M .

Definition 2.4. Let T be anR-module. The property thatIT � I 	T, for every idealI in R, will be called
the strong test module property.A faithful moduleT with the strong test module property is called a
strong test module.

Remark 2.5. The minimal number of generatos of a strong test moduleT provides a uniform bound
(depending only on the moduleT) on the degree of the equation of integral dependence that anele-
mentx 
 I 	 satisfies overI , for every I and every suchx. This can be obtained by a straightforward
generalization of the argument given in Theorem 2.1 [7].

Two special cases of the Theorem stand out. The first part of the next Corollary recovers Vraciu’s
result. The second part refers to theparameter test moduleτpar

�
ωR�, a notion introduced by Karen

E. Smith ( [13]). Let us recall thatτpar
�
ωR� � AnnωR

�
0	Hd

m�R� � for an excellent local Cohen-Macaulay
ring.

3



Corollary 2.6. Let R as above.
1) The test idealτ

�
R� is a strong test ideal.

2) Assume that R is also Cohen-Macaulay and domain. The parameter test moduleτpar
�
ωR� has the

strong test module property.

Proof. The Theorem 2.3 applies in both cases. Also,τpar
�
ωR� is a faithful module as a submodule ofωR

which is torsion-free in our case.

Now, we take a look atthe module of relative test elementsfor a finite extension of reducedF-finite
local rings

�
A�mo �k� � �

R�m�K �. The concept was introduced by Anurag K. Singh in [10] and is
defined asT

�
R�A� :� AnnM�

�
0	 f g

M � for M � EA
�
k� �A R under the duality

���. Therefore, the module
of relative test elements forA � R is a particular type of test module forR. It is worth noticing that
HomR

�
EA

�
k� �A R�ER

�
K �� � HomA

�
R�A� and thatT

�
R�A� � HomA

�
R�A� �

Corollary 2.7. Let
�
A�mo �k� � �

R�m�K � be a finite extension of F-finite local rings. Assume that R is
complete and domain. Then the module of relative test elements T

�
R�A� is a strong test module.

Proof. The strong test module property ofT
�
R�A� follows immediately from Theorem 2.3. To show that

T
�
R�A� is faithful we would like to remark that HomA

�
R�A� is torsion-free, ifR is domain. It is enough

to show thatrR� A
�� 0, for everyr 
 R (this implies that eachf 
 HomA

�
R�A� is injective). SinceR is

module finite overA it follows that r in integral overA. Hence, there is an equation of minimal degree
of the form rn � an�1rn�1 � ���� a1r � ao � 0. But R is a domain andn has been chosen minimal, so
0
�� ao 
 rR� A.

In some cases, the multiplier ideals can occur as test modules. In what follows we explain this
assertion. We make use of the results of N. Hara ([3]) who proved, in particular, that the test ideal is a
certain multiplier ideal (this has also been proved independently by K. E. Smith, [14]).

First we need to describe the setup which is needed to state Hara’s results. It involves reduction to
positive characteristic from characteristic zero. The setup will be described without any proofs. All the
assertions are addressed in detail in [3] and the reader should consult his paper (sections 4.6, 5.1 and
5.7).

Let R be a finitely generated algebra over a field of characteristiczero and letI be a divisorial
ideal such thatI �n� � R for somen 
 N. ConsiderD a Q-Cartier Weil divisor on Spec

�
R� such that

H0�Spec
�
R� �O �

D�� � I . The round-up ofD is denoted by�D� and the round-down by�D�. Let f : X �
Spec

�
R� be a desingularization with exceptional divisor with simple normal crossing.

