
Decentralized Consensus Algorithm with Delayed and Stochastic

Gradients

Benjamin Sirb Xiaojing Ye∗

Abstract

We analyze the convergence of decentralized consensus algorithm with delayed gradient in-
formation across the network. The nodes in the network privately hold parts of the objective
function and collaboratively solve for the consensus optimal solution of the total objective while
they can only communicate with their immediate neighbors. In real-world networks, it is often
difficult and sometimes impossible to synchronize the nodes, and therefore they have to use
stale gradient information during computations. We show that, as long as the random delays
are bounded in expectation and a proper diminishing step size policy is employed, the iterates
generated by decentralized gradient descent method converge to a consensual optimal solution.
Convergence rates of both objective and consensus are derived. Numerical results on a num-
ber of synthetic problems and real-world seismic tomography datasets in decentralized sensor
networks are presented to show the performance of the method.

Key words. Decentralized consensus, delayed gradient, stochastic gradient, decentralized net-
works.

AMS subject classifications. 65K05, 90C25, 65Y05.

1 Introduction

In this paper, we consider a decentralized consensus optimization problem arising from emerging
technologies such as distributed machine learning [3, 10, 16, 19], sensor network [13, 30, 36], and
smart grid [11, 21]. Let G = (V, E) be a network (undirected graph) where V = {1, 2, . . . ,m} is the
node (also called agent, processor, or sensor) set and E ⊂ V × V is the edge set. Two nodes i and
j are called neighbors if (i, j) ∈ E . The communications between neighbor nodes are bidirectional,
meaning that i and j can communicate with each other as long as (i, j) ∈ E .

In a decentralized sensor network G, individual nodes can acquire, store, and process data about
large-sized objects. Each node i collects data and holds objective function Fi(x; ξi) privately where
ξi ∈ Θ is random with fixed but unknown probability distribution in domain Θ to model envi-
ronmental fluctuations such as noise in data acquisition and/or inaccurate estimation of objective
function or its gradient. Here x ∈ X is the unknown (e.g., the seismic image) to be solved, where
the domain X ⊂ Rn is compact and convex. Furthermore, we assume that Fi(·; ξi) is convex for all
ξi ∈ Θ and i ∈ V, and we define fi(x) = Eξi [Fi(x; ξi)] which is thus convex with respect to x ∈ X.
The goal of decentralized consensus optimization is to solve the minimization problem

minimize
x∈X

f(x), where f(x) :=
m∑
i=1

fi(x) (1)

∗Department of Mathematics & Statistics, Georgia State University, Atlanta, GA 30303, USA (bsirb1@student.
gsu.edu, xye@gsu.edu). This work was partially supported by National Science Foundation under grants DMS-
1620342 and CMMI-1745382.

1

bsirb1@student.gsu.edu
bsirb1@student.gsu.edu
xye@gsu.edu

with the restrictions that Fi(x; ξi), and hence fi(x), are accessible by node i only, and that nodes
i and j can communicate only if (i, j) ∈ E during the entire computation.

There are a number of practical issues that need to be taken into consideration in solving the
real-world decentralized consensus optimization problem (1):

• The partial objective Fi (and fi) is held privately by node i, and transferring Fi to a data
fusion center is either infeasible or cost-ineffective due to data privacy, the large size of Fi,
and/or limited bandwidth and communication power overhead of sensors. Therefore, the
nodes can only communicate their own estimates of x ∈ Rn with their neighbors in each
iteration of a decentralized consensus algorithm.

• Since it is often difficult and sometimes impossible for the nodes to be fully synchronized,
they may not have access to the most up-to-date (stochastic) gradient information during
computations. In this case, the node i has to use out-of-date (stochastic) gradient ∇Fi(xi(t−
τi(t)); ξi(t− τi(t))) where xi(t) is the estimate of x obtained by node i at iteration t, and τi(t)
is the level of (possibly random) delay of the gradient information at t.

• The estimates {xi(t)} by the nodes should tend to be consensual as t increases, and the
consensual value is a solution of problem (1). In this case, there is a guarantee of retrieving a
good estimate of x from any surviving node in the network even if some nodes are sabotaged,
lost, or run out of power during the computation process.

In this paper, we analyze a decentralized consensus algorithm which takes all the factors above
into consideration in solving (1). We provide comprehensive convergence analysis of the algo-
rithm, including the decay rates of objective function and disagreements between nodes, in terms
of iteration number, level of delays, and network structure etc.

