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Abstract. We study the relationship between the Frobenius stability of an Artinian mod-
ule over an F-injective ring and its stable part.

1. Introduction

Let (R,m, k) be a local Noetherian ring of positive characteristic p, where p is prime. Let
F : R → R be the Frobenius homomorphism on R, that F (r) = rp, for all r ∈ R. This
homomorphism induces a natural Frobenius action on the local cohomology modules H i

m(R),
i = 0, . . . , d = dim(R). This action is an effective tool in the study of local cohomology
modules as it was shown over the years by many authors. Our paper deals with the concept
of Frobenius stability which has its roots in an influential paper by Harthsorne and Speiser [6]
via the stable part of a module M endowed with a Frobenius action. Since then, papers by
Lyubeznik [7, 8], Fedder and Watanabe [5], Enescu [3], Singh and Walther [10] and Sharp [9]
have explored various properties of local cohomology where Frobenius stability played a role
in some fashion. The work of Hartshorne and Speiser, Lyubeznik, Singh and Walther dealt
with the concept of Frobenius depth and applications to the Grothendieck vanishing problem
(see [8], page 1), while Fedder and Watanabe, Enescu and Sharp have explored connections
to tight closure theory from a different perspective.

Our main goal is to present a coherent description of Frobenius stability and establish a
clear relationship between the F-stability in the sense of Fedder-Watanabe and the stable
part of the local cohomology as in Harthsorne-Speiser and Lyubeznik. With this goal in
mind, we will carefully discuss various aspects of Frobenius stability and their relevance to
the aforementioned papers hoping to make our exposition valuable to the reader interested
in a unitary presentation of these aspects.

Before stating our main contributions, we need to introduce a few notations and related
concepts which are used throughout our paper. Everywhere in this note (R,m, k) will denote
a local Noetherian ring of positive characteristic p, where p is prime, and Krull dimension
d. A Frobenius action on an Artinian R-module M is an additive map FM : M → M such
that FM(rm) = rpFM (m). We will often drop the subscript ”−M” from our notation when
there is no danger of confusion. The main example of Artinian R-modules that we will
consider is that of local cohomology modules of R with support in the maxima ideal m. Let
x = x1, . . . , xd be a system of parameters for R. The ith local cohomology module of R
equal the ith cohomology module of the Cěch complex

0 → R → ⊕d
i=1Rxi → · · · → ⊕d

i=1Rx
î
→ Rx → 0,

where xî = x1 · · ·xi−1xi+1 · · · xd, and x = x1 · · · xd.
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The Frobenius F acts on R and its localizations and hence induces an action to the
cohomology modules of the Cěch complex. We will denote this induced Frobenius action on
H i

m(R) by F .
The particular case of Hd

m(R) is very important, as this is the only nonzero local coho-
mology module of R when R is Cohen-Macaulay. An element of η ∈ Hd

m(R) is denoted by
η = [ z

xs ] and the Frobenius action F sends η to F (η) = [ zp

xps ].
The following alternate description of Hd

m(R) will be useful later in the paper. Let
x1, . . . , xd be a system of parameters in R. The local cohomology module Hd

m(R) can be
obtained as a direct limit of R/(xt

1, . . . , x
t
d) where the maps of the direct system are given

by

R/(xt
1, . . . , x

t
d)

xl−t

→ R/(xl
1, . . . , x

l
d),

where l ≥ t and x = x1 · · · xd. With this description, an element η ∈ Hd
m(R) will be

described by η = [z + (xt
1, . . . , x

t
d)], where z ∈ R. The Frobenius action F sends η to

F (η) = [zp + (xpt
1 , . . . , xpt

d )].

Definition 1.1. Let (R,m, k) be a local Noetherian ring of positive characteristic p, p
prime. Then R is F-injective if F acts injectively on H i

m(R) for all i.

In 1989 Fedder and Watanabe have defined the notion of F-stability for local cohomology
modules of R with support in the maximal ideal m of R and studied it in the case of F-
injective rings, [5]. This definition can be extended to an Artinian R-module M endowed
with a Frobenius action. For such modules, Harthsorne and Speiser have defined in 1977 [6],
in the case when R contains a coefficient field k, a natural k-vector space Ms ⊆ M called the
stable part of M . See Section 1 for precise definitions. Our main contribution in this paper
is to establish a clear relationship between the F-stability of an Artinian module M and its
stable part.

More precisely, we prove the following

Theorem 1.2. Let (R,m, k) be a Noetherian local ring containing a coefficient field k. Let
M be an Artinian R-module which admits an injective Frobenius action.

Then M is F -stable if and only if Ms 6= 0.