Fix an isomorphismI �n� � Rand define two cyclic coverings:
S� � n�1

i	0 I �i� andY � SpecX
�� n�1

i	0 OX
��i f 	D���. Also leth : Ỹ � Y be a resolution of singularities

of Y. It is known thatY has only rational singularities.
We have the following commutative diagram:

Ỹ � Y � Spec
�
S�
 


X � Spec
�
R�

We reduce all the data to characteristicp � 0 (and also localize at a prime ideal of the new algebra
whenever we refer to the local case). As part of the set-up, wecan assume that the above diagram is
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defined over a perfect fieldK of characteristicp � 0 which does not dividen. We will keep the notations
unchanged.

If
�
R�m� is local,S is semilocal. We will denoteni , i � 1� ����s, the maximal ideals ofSandn � � ini .

Z denotes the fiber ofX
f�� Spec

�
R� andZi denotes the fiber ofY

g�� Spec
�
S� overni , andZ� � � iZi .

It can be seen thatH0�Y�ωY � � �n�1
i	0 H0�X �ωX

���i f 	D��� andωS � �n�1
i	0 Hom

�
I �i� �ωR� (these for-

mulae differ by a sign from those in [3], as this is what comes out from the direct application of the
adjunction formula).

Theorem 2.8. (Hara) Assume that
�
R�m� is local, normal and of dimension d which is obtained from

characteristic zero by reduction to characterstic p
� 0 as above. Then we have that

0	Hd
m�I � � Ker

�
Hd

m

�
I � δ�� Hd

Z

�
OX

�� f 	D���� �
whereδ denotes an edge map of the Leray spectral sequence Hi

m
�
H j �X �OX

�� f 	D����� H i� j
Z

�
OX

�� f 	D���.
Remark 2.9. The mapδ is the degree one part of the graded mapδ� : Hd

n
�
S� � Hd

Z�
�
OY �, which is also an

edge map of the spectral sequenceH i
m
�
H j �Y�OY �� � H i� j

Z�
�
OY �.The kernel of the mapδ� equals 0	Hd

m�S�.
For an explanation of these claims, we refer the reader to Hara’s paper, [3].

Let us define now the multiplier ideal.

Definition 2.10. LetV be an irreducible normalQ-Gorenstein variety defined over a fieldk of character-

istic zero. LetD � KV
� ∆ be aQ-divisor onV andX

f�� V be a proper birational map such thatf 	∆� E
is a simple normal crossing divisor.The multiplier ideal sheaf associated to

�
V�D� is defined as

J
�
V�∆� � f	

�
OX

��KX � f 	D���
.

WhenD is effective, the definition gives an ideal sheaf. In the general case, one has a fractional ideal
sheaf.

We would like to study the multiplier ideal in positive characteristic. To be able to define the mul-
tiplier ideal in characteristicp � 0, we start in characteristic zero and reduce the data to characteristic
p. As mentioned above, this has been explained at length in [3]. To summarize the procedure, we in-
dicate briefly its main points for the caseV � Spec

�
R�, with R finitely generated algebra overk a field

of characteristic zero (the case that we will be using later). We keep the notations just introduced in
Definition 2.10. First choose a finitely generatedZ-subalgebraA of k and construct a finitely generated

flat A-algebraRA, a smoothA-schemeXA, a birational morphismfA : XA
Spec��� �

RA�, together with∆A

Q-divisor on Spec
�
RA� andEA, the exceptional fiber, such thatf 	A∆A

� EA has simple normal crossing
and, by tensoring back withk, one obtains the initial data Spec

�
R� �X � f �∆ �E. By choosing a general

closed points in Spec
�
A� one gets the corresponding fibersRs�Xs� fs etc., and the data are defined now

over the residue field atswhich is of positive characteristicp. With all these data at hand one can define
the multiplier ideal in characteristicp � 0 as above, in manner similar to the characteristic zero case.

For more details on multiplier ideals in characteristic zero, please consult [8].

The Theorem 2.8 gives the following Corollary. We would liketo recall that, forM an Artinian
R-module,τM denotes the test module earlier defined.
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Corollary 2.11. Let
�
R�m� be a local, normal, complete,Q-Gorenstein of dimension d of characteristic

p � 0 (obtained by reduction from characteristic zero). Using the same notations and hypotheses as
above,

τHd
m�I � � H0�X �OX

��KX � f 	D���
seen as submodule ofHomR

�
I �ωR� via the natural inclusion.

