Chapter 1: Lecture 11

1. The Spectrum of a Ring & the Zariski Topology

Definition 1.1. Let A be a ring. For I an ideal of A, define $V(I) = \{P \in Spec(A) \mid I \subseteq P\}$.

Proposition 1.2. Let A be a ring. Let Λ be a set of indices and let I_l denote ideals of A. Then

- (1) $V(0) = Spec(R), V(R) = \emptyset;$
- (2) $\cap_{l \in \Lambda} V(I_l) = V(\sum_{l \in \Lambda} I_l);$
- (3) $\bigcup_{l=1}^{k} V(I_l) = V(\cap_{l=1}^{k} I_l);$

Then the family of all sets of the form V(I) with I ideal in A defines a topology on $\operatorname{Spec}(A)$ where, by definition, each V(I) is a closed set. We will call this topology the Zariski topology on $\operatorname{Spec}(A)$.

Let Max(A) be the set of maximal ideals in A. Since $Max(A) \subseteq Spec(A)$ we see that Max(A) inherits the Zariski topology.

Now, let k denote an algebraically closed fied. Let Y be an algebraic set in \mathbb{A}_k^n . If we consider the Zariski topology on $Y \subseteq \mathbb{A}_k^n$, then points of Y correspond to maximal ideals in A that contain I(Y). That is, there is a natural homeomorphism between Y and Max(k[Y]).

Example 1.3. Let $Y = \{(x,y) \mid x^2 = y^3\} \subset k^2$ with k algebraically closed. Then points in Y correspond to $\operatorname{Max}(\frac{k[x,y]}{(x^2-y^3)}) \subseteq \operatorname{Spec}(\frac{k[x,y]}{(x^2-y^3)})$. The latter set has a Zariski topology, and the restriction of the Zariski topology to the set of maximal ideals gives a topological space homeomorphic to Y (with the Zariski topology).

Let (A, \mathfrak{m}_A) be a local ring. Then $V(\mathfrak{m}_A)$ is the set of all prime ideals containing \mathfrak{m}_A , that is ideals equal to \mathfrak{m}_A . This implies that $\overline{\{\mathfrak{m}_A\}} = \{\mathfrak{m}_A\}$. Moreover, this shows that that a closed point P in Spec(A) (i.e., $\overline{\{P\}} = \{P\}$) is a maximal ideal of A.

Take $P_0 \leq A$, with P_0 a minimal prime ideal. Then $V(P_0) = \{P \in \text{Spec}(A) \mid P_0 \subseteq P\}$ which is naturally identified with $\text{Spec}(A/P_0)$.

If $P_0 = 0$ with A a domain, then $V(0) = \operatorname{Spec}(A)$, and $\overline{(0)} = \operatorname{Spec}(A)$. We call such a prime ideal the generic point of $\operatorname{Spec}(A)$: $P \in \operatorname{Spec}(A)$ such that $\operatorname{Spec}(A) = \overline{\{P\}}$.

Example 1.4. Let $k = \overline{k}$, A = k[x, y], and consider $\operatorname{Spec}(A) \supseteq \operatorname{Max}(A) = \{(x - \alpha, y - \beta) \mid \alpha, \beta \in k\}$. This latter set corresponds to k^2 .

1

Definition 1.5. Principal open sets are open sets of the form $D(f) = \{P \in Spec(A) \mid f \notin P\}$, for $f \in A$. Note that this requirement is equivalent to $(f) \not\subseteq P$ or $f \not\in P$.

For $f \in A$, $D(f) \subseteq \operatorname{Spec}(A)$. This implies that for $P \in D(f)$ one has that $P \cap \{1, f, f^2, ..., f^n, ...\} = \emptyset$, which implies that D(f) can be naturally identified with $\operatorname{Spec}(A_f)$.

If $Y \subseteq \mathbb{A}^n$ is an algebraic set, and Y = Z(f) with $f \in k[T_1, ..., T_n]$ then $\mathbb{A}^n \setminus Y = \{x \mid f(x) \neq 0\}$. Spec (A_f) is the natural ring that corresponds to the principal open set D(f), since having $f(x) \neq 0$ 'implies' that we can write f as a denominator.

