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Abstract. We introduce the Gelfand-Kirillov base for a numerical semigroup ring
over the prime �eld of characteristic p, where p is prime, and show its existence for
the semigroup ring of the ordinary cusp by establishing a growth recurrence with
respect to Frobenius.

1. Introduction

Let R be a commutative ring of characteristic p, where p is a prime integer. Let
F : R → R be the Frobenius homomorphism over R, F : R → R, F (r) = rp, for all
r ∈ R. In this paper we will be concerned with the Frobenius skew polynomial ring
R[f ;F ], which is a ring that is a free left R-module generated by 1, f, . . . , fn, . . . such
that fr = rpf , for all r ∈ R. This ring appears naturally in commutative algebra in
positive characteristic, as discussed in works by many authors, such as [5, 8] to name
a few. In our recent paper [2], as well as in [1], the concepts of growth recurrence
and Gelfand-Kirillov base for R[f ;F ] were studied. In this paper, we formulate these
notions for numerical semigroup rings and we show their existence for the numerical
semigroup ring of the ordinary cusp. The computations in this work provide a glimpse
of the intricacies of the general case.

1.1. Growth recurrence and Gelfand-Kirillov base. The Gelfand-Kirillov dimen-
sion of an algebra A over a �eld K is a well studied concept introduced in relation to
the growth of the powers of a generating set for A, see [3]. It extends the notion of
Krull dimension of a commutative algebra to the noncommutative setting. More re-
cently, the concept of growth recurrence and Gelfand-Kirillov base has been introduced
in relation to the Frobenius skew polynomial ring of a commutative ring in [2], where
it was studied carefully for the case when R is a polynomial ring in �nitely many
indeterminates over Fp. Let us review brie�y the main points for �nitely generated
K-algebras, as in [2].
Let A be a K-algebra. We take V to be a �nite dimensional generating subspace of

A, that is, V is the K-vector space spanned by some elements v1, v2, · · · , vh of A which
are algebra generators of A over K. Now let V 0 = K and then for any n ∈ N we let
V n be the K-vector subspace spanned by products of n elements from {v1, v2, · · · , vh}.
Let An = k+V +V 1 + · · ·+V n. Note that A =

⋃∞
n=0An. Denote dV (n) = dimK(An).
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Now let K = Fp and let A = R[f ;F ], where R is a numerical semigroup K-algebra
(here, the assumption K = Fp makes R[f ;F ] a K-algebra). Speci�cally, let N = Z≥0,
S be a numerical semigroup of Nn, and R = K[ta : a ∈ S].
Every numerical semigroup has a unique minimal generating set, so let us denote

{a1, . . . , am} the minimal generators of S.
Let U be the K-subspace of R generated ta1 , . . . , tam and recall that the Frobenius

homomorphism on R is denoted by F . We will refer to U as a generating subspace for
R. Note that the set V = U +Kf is a K-generating subspace for the algebra R[f ;F ]
and its growth function dV will often denoted by dF (−).
Inspired by [2], we have the following de�nition.

De�nition 1.1. If {dF (n)}n satis�es a recurrence (R), then we refer to the recurrence
as a growth recurrence for R with respect to F . If the growth recurrence is linear, then
its characteristic equation will be called the growth equation for R with respect to F
given by (R).

Finally, it is interesting to measure the growth rate of the sequence {dF (n)}n.

De�nition 1.2. With the notations introduced above, we call the Gelfand-Kirillov
(GK) base of R with respect to F the following number

GKbaseF (R) := inf{λ ∈ R>0 : dF (n) = O(λn)}
if it is �nite.

2. The Growth Recurrence for the Ordinary Cusp

In this section, we will study the existence of a growth recurrence and GK base for the
Frobenius skew polynomial ring A = R[f ;F ] where R = K[t2, t3], with t indeterminate,
is the numerical semigroup ring corresponding to the cusp x3 − y2 = 0.

2.1. Skew Monomials. Since F is the Frobenius endomorphism, we have ft = tpf .
We refer to an element z ∈ A as a skew monomial when z is a product of elements
from the set {t2, t3, f}. Note that elements that are products of elements from {t2, t3}
are also considered skew monomials when viewed as elements of A.

De�nition 2.1. A skew monomial z ∈ A is in irreducible form when it is written as
a product with the fewest possible elements from t2, t3, f . The number of such terms
if considered the length of the skew monomial. Obviously, every skew monomial has a
length. If z has length n, we will write length(z) = n.