1.1 Related work

Distributed computing on networks is an emerging technology with extensive applications in mod-
ern machine learning [10, 16, 19], sensor networks [13, 30, 49, 50], and big data analysis [4, 31].
There are two types of scenarios in distributed computing: centralized and decentralized. In the
centralized scenario, computations are carried out locally by worker (slave) nodes while computa-
tions of certain global variables must eventually be processed by designated master node or at a
center of shared memory during each (outer) iteration. A major effort in this scenario has been
devoted to update the global variable more effectively using an asynchronous setting in, for exam-
ple, distributed centralized alternating direction method of multipliers (ADMM) [7, 5, 20, 42, 47].
In the decentralized scenario considered in this paper, the nodes privately hold parts of objective
functions and can only communicate with neighbor nodes during computations. In many real-
world applications, decentralized computing is particularly useful when a master-worker network
setting is either infeasible or not economical, or the data acquisition and computation have to be
carried out by individual nodes which then need to collaboratively solve the optimization prob-
lem. Decentralized networks are also more robust to node failure and can better address privacy
concerns. For more discussions about motivations and advantages of decentralized computing, see,
e.g., [15, 27, 29, 34, 38, 40] and references therein.

Decentralized consensus algorithms take the data distribution and communication restriction
into consideration, so that they can be implemented at individual nodes in the network. In the
ideal synchronous case of decentralized consensus where all the nodes are coordinated to finish
computation and then start to exchange information with neighbors in each iteration, a number
of developments have been made. A class of methods is to rewrite the consensus constraints for

2

minimization problem (1) by introducing auxiliary variables between neighbor nodes (i.e., edges),
and apply ADMM (possibly with linearization or preconditioning techniques) to derive an imple-
mentable decentralized consensus algorithm [6, 12, 14, 23, 35, 46]. Most of these methods require
each node to solve a local optimization problem every iteration before communication, and reach
a convergence rate of O(1/T) in terms of outer iteration (communication) number T for general
convex objective functions {fi}. First-order methods based on decentralized gradient descent re-
quire less computational cost at individual nodes such that between two communications they only
perform one step of a gradient descent-type update at the weighted average of previous iterates
obtained from neighbors. In particular, Nesterov’s optimal gradient scheme is employed in de-
centralized gradient descent with diminishing step sizes to achieve rate of O(1/T) in [15], where
an alternative gradient method that requires excessive communications in each inner iteration is
also developed and can reach a theoretical convergence rate of O(log T/T 2), despite that it seems
to work less efficiently in terms of communications than the former in practice. A correction
technique is developed for decentralized gradient descent with convergence rate as O(1/T) with
constant step size in [34], which results in a saddle-point algorithm as pointed out in [24]. In [50],
the authors combine Nesterov’s gradient scheme and a multiplier-type auxiliary variable to obtain
a fast optimality convergence rate of O(1/T 2). Other first-order decentralized methods have also
been developed recently, such dual averaging [8]. Additional constraints for primal variables in
decentralized consensus optimization (1) are considered in [45].

In real-world decentralized computing, it is often difficult and sometimes impossible to coor-
dinate all the nodes in the network such that their computation and communication are perfectly
synchronized. One practical approach for such asynchronous consensus is using a broadcast sce-
nario where in each (outer) iteration, one node in the network is assumed to wake up at random
and broadcasts its value to neighbors (but does not hear them back). A number of algorithms
for broadcast consensus are developed, for instance, in [2, 13, 25, 26]. In particular, [26] develops
a consensus optimization algorithm for (1) in the setting where every iteration one node in the
network broadcasts its value to the neighbors, but there are no delays in (sub)gradients during
their updates. Another important issue in the asynchronous setting is that nodes may have to use
out-of-date (stale) gradient information during updates [27, 43]. This delayed scenario in gradient
descent is considered in a distributed but not decentralized setting in [1, 18, 37, 48]. In addition,
analysis of stochastic gradient in distributed computing is also carried out in [1, 33]. In [9], linear
convergence rate of optimality is derived for strongly convex objective functions with delays. Ex-
tending [1], a fixed delay at all nodes is considered in dual averaging [17] and gradient descent [41]
in a decentralized setting, but they did not consider more practical and useful random delays, and
there are no convergence rates on node consensus provided in these papers. In [43], both random
delays in communications and gradients are considered, however, no convergence rate is established
in such setting.

1.2 Contributions

The contribution of this paper is in three phases.
First, we consider a general decentralized consensus algorithm with randomly delayed and

stochastic gradient (Section 2). In this case, the nodes do not need to be synchronized and they may
only have access to stale gradient information. This renders stochastic gradients with random delays
at different nodes in their gradient updates, which is suitable for many real-world decentralized
computing applications.

Second, we provide a comprehensive convergence analysis of the proposed algorithm (Section
3). More precisely, we derive convergence rates for both the objective function (optimality) and

3

disagreement (feasibility constraint of consensus), and show their dependency on the characteristics
of the problem, such as Lipschitz constants of (stochastic) gradients and spectral gaps of the
underlying network.

