Lecture 4

1. General facts

Proposition 1.1. Let A be a commutative ring, and \mathfrak{m} a maximal ideal. Then TFAE:

- (1) A has only one maximal ideal (i.e., A is local);
- (2) $A \setminus \mathfrak{m}$ consists of units in A;
- (3) For all non-units a and b, a + b is a nonunit.

Proof. For (1) implies (2), if $u \notin \mathfrak{m}$, then u is a unit.

For (2) implies (3), take a and b to be nonunits. Then $a, b \in \mathfrak{m}$. This implies $a+b \in \mathfrak{m}$, so a+b is a nonunit.

For (3) implies (1), take I to be the set of all nonunits. Then I is an ideal: we only need to show that if a is a nonunit, λa is a nonunit for all $\lambda \in A$. Assume not, and take b such that $\lambda ab = 1$ which implies a is a unit, a contradiction. Also, I is maximal since otherwise we can find a proper ideal $J \leq A$ containing I. But any element of J is a nonunit, since J is proper, so $J \subseteq I$ which is impossible.

Finally since \mathfrak{m} is a proper ideal we have that \mathfrak{m} consists of nonunits, so $\mathfrak{m} \subseteq I$. They are both maximal ideals, so $\mathfrak{m} = I$.

Corollary 1.2. If the set of all nonunits is an ideal in A, then A is local and this ideal is the maximal one.

Definition 1.3. Let Jac(A) be the intersection of all maximal ideals.

Proposition 1.4. $x \in Jac(A)$ if and only if $\forall a \in A \ 1 + ax$ is a unit.

Proof. For the forward implication, if 1 + ax is not a unit, then $\exists \mathbf{m} \in \operatorname{Max}(A)$ with $1+ax \in \mathbf{m}$. Then $x \in \operatorname{Jac}(A)$ implies $x \in \mathbf{m}$ which implies $ax \in \mathbf{m}$, so $1 = 1+ax-ax \in \mathbf{m}$, a contradiction.

For the reverse, take $\mathfrak{m} \in \operatorname{Max}(A)$ so that $x \notin \mathfrak{m}$. Then $Ax + \mathfrak{m} = A$, so 1 = ax + b for some $b \in \mathfrak{m}$. But then 1 - ax = b, so b is a unit, a contradiction.

Definition 1.5. If $A \neq 0$ and $|Max(A)| < \infty$, then A is called semilocal.

Definition 1.6. Take A a commutative ring and ${}_{A}M$ a module. Then $\mathfrak{N}_{A}(M) = \{a \in A \mid \exists n \in \mathbb{N} \text{ such that } a^{n}M = 0\}$ is called the **nilpotent radical of** ${}_{A}M$. This equals

the set $\{a \in A \mid \exists n \in \mathbb{N} \text{ such that } a^n \in Ann_A(M)\}$. Similarly, $\mathfrak{N}_A(A) = \{a \in A \mid \exists n \text{ such that } a^n = 0\}$. The latter is often denoted Nil(A), or just N(A).

To see another characterization of this, consider the map $\pi: A \to A/Ann_A(M)$. Then $\mathfrak{N}_A(M) = \pi^{-1}(J)$ where $J = \{\overline{a} \in A/Ann_A(M) \mid \exists n \text{ such that } \overline{a}^n = 0\}$. Note that $J = \mathfrak{N}(A/Ann_A(M))$. We can also consider $\mathfrak{N}_A(A/I)$ for some $I \leq A$. This equals $\pi^{-1}(\mathfrak{N}_{A/I}(A/I)) = \{a \in A \mid \exists n \text{ such that } a^n \in I\}$. This is denoted $Rad(I) = \sqrt{I}$ and it is the radical ideal of I.

Example 1.7. Let A = k[x,y], $I = (x^2,y) \nsubseteq (x,y)$ but $\sqrt{I} = (x,y)$. Note that \sqrt{I} is not necessarily a prime ideal in general.

