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Abstract. In this note the Briançon-Skoda theorem is extended
to Noetherian filtrations of ideals in a regular ring. The method
of proof couples the Lipman-Sathaye approach with results due to
Rees.

Let A be a regular ring of dimension d and I an ideal of A. Let I
denote the integral closure of I. The Briançon-Skoda theorem asserts
that if I is generated by l elements then In+l ⊆ In+1, for all nonnegative
integers n. Moreover, In+d ⊆ In+1 for all nonnegative integers n. Both
statements were proven by Lipman-Sathaye [4]. These results have
generated a considerable number of papers in commutative algebra and
algebraic geometry, for a general discussion see for example Chapter
13 in [7] and Chapter 9 in [3].

In this paper, our aim is to prove a Briançon-Skoda type theorem for
Noetherian filtrations. Our treatment will follow classical arguments
by Lipman and Sathaye, and, respectively, Rees.

Let F = {In}n be a filtration of ideals of A: that is, I0 = A,
In+1 ⊆ In, and InIm ⊆ In+m, for all nonnegative n,m. For any nonneg-
ative integer k, let F(k) = {In+k}n (technically this is not a filtration
according to the above definition since on the zeroth spot we have Ik

and not A, but this will not affect what follows). Also, given two fil-
trations F = {In}n and G = {Jn}n, we write F ⊆ G if In ⊆ Jn for all
n.

The filtration F is called Noetherian if its Rees algebra R = ⊕n≥0Int
n

is Noetherian over A. This holds if and only if its extended Rees algebra
S = R[t−1] ⊂ A[t−1, t] is Noetherian.

There are various definitions of Noetherian filtrations in the liter-
ature. We follow the terminology used by Rees in [6], although the
reader should be aware that for sake of readability we will avoid the
interpretation of filtrations as special real valued functions on the ring
A. What we call here Noetherian filtration is called in some papers an
essentially power filtration, Definition (2.1.2) and Remark (2.2) in [1].
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We note that the filtration given by the powers of a single ideal in a
Noetherian ring forms itself a Noetherian filtration.

Another characterization of Noetherian filtration is as follows: A
filtration F = {In}n is Noetherian if and only if there exists m ≥ 1
such that for all n, In =

∑
Ie1
1 · · · Iem

m , where the sum ranges over all
nonnegative integers e1, . . . , em such that e1 + 2e2 + · · · + mem = n.
This was proven by Ratliff, see [5] and [1], Remark (2.2).

The integral closure of R in A[t] is a N-graded ring, R = ⊕n≥0Jntn.
As in [6], the integral closure of F is then defined by F = {Jn}n. This
is equivalent to saying that x ∈ Jn if and only if there exist elements
ai ∈ Ini and a positive integer m such that

xm + a1x
m−1 + . . . + am−1x + am = 0.

Some authors call the filtration G = {In}n the integral closure of
the filtration F = {In}n. It should be noted that G ⊆ F with our
definition. Note that Jn belongs to the radical of In, so the filtration
and its integral closure share the same radical (the radical of a filtration
is the radical of any of its components).

A reduction for F = {In} is a filtration G = {Ln}n such that G ⊆ F
and with the same integral closure filtration. A reduction is called basic
if its Rees algebra is generated over A by the least number of elements.

Recently, Küronya and Wolfe have studied extensions of the Briançon-
Skoda theorem to graded systems of ideals. A family of ideals of A,
a• = (an)n is called a graded system of ideals if anam ⊆ an+m for all
nonnegative n,m. One should note that the family of ideals is not as-
sumed descending. Küronya and Wolfe established a Briançon-Skoda
type theorem for a particular type of graded systems, named stable
graded system of ideals, that arise in algebraic geometry. Their gen-
eralization states that for a stable graded system of ideals a•, there
exists a positive constant C such that, for all n � 0, aCn ⊆ an (see
Corollary 3.4 in [2]). Our statement will be stronger than this but
under different hypotheses. The authors obtain in fact a statement
regarding multiplier ideals of an graded system of ideals, as defined in
Lazarsfeld [3]. For details on this statement and the definition of stable
graded systems of ideals we refer the reader to [2].