Third, we conduct a number of numerical experiments on synthetic and real datasets to validate
the performance of the proposed algorithm (Section 4). In particular, we examine the convergence
on synthetic decentralized least squares, robust least squares, and logistic regression problems. We
also present the numerical results on the reconstruction of several seismic images in decentralized
wireless sensor networks.

1.3 Notations and assumptions

In this paper, all vectors are column vectors unless otherwise noted. We denote by xi(t) ∈ Rn the
estimate of node i at iteration t, and x(t) = (x1(t), . . . , xm(t))> ∈ Rm×n. We denote ‖x‖ ≡ ‖x‖2
if x is a vector and ‖x‖ ≡ ‖x‖F if x is a matrix, which should be clear by the context. For
any two vectors of same dimension, 〈x, y〉 denotes their inner product, and 〈x, y〉Q := 〈x,Qy〉 for
symmetric positive semidefinite matrix Q. For notation simplicity, we use 〈x, y〉 =

∑m
i=1〈xi, yi〉

where xi and yi are the i-th row of the m × n matrices x and y respectively. Such matrix inner
product is also generalized to 〈x, y〉Q for matrices x and y. In this paper, we set the domain
X := {x ∈ Rn : ‖x‖∞ ≤ R} for some R > 0, which can be thought of as the maximum pixel
intensity in reconstructed images for instance. We further denote X := Xm ⊂ Rm×n.

For each node i, we define fi(x) := Eξi [Fi(x; ξi)] as the expectation of objective function,
and gi(t) := ∇Fi(x(t); ξi(t)) (here the gradient ∇ is taken with respect to x) is the stochas-
tic gradient at xi(t) at node i. We let τi(t) be the delay of gradient at node i in iteration t,
and τ(t) = (τ1(t), . . . , τm(t))>. We write f(x(t)) in short for

∑m
i=1 fi(xi(t)) ∈ R, x(t − τ(t)) for

(x1(t− τ1(t)), . . . , xm(t− τm(t)))> ∈ Rm×n, and g(t− τ(t)) for (g1(t− τ1(t)), . . . , gm(t− τm(t)))> ∈
Rm×n. We assume fi is continuously differentiable, ∇fi has Lipschitz constant Li, and denote
L := max1≤i≤m Li.

Let x∗ ∈ Rn be a solution of (1), we denote 1(x∗)> simply by x∗ in this paper which is clear
by the context, for instance f(x∗) = f(1(x∗)>) =

∑m
i=1 fi(x

∗). Furthermore, we let y(T) :=

(1/T)
∑T

t=1 x(t+1) be the running average of {x(t+1) : 1 ≤ t ≤ T}, and z(T) := (1/m)
∑m

i=1 y(T)
be the consensus average of y(T). We denote J = (1/m)11>, then z(T) = Jy(T). Note that for
all T , z(T) is always consensual but x(T), y(T) may not be.

An important ingredient in decentralized gradient descent is the mixing matrix W = [wij] in
(2). For the algorithm to be implementable in practice, wij > 0 if and only if (i, j) ∈ E . In this
paper, we assume that W is symmetric and

∑m
j=1wij = 1 for all i, hence W is doubly stochastic,

namely W1 = 1 and 1>W = 1> where 1 = (1, . . . , 1)> ∈ Rm. With the assumption that the
network G is simple and connected, we know ‖W‖2 = 1 and eigenvalue 1 of W has multiplicity 1 by
the Perron-Frobenius theorem [22]. As a consequence, Wx = x if and only if x is consensual, i.e.,
x = c1 for some c ∈ R. We further assume W � 0 (otherwise use 1

2(I + W) � 0 since stochastic
matrix W has spectral radius 1). Given a network G, there are different ways to design the mixing
matrix W . For some optimal choices of W , see, e.g., [32, 44].

Now we make several assumptions that are necessary in our convergence analysis.

1. The network G = (V, E) is undirected, simple, and connected.

2. For all i and x, the stochastic gradient is unbiased, i.e., Eξi [∇Fi(x; ξi)] = ∇fi(x), and
Eξi [‖∇Fi(x; ξi)−∇fi(x)‖2] ≤ σ2 for some σ > 0.

4

3. The delays τi(t) may follow different distributions at different nodes, but their second moments
are assumed to be uniformly bounded, i.e., there exists B > 0 such that E[τi(t)

2] ≤ B2 for all
i = 1, . . . ,m and iteration t.

Since the domain X is compact and ∇fi are all Lipschitz continuous, we know ‖∇fi‖ is uniformly
bounded. Furthermore, E[‖∇Fi(·, ξi)‖] ≤ E[‖∇Fi(·, ξi) − ∇fi(·)‖] + ‖∇fi(·)‖ ≤ σ + ‖∇fi(·)‖, we
know E[‖∇Fi(·, ξi)‖] is also uniformly bounded. Therefore, we denote by G > 0 the uniform bound
such that ‖∇fi‖,E[‖∇Fi(·, ξi)‖] ≤ G for all i. We also assume that the random delay τi(t) and
error of inexact gradient εi(t) := gi(t)−∇fi(x(t)) are independent.

