1. Affine Space & the Zariski Topology

Definition 1.1. Let k a field. Take S a set of polynomials in $k[T_1, ..., T_n]$. Then $Z(S) = \{x \in k^n \mid f(x) = 0, \forall f \in S\}$.

It is easy to check that Z(S) = Z((S)) with (S) denoting the ideal generated by elements of S.

Definition 1.2. $Y \subseteq k^n$ is an (affine) algebraic set if $\exists S \subseteq k[T_1, ..., T_n] = A$ such that Z(S) = Y.

Example 1.3. (1) Consider the ideal $I = (xy) \subset k[x,y]$. Then $Z(I) = \{(x,y) \in k^2 \mid xy = 0\} = \{x = 0\} \cup \{y = 0\}$.

(2) Consider the ideal $I = (x^2 - y^3) \subset k[x, y]$. Then $Z(I) = \{(x, y) \in k^2 \mid x^2 - y^3 = 0\}$.

Proposition 1.4. The following are true:

- (1) The union of a finite collection of algebraic sets is algebraic.
- (2) Arbitrary intersections of algebraic sets are algebraic.
- (3) \emptyset and \mathbb{A}^n are algebraic.

Proof. (1) It suffices to show this for the union of two sets. The general case can then be established by induction. Let $Y_1 = Z(T_1)$ and $Y_2 = Z(T_2)$. We claim that $Y_1 \cup Y_2 = Z((T_1)(T_2))$. For the forward inclusion, let $x \in Y_1 \cup Y_2$, so without loss of generality, assume $x \in Y_1$. This implies f(x) = 0 for all $f \in (T_1)$. Since $(T_1)(T_2) \subseteq (T_1)$, we have f(x) = 0 for every $f \in (T_1)(T_2)$ so $x \in Z((T_1)(T_2))$.

For the reverse inclusion, let $x \in Z((T_1)(T_2))$ so h(x) = 0 for all $h \in (T_1)(T_2)$. Assume $x \notin Z((T_2))$ so $\exists f \in (T_2)$ such that $f(x) \neq 0$. Take $g \in (T_1)$. Then $gf \in (T_1)(T_2)$ which implies $(gf)(x) = 0 \Rightarrow g(x)f(x) = 0$. But $f \neq 0$ so g(x) = 0 for every g. Thus $x \in Z((T_1)) = Y$, and we have equality of sets.

Date: Revised 09/15/2010.

1

- (2) Let $\{Z(I_{\lambda})\}_{\lambda \in \Lambda}$. We claim that $\bigcap_{\lambda \in \Lambda} Z(I_{\lambda}) = Z(\sum_{\lambda} I_{\lambda})$ where the latter expression is a sum over a finite subset of Λ . Beginning with reverse containment, let $x \in Z(\sum I_{\lambda}) \Rightarrow f(x) = 0$ for all $f \in \sum I_{\lambda}$. In particular, f(x) = 0 for $f \in I_{\lambda}$, so $x \in Z(I_{\lambda})$ for all λ . For forward containment, let $x \in Z(I_{\lambda})$ for every λ . Then f(x) = 0 for every $f \in I_{\lambda}$ for all λ . Then for $g \in \sum I_{\lambda}$, we have $g = h_1 + \dots + h_n$ with $h_i \in I_{\lambda_i}$. This implies that g(x) = 0 because $h_i(x) = 0$ for all i. Hence $x \in Z(\sum I_{\lambda})$, and we have equality of sets. (3) $\emptyset = Z(1)$ and $\mathbb{A}^n = Z(0)$.
- **Remark 1.5.** The above Proposition shows that the collection of algebraic sets defines a topology on k^n where the closed sets are the algebraic sets. This topology will be called Zariski topology and k^n endowed with this topology will be denoted \mathbb{A}^n .

