
LECTURE 7: GRADED RINGS AND MODULES; THE HILBERT
FUNCTION

Definition 0.1. Let R be a ring, G an abelian group (or an Abelian cancellative semi-

group), and R =
⊕

i∈GRi a direct sum decomposition of abelian groups. R is graded

(G-graded) if RiRj ⊆ Ri+j for all i, j ∈ G. The easiest example is that of polynomial

rings where Ri consists of all degree polynomials of degree i. Similarly, let M =
⊕

i∈GMi

be an R-module. If RiMj ⊆ Mi+j for all i, j ∈ G then M is a graded R-module. Mi is

called the ith graded homogeneous component of M , and elements of Mi are called ith

forms.

Example 0.2. (1) Consider k[x] =
⊕
n∈Z

kxn where kxn = 0 if n < 0. Then k[x] =

· · · 0⊕ · · · ⊕ 0⊕ k ⊕ kx⊕ kx2 ⊕ · · · .
(2) Consider k[x, y] =

⊕
(i,j)∈Z2

kxiyj where kxiyj = 0 if i, j < 0.

Remark 0.3. R0 is a subring of R, and R0 ↪→ R as a direct summand. Also, each Ri is

a R0-module because R0Ri ⊆ Ri. The same is true for Mi, since R0Mi ⊆Mi.

Definition 0.4. Let M,N be graded R-modules, and φ : M → N where φ is R-linear.

Then φ is graded of degree d (sometimes called homogeneous if d = 0) if φ(Mi) ⊆ Ni+d

for all i ∈ G. Now we have a category of R-graded modules.

For each x ∈ M , a graded modules, we can write x =
∑
xi, where each xi 6= 0, and

xi ∈Mi. This is a unique representation and each xi has degree i. By convention, 0 has

arbitrary degree.

There is great importance to graded modules. The grading helps to prove statements

that otherwise might seem intractable. The added structure of grading is what is so

powerful.

Definition 0.5. Let R =
⊕
i∈G

Ri be a graded ring. If G = IN and R is generated by

1-forms (elements of degree 1) over R0, we say R is homogeneous or standard graded

(R = R0[R1]).
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Definition 0.6. Let R be as above. If G = IN and the generators have positive degree,

then R is called positively graded over R0.

Example 0.7. R = R0[x1, . . . , xd] is standard graded.

Example 0.8. R =
k[x, y]

(x2 + y2)
is standard graded.

Example 0.9. R =
k[x, y]

(x2 + y3)
with respect to the grading setting degree x = 3, and degree

y = 2 is positively graded over k, but it is not homogeneous.

Definition 0.10. Let M =
⊕
i∈G

Mi be graded over R =
⊕
i∈G

Ri. Let α ∈ G. Then M(α)

is the graded R-module with the property that M(α)i = Mi+α for all i.

Example 0.11. Let R = k[x, y], and φx : R → R acting by multiplication by x. Then

φx is not a homogeneous map of R-modules because it does not preserve degrees, but the

same map considered on R(−1) is homogeneous.

Proposition 0.12. Let R be a positively graded R0-algebra. Let x1, ..., xn be elements of

positive degree. Then (x1, ..., xn) =
∞⊕
i=1

Ri if and only if {x1, ..., xn} generates R as an

R0-algebra. In particular, R is Noetherian if and only if R0 is Noetherian and R is a

finitely generated R0-algebra.

Proof. For the reverse direction, let r be homogeneous in R, with deg r > 0, and r =

f(x1, ..., xn), for f a polynomial. By degree reasons, f(x1, . . . , xn) contains only terms of

degree equal to the degree of r and this shows that r ∈ (x1, . . . , xn).

For the forward direction, we proceed by induction on the degree of y, to show that

every y homogeneous can be written as y = f(x1, . . . , xn), with f polynomial. If deg y =

0, the proof is clear, so assume a positive degree. We have y ∈ (x1, ..., xn), so y =

α1x1 + · · · + αnxn, with αi ∈ R, and if deg xi = di, then αi ∈ Rdeg y−di . To finish, apply

the induction hypothesis to the αi’s.

For the last part, the reverse implication is clear. For the forward direction, part one

of the first equivalence holds, so this implies R is a finitely generated R0-algebra. Also,

R ∼=
R⊕∞
i=1Ri

is Noetherian since quotients of Noetherian rings are Noetherian. �

Similarly one has
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Theorem 0.13. Let R be a Z-graded ring. Then the following are equivalent:

(1) Every graded ideal I ≤ R is finitely generated.,

(2) R is Noetherian,

(3) R0 is Noetherian and R is finitely generated over R0,

(4) R0 is Noetherian and both
∞⊕
i=0

Ri and
∞⊕
i=0

R−i are finitely generated R0-algebras.