In particular, the multiplier ideal H0�X �OX
��KX � f 	D��� is a strong test module.

Remark 2.12. The proof of the first assertion of the Corollary follows closely the proof of Theorem 5.9
in Hara (which represents in fact the caseD � KR).

Proof. By Hara’s Theorem,

0	Hd
m�I � � Ker

�
Hd

m
�
I � δ�� Hd

Z
�
OX

�� f 	D���� �
Now,

Hd
Z
�
OX

�� f 	D��� � Hd
Z
�
ωX

���KX � f 	D��� �
which is Matlis dual toH0�X �OX

��KX � f 	D���. Also, Hd
m
�
I �� � HomR

�
I �ωR�.

There is a natural inclusion ofH0�Y�ωY � �� ωS. Its degree one part gives a natural inclusion
H0�X �OX

��KX � f 	D��� �� HomR
�
I �ωR�.

We have that

0 � H0�X �OX
��KX � f 	D��� � HomR

�
I �ωR� � HomR

�
I �ωR�

H0
�
X �OX

��KX � f 	D��� � C � 0�
By taking the Matlis dual, we get that

0	Hd
m�I � � C� � AnnHd

m�I �H0�X �OX
��KX � f 	D��� �

Using again duality (as in Lemma 2.2), we get the first part of the Corollary. Theorem 2.3 can be used
now to conclude the proof.

Remark 2.13. For each multiplier ideal as above, its minimum number of generators will provide a
uniform bound (depending only onR) on the degree of the integral dependence equation ofx over I , for
eachx 
 I 	 � I .

3 A few remarks on the parameter test ideal

Many of the questions in tight closure theory that address the test ideal can also be formulated for an
alternate notion of test ideal, the parameter test ideal. Generally, considering parameter ideals instead of
arbitrary ideals provides questions with answers that havebearing on arbitrary ideals. In fact, tight clo-
sure is better understood in the case of ideals generated by parameters and many fundamental conjectures
have been proven in these particular case (see for example Theorem 5.1 in [12]).

This final section deals with two natural questions that arise in the study of strong test ideals. The
questions regard the parameter test ideal, so we will proceed by defining it (see Definition 8.7 in [6]).
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Definition 3.1. Let R be an equidimensional local ring of positive characteristic p. We define thepa-
rameter test idealτpar

�
R� to be � I

�
I : I 	 �, whereI runs through all ideals generated by a system of

parameters.

Let us recall the basic properties of the parameter test ideal as in [6].

Proposition 3.2. Let
�
R�m�K � be an excellent equidimensional local ring of characteristic p.

(a) If c 
 Ro, then c
 τpar
�
R� if and only if for every ideal generated by a system of parameters, for

all x 
 R we have that x
 I 	 implies cx�q� 
 I �q� for all q.
(b) If R is Cohen-Macaulay, x1 � ����xd is an s.o.p. and It � �

xt
1 � ����xt

d �R, thenτpar
�
R� � �t

�
It : I 	t �.

(c) If R is Cohen-Macaulay and I is any ideal generated by monomials in a system of parameters,
thenτpar

�
R� �I 	 � � I.

The parameter test ideal and its elements have also been studied by K. E. Smith ([13]) and J. Vélez
([15]) with focus on Cohen-Macaulay excellent rings. In particular, K. E. Smith has shown thatτpar

�
R� �

AnnR0	Hd
m�R� � AnnR0	 f g

Hd
m�R� (Proposition 4.2, [13]).

The two questions are:

Question 3.3. Is the parameter ideal a strong test ideal for the family parameter ideals? More precisely,
is it true thatτpar

�
R�I 	 � τparI for all idealsI generated by systems of parameters?