Remark 1.6. Is the Zariski topology Haussdorf? In general no. For an example, in the special case \mathbb{A}^1 with $k = \overline{k}$, every $f \in k[T]$ has finitely many zeroes, so closed sets in the Zariski topology have a finite number of points. We may ask if \mathbb{A}^1 is Hausdorff by taking $x, y \in \mathbb{A}^1$, and assuming that $\exists U_x, U_y$ open disjoint neighborhoods of x and y, respectively. But this would be equivalent to having closed sets that cover \mathbb{A}^1 , a contradiction since \mathbb{A}^1 is infinite.

1.1. The Ideal-Variety Correspondence.

Definition 1.7. Let $Y \subset \mathbb{A}^n$, and $A = k[T_1, ..., T_n]$. Then $I(Y) = \{f \in A \mid f(P) = 0 \quad \forall \ P \subseteq Y \subseteq k^n\}$. Also, I(Y) is an ideal of A. This ideal is in fact radical.

Proposition 1.8. Let $A = k[T_1, ..., T_n]$. Then the following are true:

- (1) If $A_1 \subseteq A_2 \subseteq A$, then $Z(A_1) \supseteq Z(A_2)$ in \mathbb{A}^n .
- (2) If $Y_1 \subseteq Y_2 \subseteq \mathbb{A}^n$, then $I(Y_1) \supseteq I(Y_2)$ in A.
- (3) If $Y_1, Y_2 \subseteq \mathbb{A}^n, I(Y_1 \cup Y_2) = I(Y_1) \cap I(Y_2)$.
- (4) If I, J are ideals in A, then $Z(I) \cup Z(J) = Z(IJ)$. Also, $Z(\cup S_j) = \cap Z(S_j)$, for any family of subsets $\{S_i\}$ of \mathbb{A}^n .
- (5) If $S \subseteq \mathbb{A}^n$ and J ideal of A, then $S \subseteq Z(I(S))$ and $J \subseteq I(Z(J))$.
- (6) If V is an algebraic set then V = Z(I(V)). If J is an ideal of A of the form J = I(S), then I(Z(J)) = J.

Corollary 1.9. The functions Z(-) defined on the family of ideals of the form I(S) for some $S \subseteq \mathbb{A}^n$ and I(-) defined on algebraic sets in \mathbb{A}^n are inverses to each other.

Theorem 1.10. (1) If $k = \overline{k}$, then I(Z(J)) = Rad(J) for all $J \le A = k[T_1, ..., T_n]$. This is known as the Hilbert Nullstellensatz.

LECTURE 10 3

(2)
$$Z(I(Y)) = \overline{Y}$$
 for all $Y \subseteq \mathbb{A}^n$.

Proof. The statement of (1) can be restated as $f \in I(Z(J) \Leftrightarrow f(P) = 0$ for all $P \in Z(J)$, where $Z(J) = \{x \in \mathbb{A}^n \mid g(x) = 0 \quad \forall g \in J\}$. The statement implies that if f vanishes where J vanishes then $\exists h$ such that $f^h \in J$. This only follows when $k = \overline{k}$.

(2) We start with forward inclusion. Let $Y \subseteq Z(I(Y))$ which implies $\overline{Y} \subseteq Z(I(Y))$. For the reverse, let W be a closed superset of Y. Then W = Z(J), which gives $Z(J) \supseteq Y$. Examine the ideals corresponding to these sets, and we get $I(Y) \supseteq I(Z(J))$, so $J \subseteq I(Y)$. Now go to the sets corresponding to the ideals, and we get $Z(I(Y)) \subseteq Z(J) = W$, so any closed set containing Y contains Z(I(Y)). This statement applied to $W = \overline{Y}$ gives that $\overline{Y} \supseteq Z(I(Y))$.

Corollary 1.11. Assume that k is an algebraically closed field. The maps Z(-) and I(-) are inverses to each other and establish a one-to-one correspondence between the family of algebraic sets in \mathbb{A}^n and radical ideals of A.

Corollary 1.12. In this correspondence, a point $(a_1, ..., a_n) \in \mathbb{A}^n$ corresponds to the maximal ideal $(T_1 - a_1, ..., T_n - a_n)$ of A.