As an example if p = 2, t4f = ft2 has length 2. And t2ft3 = ft4 = f(t2)2 has length
3 although it can be written in irreducible form in two di�erent ways, both of length
3.
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2.2. Direct sum decomposition and growth recurrence. We let V be the �nite
dimensional generating K-subspace of A = R[f ;F ] generated by t2, t3, f . Then V i

is spanned by skew monomials that are products of i elements in t2, t3, f for i ≥ 1
with V 0 = K. Let An =

∑n
i=0 V

i and note that A =
⋃∞

n=0An. We let U denote the
generating space of R given by t2, t3.

Remark 2.2. Note that the sum decomposition for An does not de�ne a graded object.
Confusion could arise after the discussion of lengths of the skew monomials that could
lead to the expectation of a graded object. However, due to the multiplication in the
Frobenius skew polynomial ring, this is not the case. It is also important to notice that
the V i do not form a direct sum decomposition of An because V

i∩V j is not necessarily
trivial. For example, t2pf = ft2 appears in V p+1 and V 2. This is the motivation for
the next de�nition.

De�nition 2.3. Let A = R[f ;F ]. We de�ne the set Wi to be the K-subspace spanned
by irreducible skew monomials of length i. Hence, Wi is spanned by the subset of
generators for Ai that are in irreducible form and have length exactly i.

Proposition 2.4. Let R = K[t2, t3] and A = R[f ;F ] be the Frobenius skew polynomial
ring over R. If Wi is the K-subspace spanned by irreducible skew monomials of length
i, then An =

⊕n
i=0Wi.

Proof. By de�nition, every element in An is the sum of elements from the subspaces
V i where 0 ≤ i ≤ n. The skew monomial generators from V i can be written in irre-
ducible form, and hence every such element of V i is in some Wj where j ≤ i. Hence,
V j ⊂

∑n
i=0 Wi for all 0 ≤ j ≤ n. So, An =

∑n
i=0 Wi.

To �nish we only need to show that

Wi ∩
∑

j ̸=i,j=0,...,n

Wj = 0.

From the de�nition of Wi, this assertion is clear since each subspace Wi has basis
formed by the irreducible skew monomials of length i and elements in

∑
j ̸=iWj are

unique K-linear combinations of irreducible skew monomials of length di�erent than
i. □

Now let us consider the function dV (n) =dimK(An). Since the decomposition of An

for any n by
∑n

i=0Wi is a direct sum decomposition, we can compute dV (n) = dU,F (n)
by the following sum:

dV (n) = dU,F (n) = dimK

(
n∑

i=0

V i

)
=

n∑
i=0

dimK(Wi)
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Hence, to compute dV (n) we must �rst develop a method to compute dimK(Wi) for
any 0 ≤ i ≤ n. This can be done by counting the irreducible skew monomials of length
i for any i ≤ n, which is achieved in the next section.

2.3. Computing the Growth Recurrence. We now take the direct sum decompo-
sition constructed in Section 2.2 and use it �nd a recurrence for dV (n). We can do
this by �rst �nding a recurrence for dimK(Wi) for all i. By Proposition 2.4 and the
comment just following it, we can then determine dV (n) = dimK(An).

Remark 2.5. An important observation is that any skew monomial in irreducible form
containing f in the product must lead with a skew monomial of form tMf , where M
belongs to the semigroup ⟨2, 3⟩. The cardinality of the set of irreducible skew monomials
of the form tMf will allow us to count the irreducible skew monomials containing an
f for any length i.

Proposition 2.6. A term tm with m ∈ S = ⟨2, 3⟩ is irreducible of length d ≥ 1, where
m = 3d − i, with i = 0, 1, or 2 and m = 2i + 3(d − i). Note that length of tm is
d = ⌈m/3⌉.
Proof. Let i, j nonnegative such that 2i + 3j = m, i + j = d, and d is minimal. These
two equations imply i, j are unique with these properties.
Write m = 2i+ 3j = 2i′ + 3j′ with nonnegative i, j, i′, j′. Then 2(i− i′) = 3(j′ − j),

so i = i′+3k and j′ = j+2k, so i+ j = i′+ j+3k = i′+ j′+ k. So, if i+ j is minimal,
then k < 0, which means that i = 0, 1, 2. The rest follows now at once.