This result allows us to establish a connection between the set of prime ideal P in R for
which RP is F-stable and a set of primes discovered by Lyubeznik in his work on F -modules.
These primes are naturally related to the notion of F -depth and we explore this relationship.
This is done in Section 3. Section 4 presents a counterexample to a natural question on the
behavior of F-injectivity under flat local maps with regular fibers and shows that complete
F-injective 1-dimensional domains with algebraically closed residue field are regular.

We would like to review some of the basic definitions and facts from tight closure theory
that will be needed in our paper.

We use q to denote a power of p, so q = pe for e ≥ 0. For I ⊆ R set I [q] = (iq : i ∈ I). Let
R◦ be the complement in R of the minimal primes of R. We say that x belongs to the tight
closure of I and write x ∈ I∗ if there exists c ∈ R◦ such that for all q � 0, cxq ∈ I [q]. We say
that x is in the Frobenius closure of I, IF , if there exists a q such that xq ∈ I [q], and say that
I is Frobenius closed if I = IF . When R is reduced then R1/q denotes the ring of qth roots
of elements of R. When R1/q is module-finite over R R is called F-finite. We call R weakly
F-regular if every ideal of R is tightly closed. A weakly F-regular ring is always normal, and
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under mild hypotheses is Cohen-Macaulay. A ring R is F-regular if every localization of R
is weakly F-regular.

We call an ideal I = (x1, . . . xn) a parameter ideal if ht(I) ≥ n. The ring R is F-rational
if every paramater ideal is tightly closed. We note that F-rational and Gorenstein rings are
F-regular.

A ring R for which F : R → R is a pure homomorphism is called F-pure. An F-pure ring
is F-injective and moreover an excellent and reduced ring R is F-pure if and only if IF = I
for all ideals I in R.

When R is Cohen-Macaulay, then R is F-injective if and only if some (equivalently, every)
ideal generated by a system of parameters is Frobenius closed.

2. Frobenius stability of Artinian modules

Let (R,m, k) be a Noetherian local ring of characteristic p, where p is a prime number,
and dimension d. Let M be an Artinian R-module.

Assume that M admits a Frobenius action F = FM : M → M , i.e. an additive map with
the property that F (rm) = rpF (m) for all m ∈ M and r ∈ R.

Let SocR(M) = {x ∈ M : m · x = 0}. This is a R-submodule of M which is naturally a
vector space over R/m = k. In fact, SocR(M) is finite dimensional over k.

Our main examples of Artinian R-modules that admit a Frobenius action are the local
cohomology modules of R, H i

m(R) with 0 ≤ i ≤ d. However we find it helpful to present the
notions related to Frobenius stability in the more general context of Artinian modules and
then to apply them to local cohomology.

The following definition is inspired by Fedder and Watanabe who considered it only in the
case of local cohomology modules.

Definition 2.1 (Fedder-Watanabe). Let M be an Artinian R-module that admits a Frobe-
nius action Let S = SocR(M) be the socle of M . Denote F e(S) = {F e(m) : m ∈ S}.

We say that M is F -unstable if there exists N > 0 such that S ∩ F e(S) = 0 for all e ≥ N .
Note that the zero module is F-unstable. If M is not F-unstable, then it will be called
F -stable.

In general, we say that R is F -unstable if H i
m(R) is F -unstable for every i.

The reader should be aware that a submodule N of M is sometimes called F-stable if
F (N) ⊆ N . We will call such submodules N ⊆ M F-invariant to avoid any possible
confusion.

The following reformulation can be established in the case of an injective Frobenius action
on M . We decided to include its proof for the convenience of the reader.

Proposition 2.2. (Fedder-Watanabe) Let (R,m, k) be a local ring. Let M be an Artinian
R-module that admits an injective Frobenius action F : M → M . Let S = Soc(M) be the
socle of M .

If S ∩ F e(S) 6= 0 holds for infinitely many e > 0, then there exists 0 6= η ∈ S such that
F e(η) ∈ S for every e ≥ 0.

Proof. Assume that S ∩ F e(S) = 0 for infinitely many e. Denote Me = S ∩ F e(S).
Claim: Me+1 ⊂ F (Me).
Indeed, take m ∈ Me+1, that is m ∈ S and m = F e+1(a), for some a ∈ S. So, 0 =

m[pj]m = F j(mF e+1−j(a)) so F e+1−j(a) ∈ S, for all 1 ≤ j ≤ e + 1.
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So F e(a) ∈ S and obviously F e(a) ∈ F e(S), since a ∈ S, proving the claim.
One can consider Me as a vector space over R/m = k with the multiplication l∗m = l[p

e]m,
for l ∈ k and m ∈ Me.

