LECTURE 4: GOING-DOWN THEOREM AND NORMAL RINGS

Definition 0.1. Let R be a domain. We say that R is normal (integrally closed) if R equals the integral closure in its fraction field Q(R).

Proposition 0.2. Let R be a ring and S be a module finite R-algebra. Let I be an ideal of R and let $x \in IS$. Then there exists an integral dependence relation

$$x^h + a_0 x^{h-1} + \cdots + a_{h-1} x + a_h = 0,$$

with $a_i \in I^i$ for all i = 1, ..., h.

Proof. Let us call the R-module generators of S by y_1, \ldots, y_h .

Since $x \in IS$, we see that $y_i x = \sum_{i=1}^h r_{ij} y_j$, with $r_{ij} \in I$, for all $j = 1, \ldots, h$.

So,
$$y(xI_h - A) = 0$$
, where $A = (r_{ji})$ and $y = (y_1, ..., y_h)$.

After multiplying by the adjunct of $xI_h - A$ both sides we get that $\det(xI_h - A)$ kills \underline{y} , which means that it kills each y_1, \ldots, y_h . This means that $\det(xI_h - A)$ annihilates S. Since $1 \in S$, therefore $\det(xI_h - A) = 0$.

Expanding $\det(xI_h - A) = 0$, and recall that $r_{ij} \in I$ we obtain an integral dependence of the required form.

Proposition 0.3. Let $R \subseteq S$ be domains, $Q(R) = K \subseteq Q(S) = L$, and $s \in S$ be integral over R, with R normal. Then the minimal polynomial f of s over K has coefficients in R and for every $g \in R[x]$ with g(s) = 0, f|g in R[x].

Moreover, if S is module finite over R and $s \in \mathfrak{p}S$, for a prime ideal \mathfrak{p} in R, then the coefficients of f belong to \mathfrak{p} .

Proof. We can enlarge S to a field extension, if needed. Let $f \in K[x]$ be the minimal polynomial for s over K. Then $f = (x - s_1) \cdots (x - s_n)$, a decomposition in linear factors over an algebraic closure of K, with $s = s_1$. Let $F \in R[x]$ be a monic polynomial that

gives the integral dependence of s over R. So f|F in K[x]. Then $F(s_i) = 0$ implies s_i are integral over R since $F \in R[x]$. But $f \in K[x]$ and all it coefficients are algebraic combinations of $s_1, ..., s_n$, and hence integral over R. But R is normal so the coefficients of f must belong to R, therefore $f \in R[x]$.

Let $g \in R[x]$, with g(s) = 0. Apply the division and remainder theorem over R to obtain g = qf + r, with $q, r \in R[x]$, and $\deg r < \deg f$. Also, g = q'f in K[x] since f is the minimal polynomial of s over K. By the uniqueness of the division and remainder theorem over K[x], we have q = q', and r = 0.

If $s \in \mathfrak{p}S$, then by the above Proposition s satisfies an integral dependence F with coefficients in \mathfrak{p} . Consider again the roots of the minimal polynomial $f: s_1, \ldots, s_n$.

But s can be mapped under an K-automorphism of the algebraic closure onto any of the conjugates of s, so the conjugates also satisfy the same integral dependence relation F. Therefore there exists h such that $s_i^h \in \mathfrak{p}S$. But by the lying over property there exists P prime in S such that $P \cap R = \mathfrak{p}$, so $\mathfrak{p}S \subseteq P$ and $s_i \in P$. The coefficients of f are in R and are polynomial functions in s_1, \ldots, s_n and so they belong to $P \cap R = \mathfrak{p}$.

Theorem 0.4. (Going-Down) Let $R \subseteq S$ be an integral extension of domains with R normal. Let $\mathfrak{p}, \mathfrak{q} \in Spec(R)$ with $\mathfrak{p} \subset \mathfrak{q}$, and let $Q \in Spec(S)$ with $Q \cap R = \mathfrak{q}$ (which it is known to exist under our hypotheses by the lying over property). Then $\exists P \in Spec(S)$ with $P \cap R = \mathfrak{p}$, and $P \subset Q$.

Proof. Let $T = R \setminus \mathfrak{p}$, and $T' = S \setminus Q$, where both are multiplicative sets, so $T \cdot T'$ is also.

Let us show that $\mathfrak{p}S \cap TT' = \emptyset$ Let $x \in \mathfrak{p}S \cap TT'$. Then x = uv with $u \in T$, and $v \in T'$. Since $x \in \mathfrak{p}S$, $x = \sum a_i s_i$ with $a_i \in \mathfrak{p}$, $s_i \in S$. We can replace S, Q, and $S \setminus Q$ by $S' = R[v, s_1, ..., s_k]$, $Q \cap S'$, and $S' \setminus (Q \cap S') = T''$, and assume S is finitely generated as an R-algebra. But S is integral, so S is module-finite over R.

Let f be the minimal polynomial of v over K = Q(R). Then R normal implies $f \in R[x]$ (by above proposition) with $f = z^d + r_{d-1}z^{d-1} + \cdots + r_1z + r_0$. Let $g = z^d + ur_{d-1}z^{d-1} + \cdots + u^{d-1}r_1z + u^dr_0$. Then $g(uz) = u^df(z) = 0$. But since $u \in R \setminus \{0\} \subseteq K \setminus \{0\}$, we have $K[uv] = K[v] \supseteq K$, with the degree of the extension equal to deg f. Using that

deg g = d, we conclude that g is the minimal polynomial of uv over K. But $x \in \mathfrak{p}S$, so by the above proposition we see that the coefficients of g belong to \mathfrak{p} : we have that $u^i r_{d-1} \in \mathfrak{p}$. But $u \notin \mathfrak{p}$, so $r_0, ..., r_{d-1} \in \mathfrak{p}$. Since f(v) = 0 by definition of f, we conclude that $v^d \in \mathfrak{p}$, so $v \in \mathfrak{p} \subset \mathfrak{q} \subset Q$, a contradiction since $v \notin Q$. So $\mathfrak{p}S \cap TT' = \emptyset$.