2. Artinian rings

Lemma 2.1. Let K be a field and V a K-vector space. Then V is Artinian over K if and only if V is finite dimensional if and only if V is Noetherian over K.

Theorem 2.2. (Akizuki-Hopkins-Levitzki) An Artinian ring is Noetherian.

Proof. (AHS Theorem) There exist only finitely many maximal ideals of A: If not, let $M_1, M_2, ...$ an infinite collection of distinct maximal ideals. Then we can construct a descending chain that does not stabilize: $A \supseteq M_1 \supseteq M_1 M_2 \supseteq M_1 M_2 M_3...$ Indeed, if $M_1 \cdots M_k = M_1 \cdots M_k M_{k+1}$, then $M_1 \cdots M_k \subset M_{k+1}$. Since M_{k+1} is maximal, and hence prime, we get that there exists $1 \le i \le k$ such that $M_i \subseteq M_{k+1}$. But this implies that $M_i = M_{k+1}$, a contradiction.

Now, let $J=\operatorname{Jac}(A)$. We will show that J is nilpotent. Since $\cdots\supset J^k\supset J^{k+1}\supset\cdots$ is a descending chain of ideals of A, $\exists s$ such that $J^s=J^{s+1}=\cdots$. Let us consider the following ideal $(0:_AJ^s)=K$. We want K=A since this gives $1\in K$ and so $J^s=0$. Assume K is not equal to A. By the minimal property, one can find $K\subsetneq K'$, K' minimal over K. We see that K'=K+Ax for all $x\in K'\setminus K$, by the minimal property of K'. Consider $K'\supseteq K+Jx\supseteq K$, which leads to K+Jx=K or K+Jx=K'. We will show the former. Notice that K'/K is an A-module generated by x. So $K'/K=A\bar{x}$. Then $J\cdot K'/K=\frac{JK'+K}{K}=\frac{J(K+Ax)+K}{K}=\frac{JK+JAx+K}{K}=\frac{JAx+K}{K}=K'/K$ if we assume that K'=K+Jx. By NAK above, we have $K'/K=0\Rightarrow K=K'$, a contradiction. Thus K+Jx=K so $Jx\subseteq K$. This gives $JxJ^s=0$, so $xJ^{s+1}=0$, so $xJ^s=0$ which implies $x\in K$, a contradiction. Thus K=A, so $J^s=0$.

Let $\operatorname{Max}(A) = \{M_1, ..., M_k\}$. Then if $I = M_1 \cdots M_k \subseteq J$, then $I^s \subseteq J^s = 0$. We then have the following chain, $A \supset M_1 \supset M_1 M_2 \supset M_1 M_2 M_3 \supset \cdots \supset M_1 \cdots M_k \supset$

 $IM_1 \supset \cdots \supset IM_1 \cdots M_k \supset \cdots \supset I^sM_1 \supset \cdots \supset IM_1 \cdots M_k = 0$. A quotient given by two successive factors in this chain is killed by some M_i . This quotient is hence an A/M_i -module with the same structure as an A-module. Since A/M_i is a field and each quotient is Artinian, we see that each quotient in fact a finite dimensional vector space over A/M_i and, hence, of finite length over A. By the Serre class property, A is also of finite length, and thus Noetherian. For clarity, say $0 = N_0 \subset N_1 \subset N_2 \subset \cdots \subset A$ is a filtration with Artinian factors annihilated by a maximal ideal of A. So each factor is Artinian over the quotient ring modulo the respective maximal ideal. This is a vector space, so it is Noetherian as well, and hence each factor is Noetherian over A.

Then the outer pieces in the exact sequence $0 \to N_1 \to N_2 \to N_2/N_1 \to 0$ are Noetherian, so this implies that N_2 is Noetherian also. We can move up the filtration chain by looking at similar succesive short exact sequences to conclude that A is Noetherian over A, hence a Noetherian ring.

Corollary 2.3. If A is Artinian then it has only finitely many prime ideals.

Proof. We have seen in the proof above that there are finitely many maximal ideals M_1, \ldots, M_k and that there exists s such that $(M_1 \cdots M_k)^s = 0$.

