
Florian Enescu, Polynomials Fall 2010: Lecture notes Week 6.

1. Complex roots.

Let z1, . . . , zn be complex numbers. The center of mass of these points (with respect to ∞) is
by definition

ξ =
z1 + · · ·+ zn

n
.

Example 1.1. Let z1 = 1 + i, z2 = 2 + 6i, z3 = −i. Then ξ = 3+6i
3 = 1 + 2i.

Note that whenever a ≤ Re(zi) ≤ b, one has a ≤ Re(z) ≤ b.
Now we would like to define the center of mass of a set of points z1, ..., zn with respect to

another point z.
For this we need to discuss the notion of linear fractional transformation.
A function w = T (z) = az+b

cz+d such that ad − bc 6= 0 is called a linear fractional transformation
or Möbius transformation.

Such a funtion is the composition of the function 1/z and suitable linear functions. One can
see that T (∞) = a

c , while T (−d
c ) = ∞ if c 6= 0. Also, the inverse function T−1 is also linear

fractional transformation.
The importance of such transformations comes from the fact that they transform circles and

lines into circles and lines.
As an exercise, show that that the image of x = 2 under T (z) = 1

z is a circle.
Also, note that a linear fractional transformation with c 6= 0 can be written as T (z) = a

z−z0
+b,

r, s ∈ C for suitable r, s.

Example 1.2. Let T (z) = 6z+1
3z+2 . Then T (z) = 6z+4−3

3z+2 = 2 − 3
3z+2 = −1

z+ 2
3

+ 2, so we can take

a = −1, b = 2, z0 = −2
3 .

Given the point z1, ..., zn, then let C the smallest convex polygon that containing then. This
poligon is obtained by joining any two points zi, zj and considering the half-planes separated by
this line; then C is the intersection of all half-planes obtained in this manner that contain the
points z1, ..., zn. the center of mass ξ will belong to C.

To define the center of mass of z1, ..., zn with respect to a point z0 called pole, we use a linear
fractional transformation T that maps z0 to ∞, compute the images z′1, ..., z

′
n of z1, ..., zn under

the transformation and denote ξ′ to be the center of mass of z′1, ..., z
′
n. Then we let the center of

mass of z1, ..., zn with respect to z0 to equal the image of ξ′ under the inverse function T−1.
Let T (z) = a

z−z0
+ b. Then z′i = T (zi) = a

zi−z0
+ b, for all i = 1, ..., n.

hence

ξ′ =
∑n

i=1 z′i
n

=
1
n

n∑

j=1

(
a

zi − z0
+ b) = b +

a

n

n∑

i=1

1
zi − z0

.

But ξ′ = T (ξ) = a
ξ−z0

+ b, so 1
ξ−z0

= 1
n

∑n
i=1

1
z−z0

, which gives

ξ = z0 + n
1∑n

i=1
1

zi−z0

.
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The formula produced here does show that everything is independent of a and b.
One should note that the linear transformation T−1 sends the lines z′iz

′
j to circles that pass

through z0 and zi, zj .
A set S ⊂ C is called convex if for any two points a, b ∈ S, the segment that joins a with b is a

subset of S.
For a give set S, the convex hull of S is the smallest convex set containing S. It is obtained by

taking the intersection of all convex subsets of C that contain S. The important part to remember
here is that an intersection of convex sets is still convex.

The smallest convex polygon C ′ that contains z′1, ..., z
′
n (basically the convex hull of z′1, ..., z

′
n)

will map into a curvilinear polygon C that will contain z1, .., zn.

Theorem 1.3. Let C be curvilinear polygon defined above with respect to z1, ..., zn and z0. Then
C separates z0 from the center of mass ξ.

Theorem 1.4 (Laguerre). Let f(x) be a polynomial with complex coefficients, and let z1, ..., zn

be its roots (counted with multiplicities). Then the center of mass of z1, ..., zn with respect to an
arbitrary point z0 is given by

ξ = z0 − n
f(z0)
f ′(z0)

,

whenever f ′(z0) 6= 0, f(z0) 6= 0.

Proof. Let f(z) =
∏n

i=1(z − zi).
Indeed, f ′(z) =

∑n
i=1

∏
j 6=i(z − zj).

So, f ′(z)
f(z) =

∑n
j=1

1
z−zj

.
Now one can easily check that

ξ = z0 + n
1∑n

i=1
1

zi−z0

= z0 − n
f(z0)
f ′(z0)

.

�

Theorem 1.5. Let f(z) be a polynomial of degree n with complex coefficients, and z1 be a simple
root of f , such that f”(z1) 6= 0. Then the center of mass of the remaining zeroes of f(z) with
respect to z1 is

X(z1) = z1 − 2(n − 1)
f ′(z1)
f”(z1)

.

Proof. Write f(z) = (z − z1)F (z). Since z1 is a simple root for f(z), then F (z1) 6= 0.
Also, f ′(z) = F (z) + (z − z1)F ′(z), so f ′(z1) = F (z1). Moreover, f”(z) = F ′(z) + F ′(z) + (z −

z1)F”(z), hence f”(z1) = 2F ′(z1). According to Theorem 1.4 applied to F (z) and z1, we get that

X(z1) = z1 − (n − 1)
F (z1)
F ′(z1)

= z1 − 2(n − 1)
f ′(z1)
f”(z1)

.
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Theorem 1.6. If z1, ..., zn are zeroes of a polynomial f and they belong to any circular/linear
domain D (i.e either all are outside or inside a circle/line γ) and if z0 is outside D, then the
curvilinear polygon C associated to z1, . . . , zn is in D. Note that that D can either be open or
closed.

Proof. Map z0 to ∞ and zi to z′i i = 1, . . . , n via a linear fractional transformation T . Then
C = T−1(C ′) where C ′ is the smallest convex polygon that contains z′1, . . . , z

′
n. Let D′ = T (D).

Let γ ′ be the image of γ under T : it is a circle/line and all the z′1, . . . , z
′
n live inside D′. Moreover

since z0 /∈ D and z0 is mapped under T to ∞, then D′ is either the interior of the circle γ ′ or one
of the half-planes determined by γ ′ in case γ ′ is a line. Now, D′ will contain C ′ since C ′ is the
smallest convex set that contains all the points z′1, . . . , z

′
n and D′ is convex and contains z′1, ..., z

′
n.

Since C ′ ⊂ D′, then C ⊂ D.
�

A direct application to the above theorem is the following result

Theorem 1.7. Let f(z) be a polynomial of degree n and define the function:

X(z) = z − 2(n − 1)
f ′(z)
f”(z)

.

Let γ be a circle/line that passes through a simple root z1 of f such that all other roots belong
to one of the domains determined by γ. Then X(z1) belongs to the same domain (closed or open,
that is, with or without its border), as long as f”(z1) 6= 0.

Proof. This is an immediate consequence of Theorems 1.5, 1.6, since X(z1) is the center of mass
of the other roots with respect to z1 and the center of mass does not stay in the same domain as
z1 by Theorem 1.6.
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Theorem 1.8. Let f(z) be a polynomial of degree n and define the function:

X(z) = z − 2(n − 1)
f ′(z)
f”(z)

.

If x is a simple root of f with maximal absolute value then

| X(x) |≤| x | .

Proof. All the roots lie in the circular domain {z ∈ C :| z |≤| x |}, hence X(x) also belongs to
this disk. �

Theorem 1.9 (Laguerre’s Criteria). Let f be a polynomial with real coefficients and define

ξ(z) = z − n
f(z)
f ′(z)

.

Then all the roots of f are real if and only if Im(z) · Im(ξ(z)) < 0 for any z ∈ C \R.