Proof. Let $I = (T_1 - a_1, \dots, T_n - a_n)$ which is a maximal (hence radical) ideal.

The Corollary follows at once since $Z(I) = (a_1, ..., a_n)$. The correspondence implies that $I(a_1, ..., a_n) = (T_1 - a_1, ..., T_n - a_n)$ which is a non-trivial statement (and which may not be true if k is not algebraically closed).

Definition 1.13. Let $\emptyset \neq Y \subseteq X$, with X a topological space. Then Y is irreducible if Y is not a union of two proper closed subsets of Y.

An example of a reducible set in \mathbb{A}^2 is the set of points satisfying xy = 0 which is the union of the two axis of coordinates.

Definition 1.14. We call Y an affine algebraic variety if Y is an irreducible algebraic set.

Corollary 1.15. Let Y be algebraic variety. Then I(Y) is prime. Conversely, I(Y) is prime implies that Y is an algebraic variety. Therefore, in our 1-1 correspondence, varieties (irreducible algebraic sets) correspond to prime ideals.

Proof. Take Y = Z(I) irreducible. Let $fg \in I(Y)$, so (fg)(y) = 0 for all $y \in Y$. This implies $Y \subseteq Z(fg) = Z(f) \cup Z(g)$. Then $Y = (Y \cap Z(f)) \cup (Y \cap Z(g))$. Note that both sets in our union

are closed in the subspace topology. But Y is irreducible, so the sets $Y \cap Z(f)$ and $Y \cap Z(g)$ are not simultaneously proper. Assume, without loss of generality, that $Y \cap Z(f) = Y$ which implies that $Y \subseteq Z(f)$, so $f \in I(Y)$ by definition. This gives $f \in I(Y)$ and hence I(Y) is prime.

Conversely, let $Y = Y_1 \cup Y_2$ with $Y_i = Z(I_i)$, I_i ideals in A, for i = 1, 2. Assume, for a contradiction, that Y_1, Y_2 are strictly contained in Y. First note that $I(Y) \subset I(Y_i)$ since equality would give $Z(I(Y_i) = Z(I(Y))$, for i = 1, 2. But Z(-), I(-) are inverses to each other when restricted to the set of ideals of algebraic sets and, respectively, algebraic sets, hence $Y_i = Y$, false.

Now, let $f_i \in I(Y_i) \setminus I(Y)$. Then $f_1 f_2 \in I(Y_1) I(Y_2) \subset I(Y_1) \cap I(Y_2) \subset I(Y_1 \cup Y_2) = I(Y)$.

Bt I(Y) is prime. Therefore, either $f_1 \in I(Y)$ or $f_2 \in I(Y_2)$. This is a contradiction.

Definition 1.16. If $A = k[T_1, ..., T_n]$, and $Y \subseteq \mathbb{A}^n$ is an algebraic set, then k[Y] = A/I(Y) is called the coordinate ring of functions of Y.

Definition 1.17. A map between two algebraic sets $\phi: V \subseteq \mathbb{A}^n \to W \subseteq \mathbb{A}^m$ is called a morphism (or regular map) if there are polymomials $F_1, \ldots F_m$ such that

$$\phi(a_1, \dots, a_n) = (F_1(a_1, \dots, a_n), \dots, F_m(a_1, \dots, a_n)),$$

for all $(a_1, \ldots, a_n) \in V$.

A morphism ϕ is called isomorphism between V and W if there exists a morphism $\psi: W \to V$ inverse to ϕ .

Let $\phi: V \subseteq \mathbb{A}^n \to W \subseteq \mathbb{A}^m$ be a morphism. This morphism induces a natural map $\phi_*: k[W] \to k[V]$ by $\phi_*(\hat{f}) = \hat{f} \circ \phi$.