Given a filtration F = {In}n, we call a1t
k1, . . . , aht

kh a system of
generators for F if a1t

k1, . . . , aht
kh , u = t−1 generate the extended Rees

algebra (⊕n≥0Int
n)[u] = A[u, Int

n : n ≥ 0]. It can be arranged that
ai ∈ Iki \ Iki+1, i = 1, . . . , h. The numbers ki are referred to as degrees
of the generators.

Before we state the main result, we need to introduce more notations.
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For a filtration G = {Ln}n, let g1t
k1, . . . , ght

kh be a minimal set of
generators of G. Let k := the least common multiple of k1, . . . , ks =
[k1, . . . , ks].

Theorem. Let A be a d-dimensional regular ring and let F = {In} be
a Noetherian filtration of ideals of A.

For a reduction of F , let l denote the sum of the degrees of the
generators of the reduction. Also, consider G = {Ln}n a basic reduction
of F , and let k defined as above corresponding to G.

Then

F(m) ⊂ F ,

where m := min{l − 1, kd − 1}.

It is clear that in the case F = {In}n, with I ideal of A, we obtain
the standard Briançon-Skoda theorem since in this case l can be taken
to equal the number of generators of I and k = 1.

In his Strong Valuation Theorem, Rees has already shown that there
exist a positive integer k such that F(k) ⊂ F Theorem 5.33, [6]. How-
ever, the integer k produced by this result depends upon the degrees
of the generators of the integral closure R over R which are hard to
estimate even in the classical case of a filtration of the type {In}n, for
an ideal I of A.

Proof. The proof of the theorem will follow closely the Lipman-Sathaye
proof of the standard Briançon-Skoda theorem. We found the exposi-
tion in [7] particularly useful and we will follow it for the first part of
the proof.

First we will show that F(l − 1) ⊆ F .
For a finitely generated extension of rings A ⊆ B, we will write JB/A

for the Jacobian ideal of B over A.
For a reduction F ′ = {I ′

n} of F , we have that F ′ = F and F ′ ⊆ F , so
if show that F ′(l− 1) ⊆ F ′, then this implies that F(l− 1) ⊆ F ′ ⊆ F .

We will work with the reduction F ′ and, by relabeling, we will still
call it F .

We can localize and assume hence that our regular ring A is local.
For the Noetherian filtration F , call its minimal generators f1t

l1, . . . , frt
lr,

with fi ∈ Ili.
Consider the extended Rees algebra of our filtration S = A[u, Int

n :
n ≥ 0] where u = t−1. Clearly we can rewrite S = A[u, f1t

l1, . . . , frt
lr ] =

A[u, f1/u
l1, ..., fr/u

lr ]. Now let B = A[u]. Since S = B[f1/u
l1, ..., fr/u

lr ],
a standard argument allows us to conclude that ul1+...+lr ∈ JS/B (see
Lemma 13.3.1 in [7]). Let l = l1 + . . . + lr.
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Let S be the integral closure of S. Since S is finitely generated over
A[u] = B, B is regular and the fraction field of S is separable over B,
we get that S is module finite over S.

We need to apply the following important result

Theorem (Lipman-Sathaye, Theorem 2, [4] or Theorem 12.3.10, [7]).
Let R be a Cohen-Macaulay domain with field of fractions K. Let S
be a domain that is finitely generated R-algebra. Assume that the field
of fractions of S is separable and finite over K and that the integral
closure S of S is a finitely generated S-module. Assume that for all
prime ideal Q in S of height one, RQ∩R is a regular local ring. Then

S :L JS/R ⊆ S :L JS/R.

In particular, JS/RS ⊆ S.