2 Algorithm

Taking the delayed stochastic gradient and the constraint that nodes can only communicate with
immediate neighbors, we propose the following decentralized delayed stochastic gradient descent
method for solving (1). Starting from an initial guess {xi(0) : i = 1, . . . ,m}, each node i performs
the following updates iteratively:

xi(t+ 1) = ΠX

[m∑
j=1

wijxj(t)− α(t)gi(t− τi(t))
]
. (2)

Namely, in each iteration t, the nodes exchange their most recent xi(t) with their neighbors. Then
each node takes weighted average of the received local copies using weights wij and performs a
gradient descent type update using a stochastic gradient gi(t − τi(t)) with delay τi(t) and step
size α(t), and projects the result onto X. In addition, each node i tracks its own running average
yi(t) = (1/t) ·

∑t
s=1 xi(s + 1) by simply updating yi(t) = (1 − 1/t) · yi(t − 1) + (1/t) · xi(t + 1) in

iteration t.
Following the matrix notation in Section 1.3, the iteration (2) can be written as

x(t+ 1) = ΠX [Wx(t)− α(t)g(t− τ(t))]. (3)

Here the projection ΠX is accomplished by each node projecting to X due to the definition of X
in Section 1.3, which does not require any coordination between nodes. Note that the update (3)
is also equivalent to

x(t+ 1) = argmin
x∈X

{
〈g(t− τ(t)), x〉+

1

2α(t)
‖x−Wx(t)‖2

}
. (4)

In this paper, we may refer to the proposed decentralized delayed stochastic gradient descent
algorithm by any of (2), (3), and (4) since they are equivalent.

3 Convergence Analysis

In this section, we provide a comprehensive convergence analysis of the proposed algorithm (4)
by employing a proper step size policy. In particular, we derive convergence rates for both of the
disagreement (Theorem 1) and objective function value (Theorem 3).

Lemma 1. For any x ∈ Rm×n, its projection onto X yields nonincreasing disagreement. That is

‖(I − J) ΠX (x)‖ ≤ ‖(I − J)x‖. (5)

5

Proof. See Appendix A.

Lemma 2. Let c1 ≥ 0 and c2 > 0, and define α(t) = 1/(c1 + c2

√
t). Then for any λ ∈ (0, 1) there

is
t−1∑
s=0

α(s)λt−s−1 ≤
√
πλ−2

c2

√
t log(λ−1)

= O

(
1√
t

)
(6)

for all t = 1, 2,

Proof. See Appendix B.

Now we are ready to prove the convergence rate of disagreement in x(t) and y(t). In par-
ticular, we show that (

∑m
i=1 ‖xi(t) − x̄(t)‖2)1/2 decays at the rate of O(1/

√
t), where x̄(t) =

(1/m)
∑m

i=1 xi(t). The same convergence rate holds for the disagreement of running average y(t).
More specifically, these convergence rates are given by the bounds in the following theorem.

Theorem 1. Let {x(t)} be the iterates generated by Algorithm (4) with α(t) = [2(L+ η
√
t)]−1 for

some η > 0, and λ = ‖W − J‖. Then λ is the second largest eigenvalue of W and hence λ ∈ (0, 1).
Moreover, the disagreement of x(t) is bounded by

E[‖(I − J)x(t)‖] ≤
√
mG

t−1∑
s=0

α(s)λt−s−1 ≤
√
πmGλ−2

η
√
t log(λ−1)

= O

(
1√
t

)
, (7)

and the disagreement of running average y(T) = (1/m)
∑T

t=1 x(t+ 1) is bounded by

E[‖(I − J)y(T)‖] ≤ 2
√
πmGλ−2

η
√
T log(λ−1)

= O

(
1√
T

)
. (8)

Proof. We first prove the bound on disagreement between {xi(t) : 1 ≤ i ≤ m}, i.e., (7), by induction.
It is trivial to show that this bound holds for t = 1. Assuming (7) holds for t, we have

E[‖(I − J)x(t+ 1)‖] = E[‖(I − J) ΠX (Wx(t)− α(t)g(t− τ(t)))‖]
≤ E[‖(I − J)(Wx(t)− α(t)g(t− τ(t)))‖] (9)

≤ E[‖(I − J)Wx(t)‖] + α(t)E[‖(I − J)g(t− τ(t))‖]
≤ E[‖(I − J)Wx(t)‖] + α(t)

√
mG

where we used Lemma 1 in the first inequality, and ‖I − J‖ ≤ 1 and E[‖gi(t− τi(t))‖] ≤ G in the
last inequality. Noting that J2 = J and JW = WJ = J , we have

(W − J)(I − J) = (I − J)W.