Let $f: A \to B$ be a ring homomorphism, and let $\mathfrak{p} \in \operatorname{Spec}(A)$, so $f^{-1}(\mathfrak{p}) = \mathfrak{p} \cap A \in \operatorname{Spec}(A)$. We can consider

$$\phi = f^* : \operatorname{Spec}(B) \to \operatorname{Spec}(A),$$

defined by $\phi(\mathfrak{p}) = \mathfrak{p} \cap A$. If $I \leq A$, then $\phi^{-1}(V(I)) = V(IB)$. Note that ϕ is therefore continuous, because a preimage under ϕ of a closed set is a closed set.

However, if $M \in \text{Max}(B)$, this does not imply that $M \cap A = f^{-1}(M) = f^*(M) = \phi(M)$ belongs to Max(A).

Consider π the projection map from a surface onto a line. Take t a point on our line. Then $\pi^{-1}(t)$ is a curve (not a point) on the surface so it is natural to study $\operatorname{Spec}(A)$, instead $\operatorname{Max}(A)$. (Max(A) would not allow us to pullback all the points, as $\pi^{-1}(t)$ is not a point in general.) The curve does define a prime ideal.

Definition 1.6. Let ϕ be defined as above, and take $\mathfrak{p} \in Spec(A)$. The fiber over \mathfrak{p} is defined to be $\phi^{-1}(\mathfrak{p}) = \{Q \in Spec(B) \mid Q \cap A = \mathfrak{p}\}.$

It can be shown that $\phi^{-1}(\mathfrak{p})$ is homeomorphic to $\operatorname{Spec}(B \otimes_A \frac{A_{\mathfrak{p}}}{\mathfrak{p}A_{\mathfrak{p}}})$. The ring $\frac{A_{\mathfrak{p}}}{\mathfrak{p}A_{\mathfrak{p}}}$ is a field since it is a quotient of a local ring by its maximal ideal.

Definition 1.7. If $\mathfrak{p} \in Spec(A)$, then we call $\frac{A_{\mathfrak{p}}}{\mathfrak{p}A_{\mathfrak{p}}}$ the residue field at \mathfrak{p} , denoted $k(\mathfrak{p})$. One can see that this field is also the fraction field of A/\mathfrak{p}

We can now see the following string of equalities:

$$B \otimes_A k_{\mathfrak{p}} = B \otimes_A \frac{A_{\mathfrak{p}}}{\mathfrak{p}A_{\mathfrak{p}}} = \frac{B \otimes_A A_{\mathfrak{p}}}{\mathfrak{p}(B \otimes_A A_{\mathfrak{p}})} = \frac{B_{\mathfrak{p}}}{\mathfrak{p}B_{\mathfrak{p}}} = (\frac{B}{\mathfrak{p}B})_{(A \setminus \mathfrak{p})}.$$

Let us compute $\operatorname{Spec}(B \otimes_A k(\mathfrak{p}))$. We know that $S = A \setminus P \subseteq A \subseteq B \to B/\mathfrak{p}B$, so $\frac{Q}{\mathfrak{p}B} \cap S = \emptyset$. The first term in our intersection is in $\operatorname{Spec}(B/\mathfrak{p}B)$, and hence $\operatorname{Spec}(B \otimes_A k(\mathfrak{p})) =$

 $\{Q \in \operatorname{Spec}(B) \mid Q \cap (A \setminus P) = \emptyset, Q \supseteq \mathfrak{p}B\} = \{\mathfrak{p} \in \operatorname{Spec}(B) \mid P \cap A = \mathfrak{p}, P \supseteq \mathfrak{p}B\} = \{\mathfrak{p} \in \operatorname{Spec}(B) \mid P \cap A = \mathfrak{p}\} = \phi^{-1}(\mathfrak{p}).$ So it is natural to call $B \otimes_A k(\mathfrak{p})$ the fiber ring at \mathfrak{p} .

