
Florian Enescu, Fall 2010 Polynomials: Lecture notes Week 9.

1. Gauss-Lucas Theorem; Jensen disks, Jensen Theorem

The following theorem by Gauss and rediscovered by Lucas describes a beautiful relation ship
between the roots of a polynomial and the roots of its derivative.

For a polynomial P , we call the roots of its derivative critical points.
First we need to state a result that is interesting in its own right and will be used in the proof

of the Gauss-Lucas theorem. We will refer to a half-plane as any of the two regions determined
by a line in the plane.

Lemma 1.1. The sum of a finite number of complex numbers that are situated in a open half-plane
is situated in that open half-plane.

Proof. We can translate the line and the number such that the line that determines the half-plane
passes through the origin.

It is enough to show the statement for two complex numbers, since we can then iterate our
sum.

We can rotate our line so that the line is the x-axis and the complex numbers are above it. It
is clear then that is the principal arguments of the two complex numbers are θ1 and θ2, then their
sum will have the principal argument between θ1 and θ2, since the sum of two complex number
z1, z2 is the vertex of the paralellogram with the other vertices equal to z1, z2, 0.

In conclusion θ will be anywhere between 0 and π and hence in the upper half-plane.
�

We can now state the Gauss-Lucas Theorem.

Theorem 1.2. Let P be a complex polynomial. Then the roots of P ′ belong to the convex hull
determined by the roots of P .

Proof. Write P (z) = (z − z1) · · ·(z − zn), where n = deg(P ).
Then P ′/P = 1

z−z1
+ · · ·+ 1

z−zn
.

Suppose that P ′(w) = 0 and P (w) 6= 0 and that w does not belong to the convex hull determined
by z1, . . . , zn.

We can draw a line through w that does not intersect the convex hull of z1, ..., zn.
Then all numbers w − zi will all be situated in one of the open half-planes determined by the

translation of the line through the origin.
The inverses of w − zi will have the principal arguments given by subtracting the original

principal arguments from 2π respectively.
�

We will now move to another statement about the position of the critical points of a polynomial
with respect to the roots of the polynomial itself.

We have noted before that for a real polynomial P , if P (z) = 0, then P (z) = 0.
Let us consider z0 a root of P such that z0 ∈ C \R.
Then z0 is also a root. The circle with center at Re(z0) and radius Im(z0) is called a Jensen

disk of P .
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Theorem 1.3 (Jensen). Let P be a polynomial with real coefficients. Then any non-real critical
point of P lie inside or on the boundary of a Jensen disk of P .

Proof. Let n = deg(P ) and let z1, ..., zn be its complex roots, possible non distinct.
Then as in proof of the Gauss-Lucas Theorem,

P ′(z)
P (z)

=
n∑

i=1

1
z − zi

.

Assume that w is non-real critical point of P , so P ′(w) = 0. If P (w) = 0, then w = zi for some
i and w lies on the boundary of the Jensen disk determined by w = zi.

So, let us assume that P (w) 6= 0. Let w = u + iv, v 6= 0.
For a nonreal root zi = a + bi, a, b ∈ R, its conjugate is also a root and equals a − bi.
Then we have

1
w − a − bi

+
1

w − a + bi
=

2w − 2a

(w − a)2 + b2
.

But (w − a)2 + b2 = (w − a)2 + b2.
So,

2w − 2a

(w − a)2 + b2
=

(2w − 2a)(w − a)2 + b2)
| (w − a)2 + b2 |2 .

We would like to compute the sign of the imaginary part of this expression. Since the de-
nominator is real and positive then it is enough to look at the sign of the imaginary part of the
numerator.

But
(2w− 2a)(w− a)2 + b2) = 2(| w − a |2 (u− iv− a) + b2(u + iv− a)), and the imaginary part of

this number is

2(−v | w − a |2 +b2v) = 2v(− | w − a |2 +b2).

Note that this expression has the sign of −v, because w outside the Jensen disk of z = a + ib
means exactly that

b2 <| w − a |2 .

Let us look at the sign of the imaginary part of the expression

1
w − zi

,

in the case zi = a real number.
Then

1
w − a

· w − a

w − a
=

u − a − iv

| w − a |2 ,

and the imaginary of this expression is exactly the sign of −v.
Now in the sum



0 =
P ′(w)
P (w)

=
n∑

i=1

1
w − zi

,

appear two types of roots: complex non-real roots which can be paired together and the sum
corresponding to them has the sign of −v, and terms corresponding to real roots which have also
sign equal to the sign of −v. In conclusion, the above sum has sign exactly the sign of −v, and
we know that −v 6= 0, so the sum cannot be zero. Contradiction!

Therefore our w must belong inside or on the boundary of one of the Jensen disks.
�

In what follows we show some more applications of Laguerre’s theory developed in lecture 6.
Let f be a polynomial of degree n, and ξ a complex number different from ∞.
The (apolar) derivative of f with respect to ξ is defined as

Aξf(z) = (ξ − z)f ′(z) + nf(z), for ξ 6= ∞,

or
Aξf(z) = f ′(z), for ξ = ∞.

One should note that this definition is such that for a polynomial of degree n, the center of
mass of z with respect to the roots of f equals ξ if and only if Aξf(z) = 0.

To faciliate the computations we will write our polynomials in a different form. Namely, every
polynomial f(z) =

∑n
k=0 dkz

k , can be rewritten as f(z) =
∑n

k=0

(
n
k

)
akz

k .

Remember that
(
n
k

)
= n!

k!(n−k)!
.