Let P be a prime ideal of A. Since $(M_1 \cdots M_k)^s = 0 \subset P$, there exists $M_i \subseteq P$ which implies $P = M_i$ for some $1 \le i \le k$.

Corollary 2.4. If A is Artinian, and M is an Artinian A-module, then M is Noetherian.

Proof. Assume A is local for simplicity. Let \mathfrak{m}_A be the maximal ideal of A. Then, in our case, $\mathfrak{m}_A = \operatorname{Rad}(A) = \operatorname{Jac}(A)$ is nilpotent (by the proof of the above theorem), so the chain $M \supset \mathfrak{m}_A M \supset \mathfrak{m}_A^2 \supset \cdots \supset \mathfrak{m}_A^s M = 0$ exists. Successive quotients $\mathfrak{m}_A^{i-1} M/\mathfrak{m}_A^i M$ are vector spaces over A/m_A (by arguments similar to end of above proof), they are Artinian and thus Noetherian over A/m_A (or over A since the structure is identical). As in the above given proof, this implies that M is Noetherian over A.

The following is an interesting result, provided here without proof.

Theorem 2.5. (Eakin-Nagata) Let $A \subseteq B$ be a subring where B is finitely generated as an A-module. Then B Noetherian implies A Noetherian.

(1) If $f: A \to B$ is a ring homomorphism, then B is an A-algebra by ab = f(a)b. In fact, by abuse of notation, ab is written and understood as f(a)b.

(2) If $f: A \to B$ is a ring homomorphism, and ${}_BM$ is a module, then M is also an A-module by am = f(a)m. One says that ${}_AM$ is obtained from ${}_BM$ by restriction of scalars.

Whenever we have a ring homomorphism $f: A \to B$, then B is naturally an A-module. We call B an A-algebra (note that B is an A-module with a ring structure that is compatible with the multiplication with scalars from A).

A homomorphism $\phi: B \to C$ of A-algebras $f: A \to B, g: A \to C$ is a ring homomorphism such that $\phi \circ f = g$.

Example 2.6. $k[x] \hookrightarrow \frac{k[x,y]}{(y^3)}$, and the right hand side is a ring, so it is also a k[x]-algebra.

Let A be a commutative ring. The following alternate definition of the polynomial ring with coefficients in A is going to be useful.

Definition 2.7. Let $(A[x_1,...,x_n], \{x_1,...,x_n\})$ be a pair consisting of an A-algebra $A[x_1,...,x_n]$ and a string of elements $x_1,...,x_n$ in $A[x_1,...,x_n]$. Such a pair with the property that for every A-algebra B and string of elements $b_1,b_2,...,b_n \in B$, there exists a unique A-algebra homomorphism

$$\phi: A[x_1,\ldots,x_n] \to B$$

such that $\phi(x_i) = b_i$ for all i = 1, ..., n is called the polynomial ring in indeterminates $x_1, ..., x_n$ and coefficients in A.

The reader should check as an exercise that a polynomial ring over A in finitely many variables (under the old definition) satisfies the alternate definition provided above.

(1) We say that B is finitely generated as an A-algebra, if $\exists b_1, ..., b_n \in B$ such that $B = A[b_1, ..., b_n]$. Here $A[b_1, ..., b_n]$ is the image in B of the natural homomorphism of A-algebras

$$A[x_1, ..., x_n] \to B$$

which sends x_i to b_i , i = 1, ..., n. The existence of this homomorphism is guaranteed by the universal property of polynomial ring $A[x_1, ..., x_n]$.

(2) If B is finitely generated as an A-module, then $\exists b_1,...,b_n \in B$ such that

$$B = Ab_1 + \dots + Ab_n.$$

Note that this implies that B is finitely generated as an A-algebra by b_1, \ldots, b_n but it is not equivalent to it. For example, $\mathbb{Z}\sqrt{2} \subsetneq \mathbb{Z}[\sqrt{2}]$.