Moreover, F : Me → F (Me) is in fact an injective k-linear map, and hence bijective. So
dimk(Me) = dimk(F (Me)) and hence dimk(Me+1) ≤ dimk(Me) with equality if and only if
F e(Me) = Me+1.

But from the finite dimensionality of S, we get that dim(Me) is constant for e large enough.
Since Me 6= 0 for infinitely many e, we know that this constant must be non-zero. So, there
exist N and γ ∈ MN 6= 0, where dimMe = dimMN for all e ≥ N and F l(MN ) = MN+l for
all l ≥ 0. We have that, for all e ≥ N , F e−N is an isomorphism from MN to Me. Moreover,
there exists η ∈ S such that F N(η) = γ.

Let us check that F e(η) ∈ S for all e: if e ≤ N , then let us first notice that m · γ = 0. so,
m · F N(γ) = 0. This implies that F N−e(m · F e(γ) = 0 and using the F -injective of R we get
our statement. For e ≥ N , F e(η) = F e−N (γ) ∈ Me ⊂ S. So, F e(η) ∈ S, for all e. �

Let m ∈ M and set Cm =< F e(m) : e ≥ 0 >R the R-submodule of M generated by all
F e(m) with m ∈ M . Denote F − ann(m) := AnnR(Cm) = {r ∈ R : rF e(m) = 0, for all e ≥
0}.

A number of papers have considered these ideals from various points of view, [3, 4, 9]. An
important result, independently obtained by Sharp on one hand and Enescu and Hochster
on the other, explains the main properties of these ideals in the case of an injective Frobenius
action on M .

A family Γ of radical ideals is closed under primary decomposition if for any ideal I ∈ Γ
and any irredundant intersection I = P1 ∩ · · · ∩ Pn, where P1, ..., Pn are prime ideals, it
follows that Pi ∈ Γ, for all i = 1, ..., n.

Theorem 2.3 (Sharp; Enescu-Hochster). Let (R,m, k) be a Noetherian local ring of char-
acteristic p and let M be an Artinian R-module that admits an injective Frobenius action
denoted F . Denote Γ = {AnnR(N) : N ⊆ M such that F (N) ⊆ N}.

Then Γ is a finite set of ideals, consists of radical ideals and is closed under primary
decomposition.

Remark 2.4. Under the conditions of Theorem 2.3 (or 2.2), M is F-stable if and only if
m ∈ Γ if and only if there exists 0 6= m ∈ M such that m = F − ann(m). This follows
immediately from Theorem 2.2.

Now it is time to explain the relationship between the F-stability of M and a stability
concept introduced by Hartshorne and Speiser and refined by Lyubeznik.

Definition 2.5 (Hartshorne-Speiser). Assume that R contains a coefficient field k. Let M
be an Artinian R-module such that the Frobenius F acts on M . For all j, let F j(M) =
{F j(m) : m ∈ M} and < F j(M) >k be the k-vector space spanned by F j(M) in M . The
stable part of M is Ms := ∩j < F j(M) >k.

While this definition depends on the choice of the coefficient field k, Lyubeznik has shown
that the dimension of Ms as a k-vector space is independent of k (see [7], Corollary 4.11).
Moreover, Hartshorne and Speiser proved that, in the case that k is perfect, Ms is finite
dimensional over k and the naturally induced Frobenius action is bijective on Ms.

Te be more precise, let k ⊂ K and let RK = K⊗̂kR, the complete tensor product. The
ring RK is complete and local, with maximal ideal equal to K⊗̂kR and residue field K.
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For an R-module M , we let MK = RK ⊗R M . Since M is Artinian over R, we have
that Mk = K ⊗k M . If M admits a Frobenius action FM : M → M , then this induces
a Frobenius action on MK by FMK(l ⊗ m) = lp ⊗ FM(m), for l ∈ K,m ∈ M . Moreover,
SocRK(MK) = K ⊗k SocR(M).

Let us denote Mn = {m ∈ M : there exists e such that F e(m) = 0} and Mr = M/Mn.
Obviously, if F acts injectively on M then Mn = 0. In general, Mn is invariant under F and
F acts injectively on Mr.

Theorem 2.6 (Harthsorne-Speiser; Lyubeznik). Assume that R contains a coefficient field
k and let M be an Artinian R-module with a Frobenius action F on it. Then Ms is finite
dimensional over k, F : Ms → Ms is injective and the k-vector subspace of M spanned by
F (Ms) coincides with Ms. Moreover, if K is the perfect closure of k, MK is Artinian over
RK , Frobenius acts on it, (MK)s = K ⊗k Ms and dimk Ms = dimK(MK)s.

