
LECTURE 18

1. Flatness and completion

Let M be an A-module. We say that M is A-flat, respectively A-faithfully flat if, for

all sequences of A-modules E → F → G, the sequence is exact implies, respectively is

equivalent to, that the sequence E ⊗A M → F ⊗A M → G ⊗A M is exact.

For an A-algebra B, we say that B is a flat A-algebra if it is flat as an A-module. A

ring homomorphism f : A→ B is called a flat homomorphism if B is an A-flat algebra.

We note that S−1A, with S a multiplicatively closed set, and A[x1, . . . , xn] are A-flat

algebras. In fact any free A-module, including polynomial rings over A, are faithfully

flat.

Using the fact that the tensor product is right exact, we note that flatness can be

checked by only considering exact sequences of A-modules of the type 0→ E → F .

The following two propositions list some simple consequences of flatness and faithful

flatness which can be proven easily by manipulating the definitions.

Proposition 1.1. Let B be an A-algebra and M a B-module. Then

(1) B is A-flat (respectivey A-faithfully flat) and M is B-flat (respectively B-faithfully

flat) then M is A-flat (respectively A-faithfully flat);

(2) M is B-faithfully flat and M is A-flat (respectively A-faithfully flat) then B is

A-flat (respectively A-faithfully flat) .

Proposition 1.2. Let B be an A-algebra and M an A-module.

Then M A-flat (respectively A-faithfully flat) implies M ⊗A B is B-flat (respectively

B-faithfully flat).

The first important result on flatness shows that checking flatness can be performed

locally.
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Theorem 1.3. Let f : A→ B be a ring homomorphism and M a B-module. Then M is

A-flat if and only if for every prime ideal P of B , MP is flat over Ap where p = P ∩A

(or the same condition for every maximal ideal P of B).

Proof. Note that if N is an S−1A-module, where S is a multiplicatively closed set in A,

then S−1A⊗A N = N .

The map A → B naturally gives the homomorphism Ap → BP , and MP is naturally

an Ap-module.

Note that N ⊗Ap MP = N ⊗Ap Ap ⊗A MP = N ⊗A MP = N ⊗A M ⊗B BP . From this

we see immediately that M flat over A together with the observation that BP is B-flat

implies that MP is flat over Ap.

For the converse, let 0 → E → F be an injective map and consider 0 → K →
E ⊗A M → F ⊗A M . The plan is to show that K = 0. Localizing at P , we get an exact

sequence 0→ KP → E ⊗A M ⊗B BP = E ⊗A MP → F ⊗A M ⊗B BP = F ⊗A MP .

But note that E ⊗A MP = E ⊗A Ap ⊗Ap MP = Ep ⊗Ap MP (and similarly for F ).

So, 0→ KP → Ep ⊗Ap MP → Fp ⊗Ap MP is exact.

But 0 → Ep → Fp is injective for any prime ideal p in A. When tensoring with MP

over Ap, exactness is preserved. So, KP = 0. This condition for all maximal (respectively

prime) ideals in B implies that K = 0.

�

Theorem 1.4. Let A be a ring and M an A-module. the following assertions are equiv-

alent:

(1) M is faithfully flat over A;

(2) M is flat over A and N ⊗M 6= 0 for all nonzero A-modules N .

(3) M is flat over A and M 6= mM for all maximal ideal m of A.

Proof. (1) implies (3) Let 0 → A/m → 0. Assume that mM = M . This implies that

0→ A/m⊗M → 0 is exact so the original sequence must be exact. Hence A = m which

is a contradiction.
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(3) implies (2)

Let 0 6= x ∈ N and consider a maximal ideal m containing Ann(x). But then Ax '
A/Ann(x) and then Ax⊗M = A/Ann(x)⊗M = M/Ann(x)M which is nonzero because

Ann(x)M ⊂ mM 6= M . Now, we have an R-linear map which is injective 0 → Ax→ N

and by flatness of M we get that Ax⊗M injects into N ×M , so the latter is nonzero as

well.

(2) implies (1)

Let f be an A-linear map between two modules E → F . We claim that Ker(f) ⊗
M = Ker(f ⊗ 1) and Im(f) ⊗ M = Im(f ⊗ 1). Indeed, Ker(f) → E → F and

E → F → F/Im(f) are exact, so they remain exact after tensoring with M .