So for example
(3
1

)
= 3,

(3
3

)
= 1, and

f(z) = z3 − z =
(

3
3

)
z3 −

(
3
1

)
1
3
z.

The benefits of this writing will be clear later.
Until then, let us note that

f ′(z) =
n∑

k=1

(
n

k

)
kakzk−1,

and so

f ′(z)
n

=
n∑

k=1

(n − 1)!
(k − 1)!(n− k)!

akz
k−1 =

n∑

k=1

(
n − 1
k − 1

)
akz

k−1 =
n−1∑

k=0

(
n − 1

k

)
ak+1z

k .

With this computation now one can see that

Aξf(z)
n

= (ξ − z)
n−1∑

k=0

(
n − 1

k

)
ak+1z

k +
n∑

k=0

(
n

k

)
akzk.

But,



ξ

(
n − 1

k

)
ak+1z

k −
(

n − 1
k − 1

)
akz

k +
(

n

k

)
akzk =

(
n − 1

k

)
(ak + ak+1ξ)zk,

since (
n

k

)
−

(
n − 1
k − 1

)
=

(
n − 1

k

)
.

Therefore

Aξf(z)
n

=
n−1∑

k=0

(
n − 1

k

)
(ak + ak+1ξ)zk.

This way we obtained a new polynomial of degree n − 1.
If we repeat our computation and compute

Aη(Aξ)f(z)
(n − 1)n

we will get

n−2∑

k=0

(
n − 2

k

)
((ak + ak+1ξ) + (ak+1 + ak+2ξ)η)zk.

Note that ak + ak+1ξ + (ak+1 + ak+2ξ)η = ak + ak+1(ξ + η) + ak+2ξη.
So, if we iterate the procedure we can see that

1
n!

Aξ1Aξ2 . . .Aξnf(z) = a0 + a1σ1 + . . . + anσn,

where

σ1 = ξ1 + . . . + ξn

σ2 = ξ1ξ2 + ξ1ξ3 + . . . + ξn−1ξn

· · ·

σn = ξ1 . . . ξn.

Let consider another polynomial g(z) =
∑n

k=0

(
n
k

)
bkz

k .
Denote z1, ..., zn the roots of f(z) and ξ1, ..., ξn be the roots of g.
Therefore Viète relations for the roots of g tell us that

σ1 = −
(

n

1

)
bn−1

bn
,

σ2 =
(

n

2

)
bn−2

bn
,

· · ·



σn = (−1)n

(
n

0

)
b0

bn
.

Therefore we can notice now that

Aξ1Aξ2 . . .Aξnf(z) = 0
is in fact equivalent to

a0bn −
(

n

1

)
a1bn−1 +

(
n

2

)
a2bn−2 + . . . + (−1)nanb0 = 0.

Definition 1.4. Two polynomials f(z) =
∑n

k=0

(n
k

)
akz

k and g(z) =
∑n

k=0

(n
k

)
bkz

k , are called
apolar if and only if their coefficients satisfy

a0bn −
(

n

1

)
a1bn−1 +

(
n

2

)
a2bn−2 + . . . + (−1)nanb0 = 0.

Let us construct an apolar polynomial for f(z) = 2z2 + 4z + 1 = 1 + 2
(2
1

)
z + 2

(2
2

)
z2.

So, a0 = 1, a1 = 2, a2 = 2.
Then we are looking for a polynomial g of degree 2 such that
g(z) = b0 + 2b1z + b2z

2, and

1b2 −
(

2
1

)
2b1 + 2b0 = 0.

There are infinitely many possibilities for b0, b1, b2 therefore and we can choose for example

b0 = 1, b1 = 1, b2 = 2,

or in other words
g(z) = 1 + 2z + 4z2.
The following result is a consequence of Laguerre’s work and it is what is needed in our appli-

cations.
We remind you that a circular domain (open or closed) is the interior or the exterior of a circle

or a half-plane.

Theorem 1.5 (J. H. Grace, 1902). Let f, g be two apolar polynomials. If all the roots of g belong
to a circular domain K, then at least one of the roots of f also belongs to K.

We postpone the proof of this theorem so that we can illustrat how it can be applied.
Let f(z) = 1− z + czn, with c ∈ C, n ≥ 2. We will show that f has at least one root inside the

disk | z − 1 |≤ 1.
To this purpose, we look for a polynomial g(z) =

∑n
k=0

(
n
k

)
bkz

k, such that

bn − n(− 1
n

)bn−1 + cb0 = 0.

Let us take bn = 1, so we need to choose bn−1, b0 such that 1 + bn−1 + cb0 = 0. Note that there
are NO conditions imposed on b1, ..., bn−2.

A possibility would hence be any polynomial with b0 = 0, bn−1 = −1.



Let ξk = 1 − εk , where εk are nth roots of unity, k = 1, ..., n.
Note that ξk are on the circle | z − 1 |= 1.
Construct the polynomial

g(z) = Πn
k=1(z − ξk).

The sum of the roots of g is n and the product of the roots is 0 (since one of the roots is actually
0).

Hence
g(z) = zn − nzn−1 + . . . + 0,

which is a polynomial with bn−1 = −1, b0 = 0. This means that g(z) is apolar with f(z).
Moreover all its roots belong to the closed circular domain | z − 1 |≤ 1, and hence by Grace’s

Theorem we know that at least a root of f must be inside K.
One can agree that this is quite a beautiful application of Laguerre’s work.
Our next lecture will deal with a proof of Grace’s Theorem.