□

Proposition 2.7. Let d be an integer greater than or equal to 1. A skew monomial is
written in irreducible form tmf of length d+1 if and only if m = 3d−i = 2i+3(d−i) =
2i + 3j, with 0 ≤ i ≤ 2, j = d − i, m = 2i + 3j ≤ 2p + 1, m = 2i + 3j ̸= 2p. So, if
m ≤ 2p+ 1,m ̸= 2p then length of tmf is ⌈m/3⌉+ 1.

Proof. Clearly, we have that (t2)i(t3)jf is irreducible of length d + 1 implies (t2)i(t3)j

is irreducible of length d and so 0 ≤ i ≤ 2 and j = d− i, by Proposition 2.6.
Let m = 2i + 3j. If m ≥ 2p + 2, then tmf = tm−2pft2. So, the length of tm−2p is

d−1, hence m−2p = 3(d−1)− i′, form some i′ = 0, 1, 2. But then m = 2p+3d−3− i′

and so i′ = 1 and p = 2. Otherwise, tmf is reducible.
Now assume p = 2 and m = 4 + 3(d − 1) − 1 = 3d such that 3d ≥ 2p + 2 = 6.

Then if d ≥ 2 we see that t3d = t3d−6ft3 and t3(d−2) is in fact of length d − 2 which
makes t3d−6ft3 of length smaller than d + 1. This forces d = 1 and m = 3, but then
m < 2p+ 2.
If m = 2p ≥ 4, we claim that tmf is reducible, since, otherwise, tmf = ft2 which is

of length 2 forcing tm to have length one and hence m = 1, 2, or 3, impossible.
Finally, let us argue that if m ≤ 2p + 1,m ̸= 2p, then tmf is irreducible. Since

ft2 = t2pf , then we have tmf = tm−2pft2, but since m − 2p ≤ 1 ̸∈ S, this reduction
does not work in our ring. □
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De�nition 2.8. Let k ≥ 1. We de�ne

Bk = {(i, j) ∈ Z2
≥0 : length((t

2)i(t3)jf) = i+ j + 1 = k}.
Denote by βk the cardinality of Bk.

Proposition 2.9. Let k ≥ 1 and i, j nonnegative integers. Then (i, j) ∈ Bk if and
only if i+ j +1 = k, 2i+3j ≤ 2p+1, 2i+3j ̸= 2p and 0 ≤ i ≤ 2. Also, Bk ̸= ∅ if and
only if 3k ≤ 2p+ 6, or equivalently k ≤ ⌊2p

3
⌋+ 2.

(1) Moreover, B1 = {(0, 0)} and the corresponding skew monomial is f , while B2 =
{(0, 1), (1, 0)} and corresponding skew monomials are t2f, t3f . In conclusion,
β1 = 1, β2 = 2, βk ≤ 3.

(2) For 3 ≤ k, 3k ≤ 2p+ 2, Bk = {(0, k − 1), (1, k − 2), (2, k − 3)} and βk = 3;
(3) If 3k = 2p+ 3, then Bk = {(1, k − 2), (2, k − 3)} and βk = 2;
(4) If 3k = 2p+ 4, then Bk = {(0, k − 1), (2, k − 3)} and βk = 2;
(5) If 3k = 2p+ 5, then Bk = {(1, k − 2)} and βk = 1:
(6) If 3k = 2p+ 6, then Bk = {(2, k − 3)} and βk = 1.

Proof. Applying Proposition 2.7 to (t2)i(t3)jf , we conclude that length((t2)i(t3)jf) =
⌈2i+3j

3
⌉+1 and 0 ≤ i ≤ 2. Additionally, 2i+3j ≤ 2p+1, 2i+3j ̸= 2p. Also, i+j+1 = k.