Proposition 2.7 (Harthsorne-Speiser). Let (R,m, k) be a Noetherian local ring containing
a perfect coefficient field k.

(1) Let M be an Artinian R-module and let F = FM be a Frobenius action on M . If F
acts injectively on M then Ms ⊆ SocR(M).

(2) Let

0 → N → M → L → 0,

be a short exact sequence of R-Artinian modules that admit compatible Frobenius
actions, i.e. the following diagram is commutative

0 −−−→ N −−−→ M −−−→ L −−−→ 0yFN

yFM

yFL

0 −−−→ N −−−→ M −−−→ L −−−→ 0

Moreover, assume that FL acts injectively on L.
Then

0 → Ns → Ms → Ls

is a short exact sequence of k-vector spaces.

We are now in position to state the main result of this section.

Theorem 2.8. Let (R,m, k) be a Noetherian local ring containing a coefficient field k. Let
M be an Artinian R-module which admits an injective Frobenius action.

Then M is F -stable if and only if Ms 6= 0. Also, Ms ⊆ SocR(M).

Proof. Assume that M is F-stable. Then there exists m ∈ M such that m = F− ann(m).
Therefore,

m · F e(m) = 0,

for every e ≥ 0.
Let S = Soc(M) and denote Me = S ∩ < F e(M) >k.
Note that Me is a k-vector subspace of S and it can be easily checked that Me+1 ⊆ Me.
But F e(m) ⊆< F e(M) >k and since m · F e(m) = 0 we conclude that F e(m) ∈ Me.

Moreover, F acts injectively on M hence F e(m) 6= 0 for all e. So, Me 6= 0.
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Since S is a finite dimensional k-vector space and {Me}e forms a descending chain of k-
vector subspaces, there exists e0 such that Me = Me0 for all e ≥ e0. But Me 6= 0 for all e.
Hence

0 6= Me0 = ∩eMe ⊆ ∩e < F e(M) >k= Ms,

proving the first part of the theorem.
Let K be the perfect closure of k and MK = RK ⊗R M = K ⊗k M where RK = R⊗̂kK.

We have that Ms ⊂ (MK)s.
Consider the following short exact sequence:

0 → (MK)n → MK → MK/(MK)n → 0,

where the Frobenius actions on each module are naturally compatible. Note that the Frobe-
nius action on MK/(MK)n is injective. Applying Proposition 2.7 we get the following exact
sequence

0 → (MK)s → (MK/(MK)n)s.

Since F acts injectively on MK/(MK)n then Propostion 2.7 (1) applies and we get

(MK/(MK)n)s ⊆ SocRK(MK/(MK)n).

Now assume Ms 6= 0 and let η ∈ Ms arbitrarly chosen. Then 1 ⊗ η ∈ (MK)s.
Using the inclusions

(MK)s ⊆ (MK/(MK)n)s ⊆ SocRK (MK/(MK)n),

we obtain that mK · (1 ⊗ η) ∈ (MK)n.
However, (1 ⊗ m) · (1 ⊗ η) ⊂ mK · (1 ⊗ η) ∈ (MK)n. Hence there exists e such that

F e(1 ⊗ mη) = 0 ∈ MK. But F e(1 ⊗ mη) = 1 ⊗ F e(mη).
Moreover, M ⊂ MK and hence F e(mη) = 0 in M . But F acts injectively on M . Therefore,

mη = 0 or η ∈ Soc(M). This shows that Ms ⊆ Soc(M).
To finish the proof, let 0 6= η ∈ Ms. Then since F acts injectively on M we have that

0 6= F e(η) and F e(η) ∈ Ms. So, F e(η) ∈ SocR(M), or m · F e(η) = 0 for all e. Therefore M
is F-stable, since m = F − ann(η). �
Corollary 2.9. Let (R,m, k) be a local Noetherian F-injective ring.

Then the following assertions are equivalent:

(1) R is F-stable;
(2) there exists i and 0 6= ηi ∈ H i

m(R) such that m = F − ann(ηi);
(3) there exists i such H i

m(R)s 6= 0.

3. F-stable primes

In this section we will apply the results of the first section to the local cohomology module
of a Cohen-Macaulay local ring.

Let (R,m, k) be a local Noetherian ring of positive characteristic p and dimension d. Then
R admits a natural Frobenius action F : R → R, defined by F (r) = rp for all r ∈ R. This
action induces a Frobenius action on the local cohomology modules H i

m(R), i = 0, . . . , d.
If R is Cohen-Macaulay then there is only one nonzero local cohomology module, namely

Hd
m(R). As defined in Section 2, in this case R is F -stable if and only if Hd

m(R) is F -stable.
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There are two interesting sets of prime ideals in R that one can define in relation to the
action of Frobenius on Hd

m(R).