1.1. Exercises.

(1) Let M be an A-module, and let $x \in M$. If x = 0 in $M_{\mathfrak{m}}$ for every $\mathfrak{m} \in \operatorname{Max}(A)$, then x = 0

Proof. Assume $x \neq 0$, which implies $\operatorname{Ann}_A(x) \not\subseteq A$. Then $\operatorname{Ann}_A(x) \subseteq \mathfrak{m}$ for some $\mathfrak{m} \in \operatorname{Max}(A)$. But x = 0 in $M_{\mathfrak{m}}$ so $\exists \ u \in A \setminus \mathfrak{m}$ such that ux = 0, which implies $u \in \operatorname{Ann}_A(x) \subseteq \mathfrak{m}$, a contradiction. Hence x = 0. Note that $M_{\mathfrak{m}}$ is a module over the local rin $A_{\mathfrak{m}}$.

(2) Let M be a finitely generated A-module. If $M \otimes_A k(\mathfrak{m}) = 0$ for all $\mathfrak{m} \in \operatorname{Max}(A)$ then M = 0.

Proof. (Sketch) We know $M \otimes_A k(\mathfrak{m}) \cong \frac{M_{\mathfrak{m}}}{\mathfrak{m} M_{\mathfrak{m}}}$, so $M_{\mathfrak{m}} = \mathfrak{m} M_{\mathfrak{m}}$ for all $\mathfrak{m} \in \operatorname{Max}(A)$. Now apply NAK and exercise 1.

2. Krull Dimension

Definition 2.1. Let $P \in Spec(A)$. A chain of prime ideals descending from P of length m is:

$$P_0 \subset P_1 \subset \cdots \subset P_m = P$$

with each $P_i \in Spec(A)$.

Definition 2.2. We define the height of P, denoted ht(P) to be the supremum of the lengths of chains of prime ideals descending from P.

Definition 2.3. The Krull dimension of a ring A, denoted $\dim(A)$, is defined to be the supremum of ht(P), where P runs over all prime ideals in Spec(A).

We can have $\dim(A) = \infty$, even if A is Noetherian.

2.1. Some examples. If k is a field, then $\dim(k) = 0$.

If A is a PID, then $\dim(A) = 1$. Some examples of PID's and chains of prime ideals of length one are: $0 \subseteq (x) \subseteq k[x]$, and $0 \subseteq (p) \subseteq \mathbb{Z}$.

To a prime ideal P, we associate an algebraic set that is defined by taking common the zeroes of all polynomials in P. Each ideal in the chain descending from P correspond to subsets of the original algebraic set. We now have the following chains,

point \subseteq some curve \subseteq some plane $\subseteq \cdots \subseteq$ whole variety

Maximal ideal $\supseteq \cdots \supseteq (0)$,

where single points are the zero sets for maximal ideals, and the whole space is the zero set for the zero polynomial.

- **Remark 2.4.** (1) If Y is algebraic variety in \mathbb{A}^n , one can define the *codimension* of Y as the supremum of all n such that $Y = Y_0 \subset Y_1 \subset \cdots \subset Y_n$ of strict chains of irreducible algebraic varieties in \mathbb{A}^n . This is denoted by $\operatorname{codim}(Y)$.
 - If Y is an algebraic set, then $\operatorname{codim}(Y)$ is by definition the infimum of all $\operatorname{codim}(Z)$ where Z is an irreducible component of Y.
 - (2) Let $x \in Y$, where Y is an algebraic set in \mathbb{A}^n . The dimension of Y at x is by definition the infimum of $\dim(U)$ where U runs over all open sets in Y containing x.

3. Integral Extensions

Definition 3.1. If we have a map $R \hookrightarrow S$, then $s \in S$ is integral over R if $\exists n \text{ and } r_0, ..., r_{n-1} \in R$ such that $x^n + r_{n-1}s^{n-1} + \cdots + r_1s + r_0 = 0$.

Some Facts:

- 1. An algebra over a field k is module finite over k if and only if it is a finite dimensional vector space over k. Also, $R \subseteq S$ is module finite if $\exists s_1, ..., s_n \in S$ such that $S = Rs_1 + \cdots + Rs_n$.
 - 2. $K \subseteq L$ a field extension is module finite if and only if it is a finite algebraic extension.