In response to Question 3.3, we prove thatτpar
�
R�I 	 � τparI for a large family of idealsI generated

by systems of parameters.

Question 3.4. It is known that ifR is complete, then 0	ER�k� � AnnER�k�
�
τ
�
R��. It is true that 0	Hd

m�R� �
AnnHd

m�R�
�
τpar

�
R��?

Denote byN :� AnnHd
m�R�

�
τpar

�
R��. Clearly, 0	Hd

m�R� � N. (WheneverR is excellent and analitically

irreducible, 0	Hd
m�R� is the unique maximal properF-stable submodule ofHd

m
�
R� as shown in [11]). An

affirmative answer to our Question 3.4 would imply thatN is F-stable, because 0	Hd
m�R� is F-stable. The

problem of theF-stability of N has appeared in the work of K. E. Smith ( [13]) and has remainedopen.
(N is F-stable for Gorenstein rings, as the parameter test ideal equals the test ideal in that case.) If
N is F-stable, thenτpar

�
R� is what is called anF-ideal of R. (For more on the notion ofF-ideals,

see [12, 13]). We produce an example that settles the issue raised by Question 3.4, showing thatτpar
�
R�

is not necessarily anF-ideal, wheneverR is complete, Cohen-Macaulay and reduced1.
We would like to show now thatτpar

�
R�I 	 � τpar

�
R�I for certain ideals generated by systems of

parameters under some additional conditions on the ringR. As previous authors did, we will concentrate
on the case whenR is Cohen-Macaulay. First we need to state the following:

Lemma 3.5. Let
�
R�m�K � be a local Cohen-Macaulay ring and suppose thatdepth

�
τpar

�
R�� � 2. Then

for every ideal I� �
c1d1 �c2d2 �x3 � ����xd � generated by a system of parameters, with c1 �c2 are parameter

test elements,
I 	 � I � �

d1d2� �c1 �c2 �x3 � ����xd �	 �
1After discussing the contents of our paper with Nobuo Hara, he informed us that, using some geometrical constructions,

he can obtain an example that is not only reduced, but also normal, and for whichN is notF-stable.
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Proof. Because eachci is a parameter test element andI is generated by a system of parameters, we have
ci I 	 � I . So,I 	 � I :

�
c1 �c2�. It can be shown thatI :

�
c1 �c2� � �

d1d2 �x3 � ����xd �.
Each elementj of I can be then written in the formj � i� d1d2r, wherei 
 I andr 
 R. This gives that

r 
 I 	 : d1d2. For everyq we have that for somec, a test element,c
�
rd1d2� �q� 
 I �q�. Using the properties

of regular sequences, it follows thatcrq 
 �
c1 �c2 �x3 � ����xd � �q� , for everyq � 0. So,r 
 �

c1 �c2 �x3 � ����xd �	
and this ends our proof.

Now we can state one of the main results of this section:

Theorem 3.6. If
�
R�m�K � is Cohen-Macaulay anddepth

�
τpar

�
R�� � 2, then there exist a large family of

ideals I generated by systems of parameters such that

τpar
�
R�I 	 � τpar

�
R�I �

More precisely,τpar
�
R�I 	 � τpar

�
R�I, for every ideal parameter ideal I� �

c1d1 �c2d2 �x3 � ����xd �, where
ci �di are parameter test elements.

Proof. Keep all the notations introduced in the above Lemma. Let us assume thatI � �
c1d1 �c2d2 �x3 � ����xd �

is generated by a system of parameters withc1 �c2 �d1 �d2 parameter test elements,
According to our Lemma,

τpar
�
R�I 	 � τpar

�
R�I � �

d1d2�τpar
�
R� �c1 �c2 �x3 � ����xd �	 �

We have that �
d1d2�τpar

�
R� �c1 �c2 �x3 � ����xd �	 � �

d1d2� �c1 �c2 �x3 � ����xd �
because the parameter test ideal has the property that it multiplies the tight closure of every parameter
ideal into the ideal itself.