Therefore, we obtain

E[‖(I − J)x(t+ 1)‖] ≤E[‖(I − J)Wx(t)‖] + α(t)
√
mG

=E[‖(W − J)(I − J)x(t)‖] + α(t)
√
mG

≤E[‖(W − J)‖‖(I − J)x(t)‖] + α(t)
√
mG (10)

≤λ
√
mG

t−1∑
s=0

α(s)λt−s−1 + α(t)
√
mG

=
√
mG

t∑
s=0

α(s)λt−s

6

where we used the induction assumption for t in the last inequality. Applying Lemma 2 to the
bound yields the second inequality in (7), which shows that E[‖(I−J)x(t)‖] decays at rate O(1/

√
t).

By convexity of ‖ · ‖ and definition of y(T), we obtain that

E[‖(I − J)y(T)‖] ≤ 1

T

T∑
t=1

E[‖(I − J)x(t+ 1)‖] ≤ 2
√
πmGλ−2

η
√
T log(λ−1)

(11)

by applying (7) and using
∑T

t=1
1√
t
≤ 2
√
T . Therefore the disagreement E[‖(I − J)y(T)‖] also

decays at rate of O(1/
√
T).

The convergence rate of disagreement also yields an estimate of differences between consecutive
iterates x(t) and x(t+ 1), which is given by the following corollary.

Corollary 1. Let {x(t)} be the iterates generated by Algorithm (4) with the settings of α(t), λ,
and η same as in Theorem 1. Then there is

E[‖x(t+ 1)− x(t)‖] ≤ C√
t
, (12)

where C :=
√
mG
η

[√πλ−2

log(λ−1)
+ 1

2

]
is a constant independent of t.

Proof. See Appendix C.

From the estimate of difference between consecutive iterates, we can also bound the expected
difference between x(t) and x(t− τ(t)) as follows.

Corollary 2. Let {x(t)} be the iterates generated by Algorithm (4) with the settings of α(t), λ,
and η same as in Theorem 1. Then there is

E[‖x(t)− x(t− τ(t))‖] ≤ C

(√
2mB√
t

+
4mB2

t

)
= O

(
1√
t

)
. (13)

where C is the constant defined in Corollary 1. In particular, if t ≥ 8mB2, there is E[‖x(t)−x(t−
τ(t))‖] ≤ 2

√
2mCB√
t

.

Proof. See Appendix D.

Without loss of generality and for sake of notation simplicity, we assume iteration number

t > 8mB2 and E[‖x(t) − x(t − τ(t))‖] ≤ 2
√

2mCB√
t

in the remaining derivations. The decay rate

O(1/
√
t) of E[‖x(t)− x(t− τ(t))‖] is useful to estimate the convergence rate of objective function

value later.

Lemma 3. Let {x(t)} be the iterates generated by Algorithm (3), then the following inequality holds
for all T ≥ 1:

T∑
t=1

E
〈
∇f(x(t))−∇f(x(t− τ(t))), x(t+ 1)− x∗

〉
≤ 8
√

2nLTmRCB (14)

where C is the constant defined in Corollary 1.

Proof. See Appendix E.

7

Now we are ready to prove the convergence rate of objective function value. We first present
the estimate of this rate for running averages y(t) in the following theorem.

Theorem 2. Let {x(t)} be the iterates generated by Algorithm (3) with α(t) = [2(L+ η
√
t)]−1 for

some η > 0, then

E[f(y(T))]− f(x∗) ≤
LD2
X

T
+

K√
T

= O

(
1√
T

)
(15)

where y(T) = (1/T)
∑T

t=1 x(t+ 1) is the running average of {x(t)}, DX = 2
√
mnR is the diameter

of X , and K := ηD2
X + 4

√
2mLDXCB + (4mσ2/η).

Proof. See Appendix F.

We have shown that the running average y(T) makes the objective function decay as in (15).
However, since each node i obtains its own yi(T) which may not be consensual (and the left hand
side of (15) could be negative), we need to look at their consensus average z(T) = (1/m)

∑m
i=1 yi(T)

and the convergence rate of its objective function value. This is given in the following theorem.

Theorem 3. Let x(t) be generated by Algorithm (2) with α(t) = [2(L+η
√
t)]−1 for some η > 0. Let

y(T) = (1/T)
∑T

t=1 x(t+ 1) be the running average of x(t) and z(T) = Jy(T) = (1/m)
∑m

i=1 yi(T)
be the consensus average of y(T), then

0 ≤ E[f(z(T))]− f(x∗) ≤
LD2
X + 2

√
mLC2

T
+
K + 2

√
mCG√
T

= O

(
1√
T

)
(16)

where C is defined as in Corollary 1, and DX and K are defined as in Theorem 2.