Finally, take $\mathfrak{p}S \subseteq P$ with $P \cap TT' = \emptyset$, and $P \in \operatorname{Spec}(R)$. We know that this prime ideal exists from a previous result. Then $P \cap R = \mathfrak{p}$ because $\mathfrak{p} \subseteq \mathfrak{p}S \cap R \subseteq P \cap R$ and if $a \in P \cap R$, with $a \notin \mathfrak{p}$ then $a \in P \cap TT' = \emptyset$, and $P \cap T' = \emptyset$ implies $P \subseteq Q$ since $T' = S \setminus Q$.

Corollary 0.5. Under the hypotheses of the Going-Down Theorem, we have that $ht(Q) = ht(Q \cap R)$, for any prime ideal Q in S.

Proposition 0.6. Let $R \subset S$ be an integral extension. Then $T^{-1}R \subset T^{-1}S$ is also integral, for any multiplicative set T in R.

Proof. Let x = s/t with $s \in S, t \in T$. Since

$$s^n + a_1 s^{n-1} + \dots + a_n = 0$$

for some $n\mathbb{N}$, and $a_1, \ldots, a_n \in R$, we see that

$$(s/t)^n + (a_1/t)(s/t)^{n-1} + \cdots + a_n/t^n = 0$$

is an integral dependence relation of x over $T^{-1}R$.

Proposition 0.7. Let R be a normal domain. Then for all T multiplicative sets in R, $T^{-1}R$ is normal.

Proof. First note that $T^{-1}R$ is a domain as well and $Q(T^{-1}R = Q(R))$

Let x = r/s with $r \in R, s \in S$. Assume that x is integral over $T^{-1}R$:

$$(r/s)^n + a_1/b_1(r/s)^{n-1} + \dots + a_n/b_n = 0,$$

where $n \in \mathbb{N}$, $a_i, b_i \in R$, and $b_i \in T$.

Multiply this by $(b_1 \cdots b_n)^n$ to get that $(b_1 \cdots b_n)x$ is integral over R. So, $(b_1 \cdots b_n)x$ is in R because R is a normal. Then

$$x = b_1 \cdots b_n \cdot x \cdot \frac{1}{b_1} \cdots \frac{1}{b_n}$$

is an element of $T^{-1}R$ as needed.

Theorem 0.8. Let R be a domain. Then the following assertions are equivalent:

- (1) R is normal;
- (2) $T^{-1}R$ is normal for any multiplicative set $T \subset R$;
- (3) $R_{\mathfrak{p}}$ is normal for any \mathfrak{p} prime ideal of R;
- (4) $R_{\mathfrak{m}}$ is normal for any \mathfrak{m} maximal ideal of R.

Proof. We have seen that (1) implies (2). Clearly (2) implies (3) and (3) implies (4).

Now let us assume (4). Let $x \in Q(R)$ integral over R. Note that for any maximal ideal \mathfrak{m} of R, $x \in Q(R_{\mathfrak{m}}) = Q(R)$ and x is integral over $R_{\mathfrak{m}}$. So, $x \in R_{\mathfrak{m}}$. But we know that $\cap_{\mathfrak{m}} R_{\mathfrak{m}} = R$ so $x \in R$ (to see the last equality, let M = (R + Rx)/R which is an R-module. Note that $M_{\mathfrak{m}} = 0$ for any maximal ideal \mathfrak{m} of R. So, M = 0. which means that $x \in R$.)

This last theorem justifies the following definition:

Definition 0.9. Let R be a reduced ring (i.e. R has no nilpotents). We say that R is normal if $R_{\mathfrak{p}}$ is a normal domain for every \mathfrak{p} prime ideal in R.

Theorem 0.10. Let (R, \mathfrak{m}) be local domain which is not a field. the following assertions are equivalent:

- (1) R is a PID;
- (2) R is Noetherian and \mathfrak{m} is principal;
- (3) $\cap_{k\geq 0} \mathfrak{m}^k = 0$ and \mathfrak{m} is principal;
- (4) There is an element $u \in R$ such that every element of R is of the form su^t , where s is a unit and $t \geq 0$ (such an element is called an uniformising element of R).

Proof. It is clear that (1) implies (2) and (2) implies (3) (by Krull's Intersection Theorem).

Assume (3). By Krull's Intersection Theorem, for all $x \in \mathfrak{m} = (u)$, there exists $t \geq 0$ maximal such that $x = su^t$. The maximality of t shows that s is not in $\mathfrak{m} = (u)$ so s is a unit. Hence we have (4).

Now assume (4). Let I be an ideal of R. Let t minimum such that there exists $su^t \in I$ for some s unit. Clearly $I = (u^t)$, so R is PID, hence (1).

Definition 0.11. A local PID which is not a field is called a discrete valuation ring, or for short DVR.

Corollary 0.12. Let (R, \mathfrak{m}) be a DVR. Then every ideal I is a power of \mathfrak{m} .

Proof. In course of (4) implies (1) we showed that $I = (u^t)$, for some t, so $I = (\mathfrak{m})^t$.