
Florian Enescu, Polynomials: Lecture notes Week 10.

1. Grace’s Theorem; Resultants

In the proof of Grace’s theorem we will use the following Lemma.

Lemma 1.1. Let all roots z1, . . . , zn of f(z) lie inside the circular domain K and let ξ lie outside
K. Then all roots of Aξf(z) lie inside K.

Proof. Assume first that ξ 6= ∞. Then w is a root of Aξf(z) then ξ is the center of mass of the
roots of f with respect to w.

Theorem 1.6 from Lecture 6 says that since z1, . . . , zn are in K and the center is not in K, then
w must be in K.

If ξ = ∞, then Aξf(z) = f ′(z). The condition that ξ 6∈ K means that K is not the exterior of a
circle so K is a convex set and hence it contains the convex hull of z1, . . . , zn. Now, Gauss-Lucas
Theorem shows that the critical points of f(z) are in K as well.
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We will prove now the last theorem stated in Lecture 9.

Theorem 1.2 (J. H. Grace, 1902). Let f, g be two apolar polynomials. If all the roots of g belong
to a circular domain K, then at least one of the roots of f also belongs to K.

Proof. Suppose that all the roots z1, ..., zn of f lie outside K.
By Lemma proven above, Azng(z) has all roots inside K. Repeated applications of the Lemma

show that Az2 ...Aznf(z) has all roots in K. But this last expression is a polynomial of degree 1
hence of the form c(z − a), c 6= 0. So, a ∈ K.

Let us compute remember that f, g are apolar so 0 = Az1 ...Azng(z) = Az1(c(z−a)) = c(z1−a).
Hence z1 = a. But z1 ∈ K, while a /∈ K. Contradiction.
So, at least one zi is in K.
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The next topic we will examine is that of resultants. The resultant of two polynomials f, g
whether they have a common root or not.

Let f(x) = a0x
n + · · ·+ an, g(x) = b0x

m + · · ·bm with ai, bj ∈ C, a0 6= 0, b0 6= 0.

Proposition 1.3. The polynomials f, g have a common root if and only if there exist nonzero
complex polynomials p, q of degrees at most m − 1, respectively n − 1 such that pf = qg.

Proof. If f, g have a common root a, then x − a divides both f and g, so f = q(x − a) and
g = p(x − a) with q, p nonzero polynomials of degrees n − 1, m− 1 respectively.

But then pf = qg, as it can easily be checked.
For the converse, pf = qg implies that if none of the linear factors of g appear in f then they

all must appear in p but this shows that g divides p and hence the degree of p is at least m which
is a contradiction.

So, at least one of the linear factors that appear in the factorization of g must appear in the
factorization of f which is equivalent to saying that f, g have a common root.

�
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Let us pursue what the previous result tells us.
Write q(x) = u0x

m−1 + · · ·um−1, p(x) = v0x
n−1 + · · ·vn−1, where the coefficients are complex

numbers not all zero.
Now, if we look at the equality

p(x)f(x) = q(x)g(x),
we note that if we identify the coefficients of the polynomial expression for the left and right

hand terms we get that it is equivalent to finding u1, ..., um−1 not all zero, and v0, ..., vn−1 not all
zero such that they satisfy the following system of equations:

a0u0 − b0v0 = 0

a1u0 + a0u1 − b1v0 − b0v1 = 0

a2u0 + a1u1 + a2u2 − b2v0 − b1v1 − b0v2 = 0

· · ·
Note that the system has m + n lines and m + n unknown and it is homogeneous and linear.
Such a system admits a nonzero solution (our u’s and v’s) if and only if its determinant is zero.
After rearranging the rows and columns we get the following determinant denoted by R(f, g).

The matrix that gives this determinant is called the Sylvester matrix of f, g (it is of size n + m
by n + m).

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · an 0 · · ·
0 a0 · · · an−1 an 0
· · · · · ·
b0 b1 · · · bm 0 · · ·
0 b0 · · · bm−1 bn 0
· · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣
Note that n, m are different that in fact the reader should not infer from the above presentation

that an and bm lie on same column. Also, the first m rows contain only a’s and the remaining n
rows contain only b’s.

Hence we can conclude

Theorem 1.4. The polynomials f, g share a root if and only if R(f, g) = 0.