Proof. We first bound the difference between the function values at the running average y(T) and
the consensus average z(T) = Jy(T):

f(y(T))− f(z(T)) =
m∑
i=1

(fi(yi(T))− fi(z(T)))

≤
m∑
i=1

〈∇fi(z(T)), yi(T)− z(T)〉+
Li
2
‖yi(T)− z(T)‖2 (17)

≤
√
mG‖(I − J)y(T)‖+

L

2
‖(I − J)y(T)‖2 ≤ 2

√
mCG√
T

+
2C2L

T
,

where we used convexity of fi and Lipschitz continuity of ∇fi in the first inequality, ‖∇fi‖ ≤ G
and convexity of ‖ ·‖2 in the second inequality, and Theorem 1 to get the last inequality. Therefore,
combining (17) and (15) from Theorem 2, we obtain the bound in (16). Note that z(T) is consensus,
so f(z(T)) ≥ f(x∗) since x∗ is a consensus optimal solution of (1). This completes the proof.

In summary, we have showed that the running average yi(T), which can be easily updated by
each node i, yields convergence in optimality and consensus feasibility. More precisely, Theorem
1 implies that ‖yi(T) − z(T)‖ converges to 0 at rate O(1/

√
T) for all nodes i where z(T) =

(1/m)
∑m

i=1 yi(T) is their consensus average, and Theorem 3 implies that f(z(T)) converges to
f(x∗) at rate of O(1/

√
T). It is known that O(1/

√
T) is the optimal rate for stochastic gradient

algorithms in centralized setting, and hence these two Theorems suggest an encouraging fact that
such rate can be retained even if the problem becomes much more complicated, i.e., the gradients

8

are stochastic and delayed, and the computation is carried out in decentralized setting. To retain
convergence in this complex setting, we employed a diminishing step size policy as commonly
used in stochastic optimization. Such step size policy results in a convergence rate of O(1/

√
T)

even without delays and randomness in gradients. Furthermore, due to errors and uncertainties in
delayed and stochastic gradients, the iterates may be directed further apart from solution during
computations. As a consequence, the constant in the estimated convergence rate appears to depend
on the bound of set X rather than the distance between initial guess and solution set as in the
setting with non-delayed and non-stochastic gradients.

4 Numerical Experiments

In this section, we test algorithm (2) on decentralized consensus optimization problem (1) with
delayed stochastic gradients using a number of synthetic and real datasets. The structure of network
G = (V, E) and objective function in (1) are explained for each dataset, followed by performance
evaluation shown in plots of objective function f(z(T)) and disagreement

∑m
i=1 ‖yi(T) − z(T)‖2

versus the iteration number T , where yi(T) = (1/T)
∑T

t=1 xi(t+ 1) is the running average of xi(t)
in algorithm (2) at each node i, and z(T) = (1/m)

∑m
i=1 yi(T) is the consensus average at iteration

T .

4.1 Test on synthetic data

We first test on three different types of objective functions using synthetic datasets. In particu-
lar, we apply algorithm (2) to decentralized least squares, decentralized robust least squares, and
decentralized logistic regression problems with different delay and stochastic error combinations.
Then we compare the performance of the algorithm with and without delays and stochastic errors
in gradients. The performance of the algorithm on different network size m and time comparison
with synchronous algorithm are also presented.

In the first set of tests on three different objective functions, we simulate a network of regular
5 × 5 2-dimensional (2D) lattice of size m = 25. We set dimension of unknown x to n = 10 and
generate an x̂ ∈ Rn using MATLAB built-in function rand, and set the `∞ radius of X to R = 1.
For each node i, we generate matrices Ai ∈ Rpi×n with pi = 5 using randn, and normalize each
column into unit `2 ball in Rpi for i = 1, . . . ,m. Then we simulate bi = Aix̂ + εi where εi is
generated by randn with mean 0 and standard deviation 0.001. For decentralized least squares
problem, we set the objective function to fi(x) = (1/2)‖Aix − bi‖2 at node i. Therefore the
Lipschitz constant of ∇fi is Li = ‖A>i Ai‖2, and we further set L = max1≤i≤m{Li}. The initial
guess xi(0) is set to 0 for all i. For each iteration t, the delay τi(t) at each node i is uniformly
drawn from integers 1 to B with B = 5, 10 and 20. For given t, the stochastic gradient is
simulated by setting ∇Fi(xi(t); ξi(t)) = A>i (Aixi(t)− bi) + ξi(t) where ξi(t) is generated by randn

with mean 0 and standard deviation σ set to 0.01 and 0.05. We run our algorithm using step
size α(t) = 1/(2L + 2η

√
t) with η = 0.01. The objective function f(z(T)) − f∗ and disagreement∑m

i=1 ‖yi(T)− z(T)‖2 versus the iteration number T are plotted in the top row of Figure 1, where
the reference optimal objective f∗ = minx∈X

∑m
i=1 fi(x) is computed using centralized Nesterov’s

accelerated gradient method [28, 39]. In the two plots, we observe that both f(z(T)) − f∗ and
disagreement

∑m
i=1 ‖yi(T) − z(T)‖2 decays to 0 as justified by our theoretical analysis in Section

3. In general, we observe that delays with larger bound B and/or larger standard deviation σ in
stochastic gradient yield slower convergence, as expected.