Indeed, if $f - g \in I(W)$ then f(w) = g(w) for all $w \in W$, so $f(\phi(v)) = g(\phi(v))$ for all $v \in V$, since $\phi(v) \in W$. This means that $f \circ \phi - g \circ \phi \in I(V)$ and hence ϕ_* is well defined. It is a routine check that Φ_* is in fact a k-algebra homomorphism.

Moreover, every k-algebra homomorphism $\Phi: k[W] \to k[V]$ is induced by a unique ϕ , that is $\Phi = \phi_*$. The morphism ϕ is an isomorphism if and only if ϕ_* is an isomorphism of k-algebras.

Given $\Phi: k[W] \to k[V]$, k-algebra homomorphism, let us construct ϕ :

Let $\Phi(\hat{T}_i) = \hat{F}_i$, for all i = 1, ..., m and $F_i \in k[T_1, ..., T_n]$. Then $\phi = (F_1, ..., F_m)$ defines a morphism between \mathbb{A}^n and \mathbb{A}^m . Let us show that it maps V to W.

Let $g \in I(W)$ so g(w) = 0 for all $w \in W$. Moreover $g(\hat{T}_1, \ldots, \hat{T}_m) = \widehat{g}(\widehat{T}_1, \ldots, \widehat{T}_m) = \widehat{0}$ in k[W], since $g \in I(W)$.

Therefore $\Phi(g(\hat{T}_1,\ldots,\hat{T}_m)=0 \text{ in } k[V] \text{ since a homomorphims maps } 0 \text{ to } 0.$

But Φ is a k-algebra homomorphism, so $g(\Phi(\hat{T}_1), \ldots, \Phi(\hat{T}_m)) = 0$ which is equivalent to $g(\hat{F}_1, \ldots, \hat{F}_m) = 0$ in k[V], or $g(F_1, \ldots, F_m) = 0$ in k[V]. This gives $g(F_1, \ldots, F_m) \in I(V)$ or in other words, $g(F_1, \ldots, F_m)(v) = 0$ for all $v \in V$, i.e. $g(F_1(v), \ldots, F_m(v)) = 0$ for all $v \in V$.

Since $\phi(v) = (F_1(v), \dots F_m(v))$ we see that $g(\phi(v)) = 0$ for all $v \in V$ and so $g \in I(W)$ implies that $\phi(v) \in Z(g)$. In other words, $\phi(v) \in Z(I(W))$. But Z(I(W)) = W, since W is an algebraic set, and so $\phi(V) \in W$.

Note that $\phi_*(\hat{T}_i) = \widehat{T_i \circ \phi} = \hat{F}_i = \Phi(\hat{T}_i)$ for all i = 1, ..., m. Since \hat{T}_i are k-algebra generators for k[W] we get $\phi_* = \Phi$.

Proposition 1.18. Every nonempty affine algebraic set V may be uniquely written in the form

$$V = V_1 \cup \cdots \cup V_n$$

where each V_i is an algebraic variety and $V_i \not\subseteq V_j$ for all $j \neq i$. (These V_i 's are called irreducible components on V).

2. Dimension

Definition 2.1. Let $V \subseteq \mathbb{A}^n$ be an algebraic set. The supremum over all n such that there exists a chain $V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n$ of distinct irreducible algebraic sets in V is called the dimension of V.

Definition 2.2. Let P be a prime ideal in a ring A. The supremum over all n such that there exists a chain of distinct prime ideals

$$P_0 \subseteq P_1 \subseteq \cdots \subseteq P_n$$

contained in P is called the height of P and it is denoted by ht(P).

The Krull dimension of A, dim(A), is the supremum of all ht(P) over all $P \in Spec(A)$.

If I is an arbitrary ideal of A, we let the height of I, ht(I), equal the infimum of all ht(P) over all prime ideals P containing I.

Theorem 2.3. Let V be an algebraic set in \mathbb{A}^n_k where k is algebraically closed. Then

 $\dim(V)=\dim(k[V]).$

Proof. This follows at once since irreducible algebraic sets in V correspond to prime ideals containing I(V) in our correspondence.