Note that ⌈2i+3j
3

⌉+1 = i+j+1 is always satis�ed if i = 0, 1, 2. Hence, Bk ⊆ {(0, k−
1), (1, k−2), (2, k−3)}. In fact, we can use the conditions 2i+3j ≤ 2p+1, 2i+3j ̸= 2p
to list precisely what elements are in Bk.
Clearly, B1 = {(0, 0)}, while B2 = {(0, 1), (1, 0)}
For k ≥ 3, (0, k−1) ∈ Bk if and only if 3k ≤ 2p+4, 3k ̸= 2p+3; (1, k−2) ∈ Bk if and

only if 3k ≤ 2p+5, 3k ̸= 2p+4; (2, k− 3) ∈ Bk if and only if 3k ≤ 2p+6, 3k ̸= 2p+5.
□

Theorem 2.10. (1) Assume that there exist nonnegative integers n, il, jl, kl such
that n > 0, kl > 0, il + jl > 0, for all l = 1, . . . , n, and nonnegative integers
i0, j0 such that z is written in irreducible form as

z = (t2)in(t3)jnfkn · · · (t2)i1(t3)j1fk1(t2)i0(t3)j0 .

Then for all l = 1, . . . , n, we have 2il + 3jl ≤ 2p+ 1, 2il + 3jl ̸= 2p.
In fact, if we let Ml = 2il + 3jl and dl = ⌈Ml/3⌉, then 0 ≤ il ≤ 2 and

jl = dl − il, for all l = 1, . . . , n
(2) Let p ≥ 7. Using the notations above, then for every 1 ≤ l such that kl = 1we

have that either 2il + 3jl ≤ p+ 1 or 2i+ 3jl ̸= p.
(3) Let p ≥ 7. Then any skew monomial has a unique irreducible form where, for

1 ≤ l, if kl = 1, Ml ≤ p+ 1,Ml ̸= p and, otherwise, Ml ≤ 2p+ 1,Ml ̸= 2p.

Proof. (1) Consider the element z in irreducible form written as in the hypothesis
of the theorem. Note that the length of z equals i0 + j0 +

∑n
l=1(il + jl + kl).

Assume that 2il + 3jl ≥ 2p + r, for some 1 ≤ l ≤ n with r ≥ 2, or r = 0.
Then t2il+3jlf = trft2. Recall that the length of tr is ⌈r/3⌉, by Proposition 2.6.
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Hence the element z = (t2)in(t3)jnfkn · · · (t2)il(t3)jlfkl · · · (t2)i1(t3)j1fk1(t2)i0(t3)j0

can have the term (t2)il(t3)jlfkl swapped out by trft2fkl−1. This shows that
the length of z is bounded above by

i0 + j0 +
n∑

h=1,h̸=l

(ih + jh + kh) + ⌈r/3⌉+ 1 + kl − 1 < i0 + j0 +
n∑

h=1

(ih + jh + kh),

because

⌈r
3
⌉ = ⌈2il + 3jl − 2p

3
⌉ < il + jl,

when p ≥ 2. This contradicts the fact that the length of z is i0+ j0+
∑n

l=1(il+
jl + kl).
So the irreducible form of z must have 2il + 3jl ≤ 2p + 1, 2il + 3jl ̸= 2p, for

all l = 1, . . . , n. Additionally, a similar argument as above shows that x2il+3jl

must be in irreducible form and hence Proposition 2.6 applies.
(2) Let 1 ≤ l such that kl = 1. In that case, tMlftMl−1 = tMl−pft1+Ml−1 . Note that

⌈Ml

3
⌉− ⌈Ml−p

3
⌉ ≥ 2 since p ≥ 7, while ⌈1+Ml−1

3
⌉− ⌈Ml−1

3
⌉ ≤ 1, which means that

applying the above identity would lower the length of z, unless Ml ≤ p+1 and
Ml ̸= p.

(3) This is a direct consequence of second part proved above.
□

Example 2.11. Let p = 5. Note that z = t9ft3f = t4ft4f can be written in two
distinct irreducible forms (of length 6).

De�nition 2.12. Let p ≥ 7. Let z be a monomial in R such that f appears in its
expression. Write z in irreducible form. The leading form of z are the unique i, j such
that z = (t2)i(t3)jf · z′ is its irreducible form. Note that by Theorem 2.10 the numbers
i, j as well as the element z′ is unique. We will write lead(z) = (t2)i · (t3)j.

Proposition 2.13. Let p ≥ 7. Let z be a monomial in R such that f appears in
its expression. If z = (t2)i(t3)jfk · z′ and 2i + 3j ≤ p + 1, 2i + 3j ̸= p, k ≥ 1, then
lead(z) = (t2)i(t3)j.