Consider a sequence of A-modules N ′ → N → N ′′ such that N ′ ⊗M
f⊗1→ N ⊗M

g⊗1→
N ′′ ⊗M is exact.

So (g ◦ f)⊗ 1 = 0 hence g ◦ f = 0. In conclusion Im(f) ⊂ Ker(g).

Consider now H = Ker(g)/Im(f). Then by flatness H⊗M = (Ker(g)⊗M)/(Im(f)⊗
M) = 0. Therefore H = 0.

�

Corollary 1.5. Let f : (A,m) → (B, n) a local homomorphism of rings (that is f is a

ring homomorphism and f(m) ⊂ n). Then B is A-flat if and only if B is A-faithfully

flat.

Proof. Since f(m) ⊂ n we get that mB ⊂ n 6= B. �

Proposition 1.6. (1) Let A be a ring and M an A-flat module. Let N1, N2 be two

submodules of M . Then

(N1 ∩ Ns)⊗M = (N1 ⊗M) ∩ (N2 ⊗M),

where the objects are regarded as submodules of N ⊗A M .

(2) Therefore, if A → B is flat then for any ideals I, J of A, we have (I ∩ J)B =

IB ∩ JB. If J is finitely generated, then (I : J)B = (IB : JB).
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(3) If f : A→ B is faithfully flat, then for any A-module M the natural map M →
M ⊗A B is injective. In particular f is injective. In particular, for any ideal

I ⊂ A, IB ∩A = I.

Proof. For (1), consider the exact sequence of A-modules 0 → N1 ∩N2→ N → N/N1 ⊕
N/N2, and tensor with M . The resulting exact sequence gives the statement.

For (2), let N = A, N1 = I,N2 = J , and M = B. For the second part, let J =

(a1, . . . , ak). But then I : J = ∩k
i=1(I : Aai).

Fix i, and let 0→ (I : Aai)→ A
·ai→ A/I which is exact. Since B is A-flat we get that

the sequence stays exact after tensoring with B. This gives us 0 → (I : Aai)B → B
·ai→

B/IB. Therefore, (I : Aai)B = (IB : Bai) by computing the kernels in two ways.

Therefore, (I : J)B = (∩k
i=1(I : Aai))B which equals (∩k

i=1(I : Aai)B) by the first part

of (2). But this last term equals ∩k
i=1(IB : Bai) = IB : JB.

Finally, let m ∈M such that m⊗ 1 = 0 in M ⊗A B. We need m = 0, so let us assume

that m 6= 0. But then 0 6= Am ⊂ M and therefore, since B is A-faithfully flat, we get

that 0 6= Am ⊗A B in M ⊗A B. On the hand m ⊗ 1 = 0 so Am ⊗A B = 0 as well.

Contradiction. The final statement is obtained by letting M = B.

�

Lemma 1.7. Let i : E → F be an injective A-linear map. Let M be an A-module and

consider u ∈ ker(1M ⊗ i) ⊂ E ⊗A M , where 1M ⊗ i : E ⊗A M → F ⊗A M . Then there

exists N finitely generated submodule of M and v ∈ ker(1N ⊗ i) such that v maps to u

under the canonical map E ⊗N → E ⊗M .

Proposition 1.8. A module M is flat over A if all its finitely generated submodules are

flat over A.

Proof. This is a straightforward application of the Lemma. If there exists an R-linear

injection i : E → F and for any element u ∈ Ker(i ⊗A 1M ), we can find a finitely

generated submodule N of M and v ∈ ker(i⊗A 1N ) such that v maps onto u under the

canonical map. But N is flat so v = 0 which gives u = 0. �

Proposition 1.9. Let A be a domain. Then every flat A-module is torsion free. The

converse holds, if A is a PID.
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Proof. Let a 6= 0 in A. Then multiplication by a is injective on A (0 → A
a→ A is

exact), hence it is stays injective after tensoring with M : 0→M
a→M is exact, so M is

torsion-free.

For the converse, by Proposition 1.8 it is sufficient to show that any finitely generated

submodule N of M is flat. But such an N is torsion-free, so by the structure theorem of

finitely generated modules over a PID, N must be free hence flat. �

The following theorems also hold, but their proofs are more difficult so we will not

include them.

Theorem 1.10. Let A be a ring and M be an A-module. Then M is A-flat if and only

if for all finitely generated modules E ⊂ F the map E ⊗M → F ⊗M is injective.