Definition 3.1. Let R be a Cohen-Macaulay ring of positive characteristic p.
Let

A = A(R) = {P ∈ Spec(R) : RP is F − stable}.
If (R,m, k) is local then let

B = B(R) = {P ∈ Spec(R) : there exists η ∈ Hd
m(R) such that P = F − ann(η)}.

We remark that Theorem 2.3 implies that when R is F-injective and Cohen-Macaulay then
B(R) is finite and R is F-stable if and only if m ∈ B(R) (due to Remark 2.4).

Let x1, . . . , xd be a system of parameters in R. The local cohomology module Hd
m(R) can

be obtained as a direct limit of R/(xt
1, . . . , x

t
d) where the maps of the direct system are given

by

R/(xt
1, . . . , x

t
d)

xl−t

→ R/(xl
1, . . . , x

l
d),

where l ≥ t and x = x1 · · ·xd.
Let x ∈ R and define I(x) := {c ∈ R : cxq ∈ I [q], for all q � 0}.
Let x be the class of x in R/(x1, . . . , xd) and let η ∈ Hd

m(R) be the image of x via

R/(x1, . . . , xd) → Hd
m(R).

Then F − ann(η) = I(x).
Conversely, consider 0 6= η ∈ Hd

m(R) and let x and t such that η is the image of x ∈
R/(xt

1, ..., x
t
d) under the natural inclusion

R/(xt
1, . . . , x

t
d) → Hd

m(R).

Then let J = It = (xt
1, . . . , x

t
d), and note that J(x) = It(x) = F − ann(η).

Remark 3.2. Using the notation just introduced we have

B(R) = {P ∈ Spec(R) : I(x) = P for some I = (x1, . . . , xd) generated by parameters and x ∈ R}.

These comments allow one to remark to state Propositions 2.6 and 2.7 proven in [3] in the
following concise form.

Theorem 3.3. Let (R,m, k) be a local Cohen-Macaulay F-injective complete ring of dimen-
sion d.

Then B ⊆ A and Max(A) = Max(B).

It is useful to know how F-stability behaves under a flat local ring extension that has nice
fibers.

Theorem 3.4. Let (R,m, k) → (S, n, k) be a flat local ring homomorphism of Cohen-
Macaulay F-injective rings.

Assume that the closed fiber S/mS is regular and R is F-stable. Then mS ∈ Max(B(S)).

In particular if (R,m, k) is local Cohen-Macaulay F-injective and F-stable then R̂ is local
Cohen-Macaulay F-injective and F-stable.
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Proof. Since R is F-stable, then m = F − ann(η) = I(u), for some I = (x1, . . . , xd) and
u ∈ R. Since I(u) ⊆ I(ru), for any r ∈ R, we can arrange that the image of u in R/I
belongs to Soc(R/I).

Let z1, ..., zn be a regular system of parameters for S/mS. Note that for any basis of
Soc(R/I) say u1, ..., ul, where u1, . . . , ul belong to R, their images u1, ..., ul in S/(I, z1, . . . , zn)S
form a basis for its socle.

Let J = (x1, . . . , xd, z1, . . . , zn)S. Note that 0 6= u ∈ Soc(S/J). It is clear that m ⊆ J(u)
and so mS ⊆ J(u).

Let us consider c ∈ S such that cuq ∈ J [q]S for all q.
The induced ring homomorphism R → S/(zq

1, . . . , z
q
n)S is still flat. Let Sq = S/(zq

1, . . . , z
q
n)S.

Let cuq ∈ J [q]S and map this further to Sq. Keeping the same notations for convenience
we see that c ∈ (I [q] :Sq uq). Since R → Sq is flat we get that c ∈ (I [q] :R uq)Sq for all q.

Now, m = I(u) = ∩q(I
[q] : uq) ⊆ I [q] : uq ⊆ m. So, m = I [q] : uq for all q.

In conclusion c ∈ mSq, for all q. Pulling back to S we get that c ∈ mS + (zq
1, . . . , z

q
n)S for

all q. So, c ∈ mS by taking intersection over all q.
�

Remark 3.5. In our previous Proposition is necessary to assume that S is F-injective. This
condition cannot be deduced form the other hypotheses as our Proposition 4.2 shows.