Proof. This is clear since no reduction a�ecting the leading term can be performed
using tpf = ft. □

Theorem 2.14. Let p ≥ 7. Let z, tmf be elements in R. Assume that f is a factor in
z, z has length l, and m ≤ 2p+ 1,m ̸= 2p. Then

(1) If lead(z) = f , then length of tmf · z is l + ⌈m/3⌉+ 1;
(2) If lead(z) ̸= f , then the length of tmf · z is l + ⌈m/3⌉ + 1 if and only if m ≤

p+ 1,m ̸= p.

Proof. (1) This statement is clear since tmf has length ⌈m/3⌉ + 1, and xmf · z
cannot be reduced using tpf = ft since t ̸∈ R.
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(2) We can write z = tm
′ · fz′, with m′ ≥ 2, m′ = 2i + 3j ≤ 2p + 1,m′ ̸= 2p and

i = 0, 1, or 2. If m ≤ p + 1,m ̸= p, then Theorem 2.10 applies. Conversely,
if m ≥ p + 2 or m = p, then, by the same Theorem 2.10, tmf · z is not in
irreducible form and, hence, its length must be less than l + ⌈m/3⌉+ 1.

□

De�nition 2.15. The following de�nitions and notations provide the building blocks
to determine dimK(Wd).

• We will denote dimK(Wd) by Cd. Hence, Cd is equal to the number of monomials
of length d.

• Let Wi,j,d denote the K-vector space generated the skew monomials of length d
with leading form (t2)i(t3)jf. Let dimWi,j,d = ci,j,d.

• We will make the convention that Ci = 0 for negative i and ci,j,d = 0 for
d ≤ i+ j.

Proposition 2.16. Let d ≥ 1 and p ≥ 7. Let Cd =dimK(Wd) and ci,j,d be de�ned as
in 2.15. Then we have

Cd =
∑

(i,j)∈Bk, 1≤k≤d

ci,j,d + 3.

Proof. By Theorem 2.10 we know that every z of length d, containing a factor of f ,
must have lead(z) = (t2)i(t3)j, so z ∈ Wi,j,d and (i, j) ∈ Bk and 1 ≤ k ≤ d. If z has no
factor of f , then there are exactly three such terms by Proposition 2.6. □

Example 2.17. Let R = K[t2, t3] where K = F7, and A = R[f ;F ] the Frobenius
skew polynomial ring over R. Let a = (1, 2) and consider ca,7. Then every monomial
counted in ca,7 is of the form (t2)(t3)2fz = t8fz.
We can list all the skew monomials inW1,2,7 and we get t

8ft2ft3, t8ft3ft2, t8t2ft2, t8ft4f ,
t8ft5f, t8ft6f, t8f 2t4, t8f 2t5, t8f 2t6, t8ft2f, t8t3f, t8ff 2t2, t8ff 2t3, t8ff 3, t8ft8, t8ft8, t8ft7.
Hence, comparing this list to t8f · z, we see that z is in irreducible form and, hence,

it is counted in C3. On the other hand, we can attach t8f to any skew monomial in
W3, and the resulting skew monomial will still be in irreducible form, and hence, is
among the elements of Wa,7. Thus, ca,7 = C3.

The conclusion of the example above holds in general and is shown in the next
propositions. This result will be useful in developing a recurrence to compute Cd.
Note that we are only counting skew monomials that contain an f in the product with
the values ca,d. The skew monomials that do not contain an f are counted in the same
manner as counting monomials of degree d in R.

Proposition 2.18. Let p ≥ 7. Let i, j, d be nonnegative integers such that i+j+1 ≤ d
and (t2)i(t3)jf has length i+ j + 1. Assume 2i+ 3j ≤ p+ 1, 2i+ 3j ̸= p.
Then there exists a one-to-one correspondence between Wi,j,d and Wd−(i+j+1). In

particular ci,j,d = Cd−(i+j+1).



8 ALAN DILLS AND FLORIAN ENESCU

Proof. Consider the map
T : Wd−(i+j+1) −→ Wi,j,d,

de�ned by T (z) = (t2)i(t3)jf · z. This function is well de�ned by Theorem 2.14. It
is clearly injective because the ring R is an integral domain. For the surjectivity, we
apply Theorem 2.10. □

Proposition 2.19. Let i, j, d be nonnegative integers such that i + j + 2 ≤ d and
(t2)i(t3)jf has length i+ j + 1. Assume that 2i+ 3j = p or p+ 2 ≤ 2i+ 3j ≤ 2p+ 1.
Assume further that 2i+ 3j ̸= 2p.
Then there exists a one-to-one correspondence between Wi,j,d and Wd−(i+j+2). In

particular ci,j,d = Cd−(i+j+2).