1. Prime Ideals of Graded Rings

Definition 1.1. Let R be Z-graded and I ≤ R. Let Ih be the ideal generated by all

homogeneous elements of I. Then Ih is homogeneous and Ih ⊆ I.

Proposition 1.2. Let R be Z-graded and M be R-graded. Then the following are true:

(1) For all p ∈ Spec(R), ph ∈ Spec(R),

(2) If p ∈ Supp(M), then ph ∈ Supp(M),

(3) If p ∈ Ass(M), then p is graded,

(4) If Ann(x) = p, then x can be taken homogeneous.

Proof. For (1), let ab ∈ ph, and assume a, b /∈ ph. Then a =
∑
ai, and b =

∑
bi. Choose

m,n ∈ Z such that am /∈ ph, but ai ∈ ph for every i < m, and bn /∈ ph, but bj ∈ ph

for every j < n. Then the (m + n)th homogeneous component of ab is
∑

i+j=m+n

aibj. It

is in ph. Since all terms except ambn are in ph, it implies ambn ∈ ph, so ambn ∈ p, a

prime ideal, so either am or bn is in p. This says either am or bn is in ph, a contradiction.

Before continuing with the other items, we state the following immediate consequence:

a minimal prime p must be graded, because ph ⊆ p and hence ph = p, if p is minimal.

For (2), if p ∈ Supp(M), then Mp 6= 0. Assume Mph = 0, so if x is a homogeneous

elements, x
1

= 0 in Mph . This implies ∃ a ∈ R \ ph such that ax = 0. If a =
∑
ai then

aixi = 0 for every i. But a /∈ ph, so ∃ i such that ai /∈ p. So x
1

= 0 in Mp which implies

Mp = 0, a contradiction, so Mph 6= 0.

For (3), let p = Ann(x), and let a ∈ p, so ax = 0. Let x = xm + · · · + xn, and

a = as + · · · + at, so
∑
i+j=r

aixj = 0 for r = m + s, ..., n + t. Note that asxm = 0, and

asxm+1 + as+1xm = 0, so a2sxm+1 = 0. Repeat this process to show that aisxm+i−1 = 0 for
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all i. This implies that if m+i−1 = n, then i = n−m+1, so an−m+1
s xn = 0⇒ an−m+1

s x =

0⇒ an−m+1
s ∈ p, and thus as ∈ p, which gives (as+1 + · · ·+ at)x = 0. Repeat the whole

argument to show that all homogeneous components of a are in p, which implies p = ph,

and so p is graded.

For (4), let p = Ann(x), and let x =
∑
xi. Since px = 0, p is graded, so pxi = 0 for

all i. Take Ai = Ann(xi) ⊇ p. But
⋂
i

Ai ⊆ p, so
∏

finite

Ai ⊆ p. This implies ∃ i such that

Ai ⊆ p since p is prime. Therefore p = Ai = Ann(xi). �

Corollary 1.3. All minimal primes are graded.

Definition 1.4. Let p ∈ Spec(R). Let S be the set of homogeneous elements not in p.

Then S is a multiplicative set. Let M be a graded R-module. By definition, M(p) = S−1M

which is the homogeneous localization of M at p. If x is homogeneous and x
a
∈M(p) then

we define deg(x
a
) = deg x− deg a. The ith component of M(p) is (Mp)i = {x

a
∈M(p) | a /∈

p, x, a homogeneous, deg(x
a
) = i}. Then M(p) is a graded R(p)-module.

Now we will list some facts without proof which is left as an exercise.

(1) phR(p) is a graded prime ideal of R(p).

(2) R(p)/p
hR(p) has the following property: every nonzero homogeneous element is

invertible.

Let R be Z-graded. Then R =
⊕
n∈IN

Rn. Assume R0 is Artinian and M =
⊕
n∈IN

Mn, a

graded R-module with the property that Mn is a finitely generated R0-module for every

n.

Definition 1.5. We define HM(−) : Z→ Z to act as HM(n) = `R0(Mn) <∞, and it is

called the Hilbert function of M . The Hilbert series is
∑
n∈Z

HM(n)tn = HS(t).

Lemma 1.6. Let R0 be Artinian, and R = R0[x1, ..., xd]. Then HR(n) =

(
n+ d− 1

d− 1

)
`(R0).