In what follows we will present a connection between the prime ideals discussed in Defini-
tion 3.1 and a set of prime ideals discovered by Lyubeznik in his work on Frobenius depth.
So we will move our attention to the concept of Frobenius depth considered by Harthsorne-
Speiser, see Definition 6.1 in [6] and Lyubeznik, see Definition 4.12 in [7] and Definition 4.1
in [8].

Assume that R is Noetherian and let P ∈ Spec(R). We set coht(P ) = dim(R/P ). Let

k = k(P ) be the residue field of RP . Consider a copy of k as a coefficient field of R̂P and

let K = K(P ) be its perfect closure. We let R(P ) be R̂P ⊗k K which is a local ring with
a perfect residue field. Note that R(P )K is the completion of R(P ) at the maximal ideal

PR̂P ⊗ K. The ring R(P )K is Noetherian.

Clearly H i
PRP

(RP ) = H i
P R̂P

(R̂P ) and H i
PR(P )(R(P )) = H i

P R̂P
(R̂P ) ⊗k K.

Also since R(P )K is the completion of R(P ) ⊗k K we also have that

H i
PR(P )K(R(P )K) = H i

PR(P )(R(P )).

Since H i
P (R̂P ) is Artinian we in fact have that

H i

P R̂P
(R̂P )K = H i

P R̂P
(R̂P ) ⊗k K,

which gives

H i
P R̂P

(R̂P )K = H i
PR(P )(R(P )) = H i

PR(P )K (R(P )K),

and hence are in position to apply results of Theorem 2.6. In conclusion, H i
PR(P )(R(P ))s 6= 0

if and only if H i
P R̂P

(R̂P )s 6= 0.



LOCAL COHOMOLOGY AND F-STABILITY 9

Definition 3.6 (Hartshorne-Speiser). Let R be a Noetherian ring with dim(R) < ∞. Using
the notation introduced above, we say that the Frobenius depth of R, denoted F-depthHS(R),
is

F-depthHS(R) = max{r : H i
PR(P )(R(P ))s = 0 for all i < r − coht(P ), for all P ∈

Spec(R)}.
The considerations above allows us to simplify this to

F-depthHS(R) = max{r : H i

P R̂P
(R̂P )s = 0 for all i < r − coht(P ), for all P ∈ Spec(R)}.

To be able to parse through this concept more easily it is helpful to first introduce a local
concept of Frobenius depth.

Definition 3.7. Let (R,m) be a local ring. Then the F-depth of R at m, denoted F-depth(m, R),
is

F-depth(m, R) = max{r : H i
m(R̂)s = 0 for all i < r} = min{r : Hr

m(R̂)s 6= 0}.

It is easy to conclude that

Remark 3.8. F-depth(R) = Min{F-depth(PRP , RP ) + coht(P ) : P ∈ Spec(R)}.

Note that coht(m) = 0, so the inequality above implies that F-depth(m, R) ≤ F-depth(R).
Whenever R is zero dimensional, we can see that H0

m(R) = R and Rs = k 6= 0. So, in this
case F-depth(m, R) = 0.

Assume that P is a minimal prime ideal of R, RP is a local ring of dimension zero and we
obtain 0 ≤ F-depth(R) ≤ dim(R/P ).

If R is Cohen-Macaulay, then its localizations at prime ideals as well as their completions
are Cohen-Macaulay, so F-depth(P,RP ) either equals dim(RP ) or ∞. This implies that
F-depth(R) = dim(R) if R is Cohen-Macaulay.

Using his theory of F -modules, Lyubeznik has proven the following theorem.

Theorem 3.9. (Lyubeznik) Let R be a homomorphic image of a finite type algebra over a
regular local ring.

Then there exist only a finite number of prime ideals P in R such as Hk

P (̂RP )
(R̂P )s 6= 0.

Proof. Proposition 4.14 in [7] states that there exist only finitely many prime ideals P such

that H i

P R̂P
(R̂P

K
)s 6= 0

But as noticed H i
P R̂P

(R̂P

K
)s 6= 0 if and only if Hk

PR̂P
(R̂P )s 6= 0.

�

This leads us to consider the following set.

Definition 3.10. Let (R,m, k) be a Noetherian ring of positive characteristic p.

Let C(R) = {P ∈ Spec(R) : there exists k such that Hk

P (̂RP )
(R̂P )s 6= 0}.

The investigations of Section 1 allow us to state the following result.

Proposition 3.11. Let R be a Cohen-Macaulay F-injective ring.
Then

A(R) = C(R).
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Proof. Since the F-injectivity property localizes, we conclude that RP is F-injective for any
prime ideal P of R. Also, RP is Cohen-Macaulay as well.