Proof. We now consider the map

T : Wd−(i+j+2) −→ Wi,j,d,

de�ned by T (z) = (t2)i(t3)jf 2 · z. This function is well de�ned by Theorem 2.14. It
is clearly injective because the ring R is an integral domain. For the surjectivity, we
again apply Theorem 2.10 and Theorem 2.14. □

De�nition 2.20. Let k ≥ 1. We de�ne

Γk = {(i, j) ∈ Bk : 2i+ 3j ≤ p+ 1, 2i+ 3j ̸= p}.
Similarly,

∆k = {(i, j) ∈ Bk : p+ 2 ≤ 2i+ 3j ≤ 2p+ 1 and 2i+ 3j ̸= 2p, or 2i+ 3j = p}.
Denote the cardinality of Γk by γk and the cardinality of ∆k by δk. Note that, when
Bk ̸= ∅, the sets Γk and ∆k form a partition for Bk.

If (i, j) ∈ Γk, then t2i+3jf has length k, so k − 1 = ⌈2i+3j
3

⌉ by Proposition 2.7 and

so 1 ≤ k ≤ ⌈p+1
3
⌉ + 1. Similarly, for (i, j) ∈ ∆k, we have ⌈p+2

3
⌉ + 1 ≤ k ≤ ⌈2p+1

3
⌉ + 1,

unless k = ⌈p
3
⌉+ 1.

We can re�ne these inequalities as in the following proposition, for k ≥ 3.

Proposition 2.21. Let k ≥ 3. If k > ⌊2p
3
⌋+ 2, then γk = δk = 0. Additionally,

(1) If k ≥ ⌈p+1
3
⌉+ 2, then γk = 0. If k ≤ ⌊p+2

3
⌋, then δk = 0.

(2) If 3 ≤ k and 3k ≤ p+ 2, then γk = 3 and δk = 0.
(3) If p+ 7 ≤ 3k ≤ 2p+ 2, then γk = 0 and δk = 3.

Proof. We have seen in Proposition 2.9 that Bk = ∅ if and only if k > ⌊2p
3
⌋+2 and that

Bk = {(0, k − 1), (1, k − 2), (2, k − 3)} for 3 ≤ k, 3k ≤ 2p+ 2. Additionally, (i, j) ∈ Γk

if and only if 2i+ 3j ≤ p+ 1, 2i+ 3j ̸= p, so by direct inspection (0, k− 1) ∈ Γk if and
only if 3k ≤ p + 4, 3k ̸= p + 3; (1, k − 2) ∈ Γk if and only if 3k ≤ p + 5, 3k ̸= p + 4;
(2, k− 3) ∈ Γk if and only if 3k ≤ p+ 6, 3k ̸= p+ 5. So, if 3k ≤ p+ 2, then γk = 3 and
δk = 0. Also, if 3k ≥ p+ 7, then γk = 0.
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Similarly, (0, k−1) ∈ ∆k if and only if 3k = p+3 or p+5 ≤ 3k ≤ 2p+4, 3k ̸= 2p+3;
(1, k−2) ∈ ∆k if and only if 3k = p+4 or p+6 ≤ 3k ≤ 2p+5, 3k ̸= 2p+4; (2, k−3) ∈ ∆k

if and only if 3k = p+5 or p+7 ≤ 3k ≤ 2p+6, 3k ̸= 2p+5. So if p+7 ≤ 3k ≤ 2p+2,
then δk = 3. □

It is useful to see the values for these numbers in an example. We will record below
the values obtained for p = 7 and p = 11.

k γk δk βk

1 1 0 1
2 2 0 2
3 3 0 3
4 1 2 3
5 0 3 3
6 0 2 2
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0

k γk δk βk

1 1 0 1
2 2 0 2
3 3 0 3
4 3 0 3
5 2 1 3
6 0 3 3
7 0 3 3
8 0 3 3
9 0 1 1
10 0 0 0

Table 1. the cases p = 7 and, respectively, p = 11

Theorem 2.22. Let p ≥ 7 and d ≥ 1. Let Cd = dimK(Wd). Then we have

Cd =
∑

1≤k≤d−1, Γk ̸=∅

γk · Cd−k +
∑

1≤k≤d−1, ∆k ̸=∅

δk · Cd−k−1 + βd + 3.

or, equivalently,

(2.3.1) Cd =
∑

1≤k≤d

(γk + δk−1) · Cd−k + δd + 3.