In conclusion,

τpar
�
R�I 	 � τpar

�
R�I � �

d1d2� �c1 �c2 �x3 � ����xd � � τpar
�
R�I �

using here in an essential way thatd1 �d2 belong toτpar
�
R�.

So,τpar
�
R�I 	 � τpar

�
R�I �

The following Proposition is similar to results of Hara and Smith who proved that the test idealτ
�
R�

is a strong test ideal wheneverτ
�
R� � m (Theorem 1.1 in [4])

Proposition 3.7. Let
�
R�m�k� Cohen-Macaulay and assume thatτpar

�
R� � m. Then mI	 � mI for all

ideals I generated by systems of parameters.

Proof. Fix I an ideal generated by a system of parameters and assume thatmI	 �� mI. This means
that there existx 
 I 	 andy 
 m such thatyx �
 mI. However,τpar � m andy 
 m, thereforeyx 
 I .
Sinceyx 
 I � mI, it follows thatyx can be taken as part of a minimal system of generators forI , say
I � �

yx�x2 � ����xd �. Clearly,yx�x2 � ����xd form a system of parameters, hence they are a regular sequence
in R.

Let us write thatx 
 I 	, by usingy as parameter test element. We get that, for everyq, there exist
λq such thatyxq � λqyqxq 
 �

x2 � ����xd � �q� . That is,xq �
�
y� λqyq� 
 �

x2 � ����xd � �q� . But, x�x2 � ����xd form a
regular sequence inR. So,y� λqyq 
 �

x2 � ����xd � �q� , and hence,y 
 �
y�x2 � ����xd � �q� for everyq. So,y � 0

which is impossible.
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Theorem 3.6 and Propostion 3.7 make us believe that Question3.3 has an affirmative answer for
Cohen-Macaulay rings.

Now, we would like to study our second question: Is AnnHd
m�R�

�
τpar

�
R�� � 0	Hd

m�R� � 0	 f g
Hd

m�R�, where
�
R�m�K � is a Cohen-Macaulay ring. (It is known that 0	Hd

m�R� � 0	 f g
Hd

m�R�, but we will not use this here.)

Let us denote byN :� AnnHd
m�R�

�
τpar

�
R��. It is clear that 0	Hd

m�R� � N. If one has equality, then it

follows thatN is F-stable inHd
m
�
R�, because 0	Hd

m�R� is a proper submodule ofHd
m
�
R� that is stable under

the action of Frobenius. We will provide an example that shows that this is not true in general. However,
our example is not analytically irreducible (as we mentioned earlier, for rings that are excellent and
analitically irreducible 0	Hd

m�R� has the feature that it is a maximal properF-stable submodule inHd
m
�
R�).

Let K be a field of characteristicp andx�y�z�w indeterminates overK. Let R be the ringK ��x�y�z�w���xy�yz�zw� .
This local ring is the completion of the Stanley-Reisner ring K

�
x�y�z�w�� �xy�yz�zw� at the maximal ideal�

x�y�z�w�. R is reduced, not domain with minimal primesP1 � �
x�z� � P2 � �

y�z� � P3 � �
y�w�. Tight

closure theory for Stanley-Reisner rings has been studied by many authors and formulae for the parameter
test ideal and the test ideal have been given in terms of the minimal primes of the ring (see for example
Theorem 3.7 in [2]). We can apply this toRand obtainτpar

�
R� � τ

�
R� � P1�P2

�P2�P3
�P1�P3. In our

case,P1�P2 � �
xy�z�, P2�P3 � �

y�zw� andP1�P3 � �
xy�xw�zy�zw� and henceτpar

�
R� � τ

�
R� � �

y�z�xw�.
Let us remark that dim

�
R� � 2 and ht

�
τpar

�
R�� � 1.