The fraction field of S is the fraction field of B, so Lipman-Sathaye
Theorem applied to B and S gives that JS/BS ⊂ S. In particular

ulS ⊂ S.
At this stage we need another difficult result by Lipman-Sathaye:

Proposition (Lipman-Sathaye, Lemma, [4] or Theorem 13.3.2, [7]).
Let R be a regular domain with field of fractions K. Let L be finite
separable field extension of K and S be a finitely generated R-algebra
in L with integral closure T . Let 0 6= t be such that R/tR is regular.
Then if ts ∩ R 6= tR, then JT/R ⊆ tT .

We can check that I1 ⊂ uS∩B, but not in uB, and B/uB is regular.
The above Proposition applies and gives JS/B ⊂ uS.

So, u−1S ⊂ S : JS/B ⊂ S : JS/B by 12.3.10 (S is module finite over

S) so u−1JS/BS ⊂ S which gives ul−1S ⊂ S.

But S = ⊕nKntn so Kntn−l+1 ⊆ In−l+1t
n−l+1. In particular

Jn+l−1 ⊆ Kn+l−1 ⊆ In,

or

F(l − 1) ⊆ F .

Now we will show that F(kd − 1) ⊆ F .
For every positive integer k and every ideal J of A one can define a

filtration denoted kJ in the following way:

(kJ)n = J dn/ke,

for all nonnegative n.
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We can localize at a prime ideal containing the radical of the filtration
F , we can assume that we are in the local case.

Rees has proved that given a Noetherian filtration F = {In}n≥0

there exists a positive integer k and an ideal J such that F and kJ are
equivalent, that is they have the same integral closure, Theorem 6.12
and its Corollary, [6].

In fact this number k is obtained by Rees as described in the state-
ment of the theorem. Referring to the notations introduced just above
the theorem, one chooses first a basic reduction G = {Ln}n for F . For
ri = k/ki, let ai = gri

i . The ideal J mentioned in the paragraph above
is J = (a1, . . . , ah) and moreover the filtration kJ represents a basic
reduction for F .

As before, let us denote the integral closure of F = {In}n by {Jn}n,
and hence, by the above paragraph, this also represents the integral
closure of kJ .

According to the definition of the integral closure of a filtration, we
see that an element x belongs to Jn if and only if there exist elements
ai ∈ (kJ)ni and a positive integer m such that

xm + a1x
m−1 + . . . + am−1x + am = 0.

Since ((kJ)n)
i ⊂ (kJ)ni, it follows that (kJ)n ⊂ Jn.

We would like to remark that

dn − k + 1

k
ei ≤ dni

k
e :

this follows easily, since dn−k+1
k

ei = dn+1
k
ei− i and dn+1

k
ei− i ≤ (dn

k
e+

1)i − i ≤ dni
k
e.

With this in mind we see that (kJ)ni ⊆ ((kJ)n−k+1)
i which implies

that for n ≥ k, Jn ⊆ (kJ)n−k+1.
Now we are in position to apply Briançon-Skoda for ideals in regular

rings of dimension d:

Jn ⊆ (kJ)n−k+1 = J d n−k+1
k

e ⊆ J dn−k+1
k

e−(d−1) = (kJ)n−kd+1 ⊆
In−kd+1.

Putting everything together,

F(kd − 1) ⊂ F .

�

We would like to illustrate our result with an example.
Let A = k[[x, y]] where k is a field, I1 = (x, y2), I2 = (x,2 , xy2, y3).

Note that I2
1 ⊂ I2 ⊂ I1. Define In =

∑
Ie1
1 Ie2

2 , where sum ranges over
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all nonnegative integers e1, e2 such that e1 + 2e2 = n. The filtration
F = {In}n is Noetherian and its extended Rees algebra

S = A[t−1, Int
n : n ≥ 0]

is generated by xt, y2t, y3t2.
According to results by Rees, Theorem 6.12 and Lemma 6.13 in [6],

we know that a basic reduction of F must have 2 generators. Note that
y2t is integral over S : (y2t)2 − y(y3t2) = 0. So, if S ′ = A[xt, y3t2, t−1]
then the integral closure of S ′ is S. The generators are xt, y3t2 which
live in degrees 1 and 2. Applying the Theorem, we get that m = 2, so

F(2) ⊆ F .
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