There is a more definite relation between the roots of f, g and the resultant.

Theorem 1.5. Let x1, · · · , xn, y1, ..., ym be the roots of f respectively g.
Then R(f, g) = am

0 bn
0Π(xi − yj) = am

0 Πn
i=1g(xi) = (−1)nmbn

0Πm
j=1f(yj).

Proof. First let us notice that R(f, g) is a homogeneous polynomial of degree m in a0, ..., an and
degree n in b0, ..., bm.

Since ai/a0, bj/b0 are symmetric expressions in x1, ..., xn and y1, ..., ym respectively by Viète,
we get that R(f, g) = am

0 bn
0P (x1, ..., xn, y1, ...., ym) with P a symmetric polynomial that vanishes

whenever xi = yj for some i and j.



But we can always use repeatedly the equality

xk
i = (xi − yj)xk−1

i + xk−1
i yj

to write
P (x1, ..., xn, y1, ..., ym) = (xi − yj)Q(x1, ..., xn, y1, ..., ym) + U(x1, ..., x̂i, ..., ym).
where x̂i symbolizes that xi does not appear in U .
But letting xi = yj makes R(f, g) = 0 so in fact U ≡ 0, and this shows that P must be divisible

by all xi − yj and so R(f, g) is divisible by S = am
0 bn

0Π(xi − yj).
Write g(x) = b0Π(x − yj . Hence S = am

0 Πg(xi). Similarly, f(yj) = (yj − x1) · · ·(yj − xn) =
(−1)n(x1 − yj) · · ·(xn − yj).

So, S = (−1)nmΠm
j=1f(yj).

Now look at
S = am

0 Πn
i=1(b0x

m
i + · · ·bm).

This is a polynomial expression that has degree exactly n in b0, ..., bm (and homogenous). If we
expand we see that S is a symmetric polynomial in x1, ..., xn and in fact by using Viète’s relations
we see that S is homogenous of degree m is a0, ..., an. But S divides R(f, g) as polynomials so
there must exist a constant λ such that

R(f, g) = λS.

By looking at the coefficient of xm
1 · · ·xm

n in both sides we get that λ = 1. This finishes our
proof.
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Corollary 1.6. R(g, f) = (−1)deg(f)deg(g)R(f, g)

Corollary 1.7. If f = qg + r, then

R(f, g) = b
deg(f)−deg(r)
0 R(r, g).

Proof. Let yj be the roots of g. Then f(yj) = r(yj), since g(yj) = 0.
So, R(f, g) = b

deg(f)
0 πf(yj) = b

deg(f)−deg(r)
0 πr(yj) = b

deg(f)−deg(r)
0 R(r, g).
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Corollary 1.8.

R(f, g) = R(f, g)R(f, h).

Definition 1.9. Let x1, . . . , xn be the roots of a degree n polynomial f(x) = a0x
n + · · ·an.

The discriminant of f is

D(f) = a2n−2
0 Πi<j(xi − xj)2.

Theorem 1.10.

R(f, f ′) = (−1)n(n−1)/2a0D(f).



Proof. First note that R(f, f ′) = an−1
0 Πf ′(xi).

However, f ′(x) = a0
∑n

i=1(x − x1) · · · ˆ(x− xi) · · · (x − xn), so f ′(xi) = a0Πi 6=j(xi − xj).
Therefore

R(f, f ′) = a2n−1
0 Πi 6=j(xi − xj) = (−1)n(n−1)/2a2n−1

0 Πi<j(xi − xj)2.
�

Corollary 1.11. Let f, g, h be monic polynomials. Then

D(fg) = D(f)D(g)R2(f, g)

D(fgh) = D(f)D(g)D(h)R2(f, g)R2(g, h)R2(h, f)

Theorem 1.12. let f be a real polynomial of degree n without any real roots.
Then the sign of D(f) is the sign of (−1)n/2.

Proof. Let f(x) = a0(x− x1) · · ·(x − xn).
We can verify that D((x − a)f(x)) = D(f(x))[f(a)2].
Now, let a, a be conjugate roots of f : f(x) = (x − a)(x− a)g(x).
Then

D(f) = D(g)(a− a)(g(a)g(a)2,
which shows that D(f) = −D(g). Continuing like this until we exhaust all roots of f and we

get our statement.
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