Our ringR is Cohen-Macaulay with a system of parameters given byx� w� x� y� z. Denote byI
the ideal generated by these elements and note thatR�I � K

�
y�z�� �y2 �yz�z2�.

We would like to show that there exists an elementη 
 N for which the image via the Frobenius action
onHd

m

�
R�, F

�
η�, does not belong toN. This will show thatN is notF-stable and therefore that it contains

0	Hd
m�R� strictly. Takeη � ��

xw�p�1 � �
xp � wp �xp � yp � zp��. We regardHd

m

�
R� as lim�� t

R�It , where

It � �
xt � wt �xt � yt � zt � and the mapsR�It � R�It�1, in our direct system, are given by multiplication

by
�
x� w� �x� y� z�. Now,

η � ��
xw�p�1 � �

xp � wp�xp � yp � zp��
is written as an element ofR� �xp � wp �xp � yp � zp� � Hd

m

�
R�, and

F
�
η� � ��

xw�p�p�1� � �
xp2 � wp2 �xp2 � yp2 � zp2 ��

is written as an element ofR� �xp2 � wp2 �xp2 � yp2 � zp2 � � Hd
m

�
R�.

To show thatτpar
�
R�η � 0 we need to show thatxwη � 0, because it is already clear thatyη � zη � 0,

asyx� zw� 0 in R. It remains to check that
�
xw�p 
 �

xp � wp�xp � yp � zp �xy�yz�zw�
in K

��
x�y�z�w��. Sinceyx 
 �

xp � wp �xp � yp � zp �xy�yz�zw�, we get thatwpy � xpy � y
�
xp � wp� 
�

xp �wp�xp � yp � zp �xy�yz�zw�. Sincewpy�wz, andwp�xp � yp � zp� 
 �
xp �wp �xp � yp � zp �xy�yz�zw�,

we get that
�
wx�p 
 �

xp � wp�xp � yp � zp �xy�yz�zw� which is our claim.
Now we need to show thatF

�
η� �
 N, that isτpar

�
R�F �

η� �� 0. We will show that

xw
�
xw�p�p�1� �
 �

xp2 � wp2 �xp2 � yp2 � zp2 �xy�yz�zw�
in K

��
x�y�z�w��. Let us assume the contrary and takey � z� 0. This gives that

xw
�
xw�p�p�1� 
 �

xp2 � wp2 �xp2 � � �
xp2 �wp2 �

9



in K
��
x�w�� which is certainly impossible.

This concludes our proof thatN is notF-stable in this example.
Acknowledgments: I would like to thank Nobuo Hara, Mel Hochster and Paul Roberts for their

helpful comments.
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J. Amer. Math. Soc., vol 3 (1990), 31–116.

[6] M. Hochster and C. Huneke,Tight closure of parameter ideals and splitting in module-finite
extensions, J. Algebraic Geom. 3 (1994), no. 4, 599–670.

[7] C. Huneke,Tight closure and strong test ideals, J. Pure Appl. Algebra, 122 (1997), 243–250.

[8] R. Lazarsfeld,Multiplier ideals for algebraic geometers, preprint 2000.

[9] G. Lyubeznik and K. E. Smith,On the commutation of the test ideal with localization and
completion, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3149–3180.

[10] A. K. Singh, Relative test elements for tight closure, J. Pure and Appl. Algebra, 158 (2001),
101–109.

[11] K. E. Smith,Tight closure of paramters ideals and F-rationality, thesis, University of Michigan,
1993.

[12] K. E. Smith,Tight closure of parameter ideals, Invent. Math. 115 (1994), no. 1, 41–60.

[13] K. E. Smith,Test ideals in local rings, Trans. Amer. Math. Soc. 347 (1995), 3453–3472 (see
also unpublished errata).

[14] K. E. Smith, The multiplier ideal is a universal test ideal, Special issue in honor of Robin
Hartshorne, Comm. Algebra 28 (2000), no. 12, 5915–5929.
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