We also tested on two different objective functions: robust least squares and logistic regression.
In robust least squares, we apply (2) to the decentralized optimization problem (1) where the

9

objective function is set to

fi(x) :=

pi∑
j=1

hji (x), where hji (x) =

{
1
2 |(a

j
i)
>x− bji |2 if |(aji)>x− b

j
i | ≤ δ

δ(|(aji)>x− b
j
i | −

δ
2) if |(aji)>x− b

j
i | > δ

(18)

where (aji)
> ∈ Rn is the j-th row of matrix Ai ∈ Rpi×n, and bji ∈ R is the j-th component of

bi ∈ Rpi at each node i. In this test, we simulate network G = (V, E) and set Ai, bi, m, n, R, xi(0)
the same way as in the decentralized least squares test above, and set the parameter of the Huber
norm in the robust least squares δ = 0.05. The stochastic gradient is given by ∇Fi(x; ξi(t)) =∑pi

j=1∇h
j
i (x) + ξi(t) where ξi(t) is generated as before with σ set to 0.01 and 0.05. Lipschitz

constants Li and L are determined as in the previous test. The settings of η and τi(t) remain the
same as well. The objective function f(z(T)) − f∗ and disagreement

∑m
i=1 ‖yi(T) − z(T)‖2 are

plotted in the middle row of Figure 1. In these two plots, we observe similar convergence behavior
as in the test on the decentralized least squares problem above. For the decentralized logistic
regression, we generate x̂, εi and Ai the same way as before, and set bi = sign(Aix̂+ εi) ∈ {±1}pi
(sign(0) := 1). Now the objective function fi at node i is set to

fi(x) =

pi∑
j=1

(
log[1 + exp((aji)

>x)]− bji (a
j
i)
>x
)
, (19)

where (aji)
> ∈ Rn is the j-th row of matrix Ai ∈ Rpi×n, and bji ∈ R is the j-th component of

bi ∈ Rpi . Then we perform (2) to solve this problem in the network G above. Since ∇2fi(x) =∑
j [exp((aji)

>x)/(1+exp((aji)
>x))2]·aji (a

j
i)
> ≤ (1/4)·

∑
j a

j
i (a

j
i)
> = (1/4)·A>i Ai, there is ‖∇fi(x)−

∇fi(x′)‖ ≤ (1/4)·‖A>i Ai‖‖x−x′‖ for all x, x′ ∈ Rn. Therefore we set Li = ‖A>i Ai‖2/4. The settings
of the delay τi(t), η, and initial value xi(0) remain the same as before. The stochastic error level σ
is set to 0.1 and 0.5. The objective function f(z(T))− f∗ and disagreement

∑m
i=1 ‖yi(T)− z(T)‖2

are plotted in the bottom row of Figure 1, where similar convergence behavior as in the previous
tests can be observed.

We also compared the performance of decentralized gradient descent method with and without
delay and stochasticity in the gradients. In this test, we synthesized networks and data in the same
way as in the decentralized least squares test above. In addition, we plotted the result of τi(t) = 0
for all i = 1, . . . ,m and σ = 0 is for comparison. These results are shown in the top row of Figure 2,
The objective function value (top left) and disagreement (top right) both decay sightly faster when
there are no delay and stochastic error as shown in Figure 2, which is within expectations. We
further tested the performance when the network size varies. In this experiment, we used four 2D
lattice networks, with sizes m = 52, 102, 152, 202. The size of x and Ai at each node are the same
as before. The objective function value (middle left) and disagreement (middle right) both decays,
while it appears that network with smaller size decays faster, as shown in Figure 2. To demonstrate
effectiveness of asynchronous consensus, we applied EXTRA [34], a state-of-the-arts synchronous
decentralized consensus optimization method, to the same data generated in decentralized least
squares problem with network size m = 100 and σ = 0 (no stochastic error in gradients). We draw
computing times of these 100 nodes as independent random variables between [.001, .500]ms every
gradient evaluation. The synchronous algorithm EXTRA needs to wait for the slowest node to
finish computation and then start a new iteration, whereas in the asynchronous algorithm (2) the
nodes communicate with neighbors every 0.01ms using updates obtained by delayed gradients . We
plotted the objective function f(z(T))− f∗ and disagreement

∑m
i=1 ‖yi(T)− z(T)‖2 versus running

time in the bottom row of Figure 2, which show that the asynchronous updates can be more time
efficient by not waiting for slowest node in each iteration.