Proof. We know HR(n) = `R0(Rn) and Rn is R0-free, generated by all monomials of

degree n. Now, proceed by induction on d. If d = 1, then
(
n
0

)
= 1 = d. For d > 1,

consider the exact sequence

0→ R0[x1, ..., xd](−1)→ R0[x1, ..., xd]→
R0[x1, ..., xd]

(xd)
∼= R0[x1, ..., xd−1]→ 0,



LECTURE 7: GRADED RINGS AND MODULES; THE HILBERT FUNCTION 5

where the first nontrivial map is multiplication by xd. So HR(n) = HR(−1)(n)+HR/xdR(n).

Fix d and do induction on n (the n = 1 case is clear), to obtain HR(n) = HR(n − 1) +

HR/xdR(n) =
(
n+d−1
d−1

)
`(R0). �

Proposition 1.7. Let F (x1, ..., xr) be a homogeneous polynomial of degree s over a field

k with r ≥ 2. Let R′ =
k[x1, ..., xr]

(F (x))
, and R = k[x1, ..., xn]. Then `(R′n) =

(
n+r−1
r−1

)
−(

n−s+r−1
r−1

)
. Therefore, HPR′ is a polynomial of degree r− 2 and leading coefficient s

(r−2)! .

Proof. For the proof, consider the exact sequence

0→ R(−s)→ R→ R/(F )→ 0,

where the first nontrivial map is the multiplication by F and apply the preceding result.

�

The Proposition shows that the Hilbert polynomial of the graded R-module R′ is

PR′ =
s

(r − 2)!
xr−2 + lower degree terms

so the leading coefficient is equal to the degree of F (x) divided by (r − 2)!. In the next

lecture, we will see that this implies that the multiplicity of F is deg(F ).

Theorem 1.8. (Hilbert series) Let R be a Noetherian positively graded ring over an

Artinian ring R0. Let M be a finitely generated graded module over R. Suppose that R =

R0[x1, . . . , xr] with xi homogeneous of degree di. Then there exists a integer polynomial

f(t) such that

HSM(t) =
f(t)∏n

i=1(1− tdi)
.

Proof. We will prove this by induction on r.

Let r = 0, then R is Artinian and hence M is finite length, therefore l(Mn) = 0 for

n� 0, which means that HS(t) is a polynomial.

Let us assume that r > 0. Consider the following exact sequence:

0→ Kn →Mn
·xr→Mn+dr → Ln → 0,

where Kn is the kernel of the map defined by multiplication by xr, while Ln+dr =
Mn+dr

xrMn
.
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The modules K = ⊕nKn and L = ⊕nLn are graded R-modules, both killed by xr

and so the induction hypothesis appplies to each of them, because they are modules over

R/xrR = R0[x1, . . . , xr−1].

Applying the length function to the exact sequence above we get

l(Kn) + l(Mn+dr) = l(Mn) + l(Ln+dr).

Multiply both sides by tn+dr and add to get

HSK(t)tdr +HSM(t)− tdrHSM(t)−HSL(t) = P (t),

where P (t) is a polynomial with integer coefficients.

Applying the induction hypothesis and solving for HSM(t) leads to the desired state-

ment.

�

Corollary 1.9. Assume further that R is standard graded (i.e. di = 1, for all i =

1, . . . , n). Then there exists a rational polynomial φ such that HM(n) = φ(n) for all

n� 0.

Proof. We know that

HSM(t) =
f(t)∏n

i=1(1− tdi)
,

and since di = 1 we can simplify the rational function such that HSM(t) = g(t)/(1− t)d,
with d 6= 0 and such that g(1) 6= 0 if d > 0.

Write

(1− t)d =
∞∑
n=0

(
d+ n− 1

d− 1

)
tn.

Therefore, after using g(t) = a0 + a1t+ . . .+ ast
s, we can get a expanded presentation

for HSM which leads to

HM(n) = a0

(
d+ n− 1

d− 1

)
+ . . .+ as

(
d+ n− s− 1

d− 1

)
,

where we make the convention that
(
m
d−1

)
= 0 if m < d− 1.

�
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Definition 1.10. Let R be a standard graded ring. For a finitely generated R-module

M , we let HPM denote the polynomial such that HPM(n) = l(Mn) for n � 0. This

polynomial exists by the previous Corollary. We will revisit this notion.

Remark 1.11. From the previous proof we can identify the value of n0 such that

Hm(n) = φ(n) for all n ≥ n0. This value is n ≥ s + 1 − d, where we keep the no-

tations from the proof. Moreover the leading coefficient of φ is g(1)/(d− 1)! where d− 1

is the degree of φ. In the next lecture we will give a precise description for d.