Proof. For a positive integer 1 ≤ k ≤ d, let (i, j) ∈ Bk. Note that i + j + 1 = k ≤ d.
If k = d, then ci,j,d = 1. If k ≤ d − 1 and (i, j) ∈ Γk ⊆ Bk, then ci,j,d = Cd−k by
Proposition 2.18. Similarly, for k ≤ d− 1 and (i, j) ∈ ∆k ⊆ Bk, then ci,j,d = Cd−k−1 by
Proposition 2.19. Finally, apply Proposition 2.16 and we obtain the statement of the
theorem. Recall that C0 = 1 and βd = γd + δd.

□

Corollary 2.23. Let p ≥ 7. Let A = R[f ;F ] where R = Zp[t
2, t3], with t indetermi-

nate.
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(1) Let d ≥ ⌊2p
3
⌋+ 3. Then

(2.3.2) Cd =
∑

1≤k≤⌊ p+2
3

⌋+1

γk · Cd−k +
∑

⌊ p+2
3

⌋+2≤k≤⌊ 2p
3
⌋+3

δk−1 · Cd−k + 3

is a linear recurrence relation of order ⌊2p
3
⌋+ 3.

(2) Let dF (n) = dn. A growth recurrence for R with respect to F is

dn =
∑

1≤k≤⌊ p+2
3

⌋+1

γk · dn−k +
∑

⌊ p+2
3

⌋+2≤k≤⌊ 2p
3
⌋+3

δk−1 · dn−k + 3n−K,

where K is a constant. This is a linear recurrence relation of order ⌊2p
3
⌋+ 3.

(3) The growth equation for R with respect to F is

XN =
∑

1≤k≤⌊ p+2
3

⌋+1

γk ·XN−k +
∑

⌊ p+2
3

⌋+2≤k≤⌊ 2p
3
⌋+3

δk−1 ·XN−k,

where N = ⌊2p
3
⌋+ 3.

Proof. For (1), using Proposition 2.21, we can specify the values of k for which γk and
δk are zero and use this information in conjunction with the equation 2.3.1. First start
by noting that for p prime with p ≥ 7, we have ⌈p+1

3
⌉ = ⌊p+2

3
⌋. It is important to note

that, by Proposition 2.21, if k > ⌊2p
3
⌋+2, then γk = δk = 0; also, δk ̸= 0 if k = ⌊2p

3
⌋+2,

which gives the order of the recurrence: to see this, note that if 3k ≤ 2p + 6 then,
by Proposition 2.9, Bk is non empty and so βk ̸= 0. But Proposition 2.21 applies to
k = ⌊2p

3
⌋ + 2 ≥ ⌈p+1

3
⌉ + 2 = ⌊p+2

3
⌋ + 2, and hence for k = ⌊2p

3
⌋ + 2, γk = 0 and so

δk = βk ̸= 0, because in general βk = γk + δk.
For (2), simply use that

∑n
d=0Cd = dn in the recurrence obtained in (1).

□

This next result will be helpful in computing the Gelfand-Kirillov of the cusp.

Proposition 2.24. Let a1, . . . , an0 and {xn}n≥0 satisfying the relation

(2.3.3) xn = a1xn−1 + · · ·+ an0xn−n0 ,

for all n ≥ n0.
Denote

(2.3.4) bl = xl −
n0−1∑
i=1

aixl−i

for l = 1, . . . , n0 − 1 and b0 = x0.
Then ∑

n≥0

xnt
n =

b0 + b1t+ · · ·+ bn0−1t
n0−1

1− a1t− · · · − an0t
n0

.
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Proof. Write the equation 2.3.3 for n ≥ n0 and multiply it by tn. We get

xnt
n = a1t · xn−1t

n−1 + · · ·+ an0t
n0 · xn−n0t

n−n0 .

Adding all these equations we obtain∑
n≥n0

xnt
n = a1t

∑
n≥n0−1

xnt
n + · · ·+ an0t

n0

∑
n≥0

xnt
n.