Theorem 1.11. Let A be a ring and M a module over A. Then M is A-flat if and only

if for any finitely generated ideal I of A we have I⊗A M → IM is injective, and therefore

bijective.

Theorem 1.12. Let

0→ N →M → P → 0

be a short exact sequence of A-modules. If N,P are A-flat then M is A-flat as well.

Theorem 1.13. Let M be a finitely generated A-module, where (A,m) is a local Noe-

therian ring. Then M is flat if and only if M is projective if and only if M is free.

2. I-adic completion

Definition 2.1. Let A be a commutative ring. Let I be a partially ordered set. A pair

((Mi)i, {pji}i≥j) where Mi are A-modules for all i ∈ I, and pji : Mi → Mj are A-linear

for all j ≤ i ∈ A such that

(1) pii = 1Mi

(2) pij ◦ pjk = pik for all i ≤ j ≤ k.

is called an inverse (or projective) system of A-modules.
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Definition 2.2. Let I be a partially order set and ((Mi)i, {pji}i≥j) an inverse system of

A-modules. A module M = lim←−Mi together with a family of A-linear maps qi : M →Mi,

i ∈ I, is called the inverse limit of the system if

(1) pijqi = qj, for all i ≤ j

(2) for every A-module X and any A-linear maps fi : X → Mi, i ∈ A, such that

pijfi = fj for all j ≤ i, there exists a unique A-linear map F : X →M such that

qiF = fi for all i ∈ I.

Theorem 2.3. Let A be a ring, I a partially ordered set and ((Mi)i, {pji}i≥j) an inverse

system of A-modules. Then the inverse limit lim←−Mi exists.

Proof. Consider the A- submodule M of the direct product
∏

i Mi defined by {(mi)i :

pji(mi) = mj, for all j ≤ i ∈ I}. It is routine to check that M = lim←−Mi. The maps

qi : M →Mi are the canonical projections.

�

Let A be a ring and I an ideal of A. We say that a sequence of elements {xn}n is

Cauchy in the I-adic topology if for all n there exists N such that xi − xj ∈ In for all

i, j ≥ N . A sequence {xn}n of elements from A converges to 0 if for all n there exists N

such that xi ∈ In for all i ≥ N . A sequence {xn}n converges to an element x ∈ A such

that {xn − x}n converges to zero. We say that A is complete in the I-adic topology if

every Cauchy sequence in A converges to an element in A.

Note that A/In together with the natural projections pmn : A/In → A/Im for n ≥ m

form an inverse system. The I-adic completion of A is by definition ÂI := lim←−A/In

which is a natural A-algebra. We will generally drop the symbol I from our notation

when the ideal is understood from the context. Note that we have a natural A-algebra

homomorphism i : A→ Â with kernel equal to ∩nI
n. We say that A is separated in the

I-adic topology if ∩nI
n = 0.

Proposition 2.4. The map i : A→ Â is a ring isomorphism if and only if A is complete

in the I-adic topology.
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Proof. Let {xn}n be a sequence that gives an element of Â. Since i is an isomorphism

we can find an element x ∈ A such that x− xn ∈ In for all n which implies easily that

{xn}n converges to x.

Let {xn}n be a sequence that gives an element of Â. Therefore for all n, xn+1−xn ∈ In

for all n. Hence xi−xj ∈ In for all i, j ≥ n which gives that {xn} is Cauchy in A. Hence

it is convergent to x an element in A. Therefore, it is enough to show that if {xn}n is a

sequence that converges to zero, then the corresponding element in Â is zero as well. By

definition, xj − xi ∈ Ij for all j ≤ i. For all n there exists N such that xi ∈ In for all

i ≥ N . But xi − xn ∈ In for i ≥ n so xn ∈ In for all n. �

Remark 2.5. A Cauchy sequence in A defines a unique canonical element in Â. One can

check that the difference between a Cauchy sequence and a subsequence defines a sequence

that converges to zero. This can be used to show that that given a Cauchy sequence {xn}n
in A, we can replace it by a sequence {yn}n that gives the same canonical element in Â

with the additional property that yn+1−yn ∈ In for all n. This observation is often useful

in computations.

Proposition 2.6. Let A,B be two rings and let I be an ideal of A, respectively J be an

ideal of B. Consider f : A → B be a ring homomorphism such that f(I) ⊂ J . Then

there is a canonical ring homomorphism f̂ : ÂI → B̂J .

Moreover, if f is surjective such that f(I) = J , then f̂ is surjective.