Let P ∈ A(R), that is, RP is F-stable. Then R̂P is F-stable as well. The ring R̂P is

complete and we can apply Theorem 2.8 to it. Assume that ht(P ) = k. Then Hk
P (R̂P )s 6= 0.

Therefore, P ∈ C(R).

Conversely, if for a prime ideal P we have that Hk
P (R̂P )s 6= 0 then k = ht(P ) and R̂P

is F-stable as a consequence of Theorem 2.8. This implies that RP is F-stable and hence
P ∈ A(R).

�

Corollary 3.12. Let R be a Cohen-Macaulay F-injective ring. Assume that R is a homo-
morphic image of an algebra of finite type over a regular local ring.

Then A(R) is finite.

The concept of Frobenius depth can appear a little technical at a first glance. Harthsorne
and Speiser used it to give answers to an important problem stated by Grothendieck: Let A
be a commutative ring and let I ⊂ A be an ideal. If n is an integer, find conditions under
which H i

i (M) = 0 for all i > n and all A-modules M . For their answer this problem we refer
the reader to [6].

More recently Lyubeznik introduced the following variant of Frobenius depth, Definition
4.1 in [8] and proved that it coincides with the earlier introduced concept of Hartshorne-
Speiser under mild conditions.

Definition 3.13 (Lyubeznik). Let (R,m, k) be a local Noetherian ring of positive charac-
teristic. The F -depth of R is the smallest i such that F s does not send H i

m(R) to zero for
any s. We will denote this number by F-depthL(R).

Theorem 3.14 (Lyubeznik). Let R be a local ring which is a homomorphic image of a
regular local ring. Then

F-depthHS(R) = F-depthL(R).

Lyubeznik has also given interesting characterizations for the cases F-depthL(R) ≤ 1.
Singh and Walther have added to these results by proving the following interesting theorem.
We will show later that one cannot replace the hypothesis k algebraically closed and hope
to obtain the same result.

Theorem 3.15 (Singh-Walther). Let (R,m, k) be a complete local ring of positive charac-
teristic. Assume that the residue field k is algebraically closed. Then the number of connected
components of the punctered spectrum Spec(R) \ {m} is

1 + dimk(H
1
m(R))s.

4. Examples

The reader can note that the F-injectivity assumption is crucial in our treatment of F-
stability in Section 2. At times one needs to enlarge the residue field of a ring to its perfect
closure and this brings up a natural question which is of interest in own right: is F-injectivity
preserved under those circumstances?

To be more precise, let us formulate the following question.
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Question 4.1. Let (R,m, k) be a local Noetherian F-injective ring of positive characteristic
p. Assume that k is a coefficient field of R, that is the composition of the maps k ↪→R →
R/m = k is the identity map. Let k → k′ be a purely inseparable extension. Is the ring
k′ ⊗k R F-injective? Is k′ ⊗̂k R F-injective?

Let K be the perfect closure of k, that is K = k1/p∞. The ring S = K ⊗k R is local with
maximal ideal m⊗k K. By Dumitrescu (Theorem 4.8 [2]), the ring S is local and Noetherian
with maximal ideal me = m ⊗k K. Since K ⊗̂k R is the completion of S at the maximal
ideal it is Noetherian as well. Also by flat base change we see that k′ ⊗k R ⊂ K ⊗k R is a
flat local extension and hence the ring k′ ⊗k R is Noetherian as well.

Since F-injectivity commutes with completion (see for example Lemma 2.7 in [4]) we will
examine whether S is F-injective when R is.

We will present an example that provides a negative answer to the question. The question
is however still open if we further assume that R is normal.

Let k ⊂ L be an algebraic field extension and x an indeterminate. Consider R = k+xL[[x]]
which is a local Noetherian with maximal ideal m = xL[[x]] and residue field equal to k.
This ring is one dimensional complete domain. This example was considered in [4], Example
2.16.

In [4] it was proven that R is F-injective if and only if

Lp ∩ k = kp.

Our claim is that for a suitable extension k ⊂ L, the ring k1/p ⊗k R is not F-injective. In
fact, it is not even reduced.

Now note that k1/p ⊂ K and hence k1/p ⊗k R ⊂ K ⊗k R and therefore K ⊗k R cannot be
reduced when k1/p ⊗k R is not reduced.

Proposition 4.2. Let k ⊂ L be a finite algebraic extension such that Lp ∩k = kp and k ⊂ L
is not separable.

Let x be an indeterminate and consider R = k + xL[[x]].

(1) R is F-injective local complete F-stable 1-dimensional ring.
(2) R ⊗k k1/p is not reduced, hence not F-injective.

Proof. (1) It is immediate that R is local, one dimensional and complete. For a proof of the
F-injectivity our R we refer to Example 2.16 in [4].