Denote F (t) =
∑

n≥0 xnt
n and Fk(t) =

∑
0≤n≤k xnt

n for k ≥ 0. From the last
equation we get

F (t)−Fn0−1(t) = a1t·F (t)−a1tFn0−2(t)+· · ·+an0−1t
n0−1·F (t)−an0−1t

n0−1·F0(t)−an0t
n0F (t).

Rearranging the terms we get

F (t)(1− a1t− · · · − an0t
n0) = Fn0−1(t)− a1tFn0−2(t)− · · · − an0−1t

n0−1 · F0(t).

Now, we can use equation 2.3.4 to simplify the right hand side. This results in

F (t)(1− a1t− · · · − an0t
n0) = b0 + b1t+ · · ·+ bn0−1t

n0−1,

hence the statement.
□

Theorem 2.25. Let p ≥ 7. Let A = R[f ;F ] where R = Zp[t
2, t3], with t indeterminate.

The following assertions are true.

(1) The growth equation for R with respect to F has a unique simple positive root
λ and all other roots have absolute value less than λ.

(2) There exists nonzero ρ such that Cd = ρ · λd + o(λd).
(3)

GKbaseF (R) = λ.

Proof. We have, from Equation 2.3.1,

Cd =
∑

1≤k≤d

(γk + δk−1) · Cd−k + δd + 3.

Set an = γn + δn−1 for n ≥ 1. We can make a change of variable xd = Cd − c, for a
constant c to obtain

xd =
∑

1≤k≤d

(γk + δk−1) · xd−k + δd.

Note that −1 < c < 0, x0 = C0 − c = 1 − c with 1 < 1 − c < 2. Also, ai =
γi, for 1 ≤ i ≤ ⌊p+2

3
⌋+ 1 and ai = δi−1, for ⌊p+2

3
⌋+ 2 ≤ i ≤ ⌊2p

3
⌋+ 3, as we have seen

in Corollary 2.23 (1) and we have for d ≥ d0 = ⌊2p
3
⌋+ 3:

xd = a1xd−1 + · · ·+ ad0xd−d0 .

Let F (t) =
∑

d≥0 xdt
d. By Proposition 2.24 we end up with
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F (t) =
(1− c) +

∑
⌊ p+2

3
⌋+2≤i≤⌊ 2p

3
⌋+3 δi−1t

i

1−
∑

1≤i≤⌊ p+2
3

⌋+1 γit
i −
∑

⌊ p+2
3

⌋+2≤i≤⌊ 2p
3
⌋+3 δi−1ti

.

Due to the particular form of the growth equation which has nonzero coe�cients of
index N − 1, N − 2, where N = ⌊2p

3
⌋ + 3 is the degree of the equation, we can apply

Ostrowsky's Theorem in [4]. So the growth equation for R with respect to F has a
unique simple positive root λ and all other roots have absolute value less than λ. This
gives (1).
Now, for (2), note that due to the remarks above about the growth equation, the

denominator in the rational function giving F (t) has a unique simple positive root
of smallest magnitude among all its roots. The numerator has only negative roots
because its coe�cients are nonnegative. In conclusion, the irreducible rational function
describing F (t) will have 1/λ as the unique positive simple root of smallest magnitude.
In conclusion, by standard facts about linear recurrences as in Theorem 4.1.1 and

Corollary 4.2.1 in [6], the coe�cients of the generating function F (t) will satisfy xd =
ρ · λd + o(λd), with nonzero ρ. This gives the same conclusion about Cd.
Part (3) follows at once since dn =

∑n
d=0Cd.

□

Example 2.26. (1) Using the values from Table 2.3, we can �nd that the growth
equation for R for p = 7 is

x7 = x6 + 2x5 + 3x4 + x3 + 2x2 + 3x+ 2,

and the growth equation for R for p = 11 is

x10 = x9 + 2x8 + 3x7 + 3x6 + 2x5 + x4 + 3x3 + 3x2 + 3x+ 1.

(2) Using Wolfram Alpha [7], we can compute the roots of the respective growth
equations and establish that for p = 7, GKbaseF (R) ≈ 2.46646, while for
p = 11, GKbaseF (R) ≈ 2.52555.

Acknowledgment. This is a revised and improved form of the work prepared for the
PhD dissertation at Georgia State University by the �rst author under the guidance
of the second author in [1].
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