Example 3.2. $\mathbb{Z}[\frac{1}{2}] = \{\frac{n}{2^k} \mid n \in \mathbb{Z}, k \in \mathbb{W}\}$ is not module finite over \mathbb{Z} since $\mathbb{Z}[\frac{1}{2}] \neq \mathbb{Z}[\frac{1}{2}] + \mathbb{Z}[\frac{1}{2}] + \cdots + \mathbb{Z}[\frac{1}{2^k}]$ because we cannot get higher powers of 2 in the denominator.

Example 3.3. $\mathbb{Z}[\sqrt{2}]$ is module finite over \mathbb{Z} .

In general, R/I is module finite over R for all $I \leq R$: the projection map can be written as $\pi: R \to R/I = R\overline{1} = R(\pi(1))$ when we consider $\pi(a) = \overline{a} = a + I$ and so R/I si R-spanned by $\pi(1)$.

Remark 3.4. One can talk of $\phi: R \to S$ as an integral map by regarding S as an R-algebra via ϕ , that is by reducing to an extension $R/\ker(\phi) = Im(\phi) \hookrightarrow S$.

We will show:

- 1. $R \hookrightarrow S$ integral implies $\dim R = \dim S$.
- 2. Every finitely generated k-algebra is module finite over a polynomial ringover k. This is known as the Noether Normalization Theorem.

Theorem 3.5. If $R \hookrightarrow S$, then the following are equivalent:

- (1) S is a finitely generated R-algebra and every $s \in S$ is integral over R.
- (2) $S = R[v_1, ..., v_n]$ where v_i are integral over R.
- (3) S is module finite over R.

Proof. (1) implies (2) is trivial.

For (2) implies (3), we proceed by induction on n. If n=1, then $S=R[v_1]$ with v_1 integral over R so \exists m such that $v_1^m + r_{m-1}v^{m-1} + \cdots + r_1v + r_0 = 0$ with $r_i \in R$. This implies that $v^m \in \langle 1, v, ..., v^{m-1} \rangle_R$. We also have that $v^{m+1} + r_{m-1}v^m + \cdots + r_1v^2 + r_0v = 0$ which implies $v^{m+1} \in \langle 1, v, ..., v^{m-1} \rangle_R$, and by induction, $v^k \in \langle 1, v, ..., v^{m-1} \rangle_R$ for all $k \geq m$, so $S = R + Rv + \cdots + Rv^{m-1}$. For n > 1, we have $T = R[v_1, ..., v_{n-1}]$ is module finite over R. Let $S = T[v_n]$. We can say that $R \subseteq T$ is module finite with $t_1, ..., t_k$ as generators of R over T. The fact that $T \subseteq S$ is also module finite implies that $R \subseteq S$ is module finite by transitivity: If $s_1, ..., s_h$ generate S over T, then $s_i t_j$ generate S over R.

For (3) implies (1), let $S = Rs_1 + \cdots + Rs_n$. Clearly $S = R[s_1, ..., s_n]$. Need $s \in S$ integral over R. If $s_1 \neq 1$, then put 1 in the list of generators and rename $s_1 = 1$. For all i, we have $ss_i = \sum_{j=1}^n v_{ij}s_j$, with $v_{ij} \in R$. Then $A = sI_n - (r_{ij}) \in M_n(S)$, so the product of A with the column vector consisting of all the s's must be 0. Multiply by Adj(A), to obtain that det(A) times this column vector equals 0. Since $s_1 = 1$, we have $det(A)s_1 = det(A) = 0$. The form of $A = sI_n - (r_{ij})$ shows that det(A) is a monic polynomial expression in s with coefficients in s, and thus s is integral over s.

Proposition 3.6. 1. If $R \subseteq S$, then the integral elements of S form a subring called the integral closure of R in S.

Proof. Let $t, s \in S$ with t and s integral in S. Then R[s, t] is integral over R by previous theorem, and s + t, $st \in R[s, t]$ so s + t and st are integral.

Definition 3.7. We call $R \hookrightarrow S$ an integral extension if every $s \in S$ is integral over R.

Definition 3.8. Let R be a domain, and $R \subseteq L$ where L is a field. The integral closure of R in L is denoted by R'_L (or $\overline{R_L}$). If L = Q(R), the field of fractions of R, then $R'_{Q(R)}$, called the integral closure of R, is denoted by R' or \overline{R} .