Note that x is a parameter for R. Let I = xR. We will show that there exist u ∈ R such
that m = I(u) = {c ∈ R : cuq ∈ I [q] for all q}. If this holds then, according to Remark 3.2,
m ∈ B(R) which is equivalent to the F-stability of R, as R is Cohen-Macaulay.

Let a ∈ L \ k. Then ax ∈ m = xL[[x]], but it is not in I.
Let c ∈ m arbitrary. Then c(ax)q is a formal power series of order at least q + 1 which

means that it belongs to I [q] = xqR. So if we let u = ax then m ⊆ I(u). But I(u) = R if
and only if u ∈ IF = I which is not the case, as a ∈ L \ k.

(2) Since k ⊆ L is not separable, then k1/p ⊗k L is not reduced.

Let u =
∑h

i=1 a
1/p
i ⊗k bi, where ai ∈ k, bi ∈ L, i = 1, ..., h such that up = 0 but u 6= 0. Note

that up =
∑h

i=1 ai ⊗k bp
i = 1 ⊗

∑h
i=1 aib

p
i , which is equivalent to

∑h
i=1 aib

p
i = 0 in L.

Consider v =
∑h

i=1 a
1/p
i ⊗k(bi·x) as an element of k1/p⊗kR. Now, vp = 1⊗[(

∑h
i=1 aib

p
i )x

p] =
0. Let us argue that v 6= 0. Regard L · x as a k-vector space and note that k1/p ⊗k L '
k1/p⊗kL·x as k-vector spaces. Moreover, L·x ⊂ R as k-vector spaces and hence k1/p⊗kL·x ⊂
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k1/p ⊗k R. Under the isomorphism the nonzero element u ∈ k1/p ⊗k L corresponds to
v ∈ k1/p ⊗k L · x ⊂ k1/p ⊗k R. In conclusion, v is nonzero in k1/p ⊗k R as well.

�

We recall the Example 2.14 in [4] exhibits a finite extension k ⊂ L such that Lp ∩ k = kp

and k ⊂ L is not separable. Let F be an infinite perfect field of characteristic p and set
k = F (u, v). Let L = k[y]/(y2p + ypu − v). In [4] it was proven that Lp ∩ k = kp and
[L : k(Lp)] ≥ p > 1. It is known that a finite extension k ⊂ L is separable if and only if
k(Lp) = L.

Using the notations in the preceding Proposition, it is interesting to note that R →
k1/p ⊗k R is a flat local map with closed fiber equal to k1/p, a field. It in this example the
F-injectivity of R does not pass to k1/p ⊗k R. Much of this has to do with the fact that k1/p

is not separable over k, where k is the residue field of R. Indeed, whenever the residue field
extension is separable F-injectivity is preserved under flat local maps. The following result
is essentially contained in [1], Theorem 4.2, although not stated for F-injective rings. We
present the argument here in our context.

Let F be a k-algebra where k is a field. We say that F is geometrically F-injective over
k, if, for every finite field extension k ⊆ k′ the ring k′ ⊗k R is F-injective. Note that a field
extension L of k is geometrically F -injective if and only if k ⊂ L is separable.

Theorem 4.3 (Aberbach-Enescu). Let (R,m, k) → (S, n, L) be a flat local map such that
S/mS is Cohen-Macaulay and geometrically F-injective over k. If R is F-injective and
Cohen-Macaulay, then S is F-injective and Cohen-Macaulay.

Proof. The proof follows as in Theorem 4.2 (1) in [1] with minor changes: replace tight
closure by Frobenius closure and use c = 1. �

We would like to end by showing that Theorem 3.15 cannot be extended to rings with
non-algebraically closed residue field. Also a result on one dimensional F-injective rings is
provided as well.

Remark 4.4. Let k ⊆ L be a field extension that satisfies the conditions of Prop 4.2.
Then R = k + xL[[x]] is a domain and hence the punctured spectrum is connected, while
dimk H1

m(R)s 6= 0. The latter claim follows since R is F-injective and F-stable hence by
Theorem 2.8 H1

m(R)s 6= 0.

Proposition 4.5. Let (R,m, k) be a local complete F-injective ring of dimension 1. Assume
that k is algebraically closed and R is domain. Then R is regular.

Proof. The punctured spectrum Spec(R)\{m} is connected since R is domain. According to
Theorem 3.15, we have that H1

m(R)s = 0. But Theorem 2.8 implies that R is not F-stable.
This implies that R is F-rational, hence regular as dim(R) = 1.

�

Acknowledgment: The author thanks Mel Hochster for discussions on local cohomology
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