10

Iteration
0 200 400 600 800 1000

O
bj

ec
tiv

e
fu

nc
tio

n

10-4

10-2

100

102

B=5, <=0.01
B=5, <=0.05
B=10, <=0.01
B=10, <=0.05
B=20, <=0.01
B=20, <=0.05

Iteration
0 200 400 600 800 1000

D
is

ag
re

em
en

t

10-3

10-2

10-1

100

101

B=5, <=0.01
B=5, <=0.05
B=10, <=0.01
B=10, <=0.05
B=20, <=0.01
B=20, <=0.05

Iteration
0 200 400 600 800 1000

O
bj

ec
tiv

e
fu

nc
tio

n

10-3

10-2

10-1

100

B=5, <=0.01
B=5, <=0.05
B=10, <=0.01
B=10, <=0.05
B=20, <=0.01
B=20, <=0.05

Iteration
0 200 400 600 800 1000

D
is

ag
re

em
en

t

10-3

10-2

10-1

100

101

B=5, <=0.01
B=5, <=0.05
B=10, <=0.01
B=10, <=0.05
B=20, <=0.01
B=20, <=0.05

Iteration
0 1000 2000 3000 4000 5000

O
bj

ec
tiv

e
fu

nc
tio

n

100

B=5, <=0.1
B=5, <=0.5
B=10, <=0.1
B=10, <=0.5
B=20, <=0.1
B=20, <=0.5

Iteration
0 1000 2000 3000 4000 5000

D
is

ag
re

em
en

t

10-1

100

101

102

103

B=5, <=0.1
B=5, <=0.5
B=10, <=0.1
B=10, <=0.5
B=20, <=0.1
B=20, <=0.5

Figure 1: Test on synthetic decentralized least-squares (top), robust least-squares (middle), and
logistic regression (bottom) for different levels of delay B and standard deviation in stochastic
gradient σ. Left: objective function f(z(T)) − f∗ versus iteration number T , where f∗ = f(x∗) is
the optimal value. Right: disagreement

∑m
i=1 ‖yi(T)− z(T)‖2 versus iteration number T .

4.2 Test on real data

We apply algorithm (2) to seismic tomography where the data is collected and then processed by
the nodes (sensors) in a wireless sensor network. In brief, underground seismic activities (such as
earthquakes) generate acoustic waves (we use P-wave here) which travel through the materials and
are detected by the sensors placed on the ground. An explanatory picture of seismic tomography

11

Iteration
0 200 400 600 800 1000

O
bj

ec
tiv

e
fu

nc
tio

n

10-4

10-3

10-2

10-1

100

B=5, <=0.01
B=5, <=0.05
B=10, <=0.01
B=10, <=0.05
B=20, <=0.01
B=20, <=0.05
No delay, <=0

Iteration
0 200 400 600 800 1000

D
is

ag
re

em
en

t

10-3

10-2

10-1

100

101

B=5, <=0.01
B=5, <=0.05
B=10, <=0.01
B=10, <=0.05
B=20, <=0.01
B=20, <=0.05
No delay, <=0

Iteration
0 200 400 600 800 1000

O
bj

ec
tiv

e
F

un
ct

io
n

10-4

10-2

100

102

m=25
m=100
m=225
m=400

Iteration
0 200 400 600 800 1000

D
is

ag
re

em
en

t

10-4

10-2

100

102

m=25
m=100
m=225
m=400

Time (ms)
0 5 10 15 20

O
bj

ec
tiv

e
fu

nc
tio

n

10-6

10-4

10-2

100

102

Synchronous
Asynchronous

Time (ms)
0 5 10 15 20

D
is

ag
re

em
en

t

10-6

10-4

10-2

100

102

Synchronous
Asynchronous

Figure 2: Test on synthetic decentralized least-squares with and without delay/stochasticity (top)
and varying network size (bottom). Left: objective function f(z(T)) versus iteration number T .
Right: disagreement

∑m
i=1 ‖yi(T)− z(T)‖2 versus iteration number T .

using a sensor network is shown in Figure 3. After data preprocessing, sensor i obtains a matrix
Ai ∈ Rpi×n and a vector bi ∈ Rpi , and hence an objective fi(x) = (1/2)‖Aix− bi‖2 for i = 1, . . . ,m.
Here (Ai)kl, the (k, l)-th entry of matrix Ai, is the distance that the wave generated by k-th seismic
activity travels through pixel l, for k = 1, . . . , pi (pi is the total number of seismic activities) and
l = 1, . . . , n (n is the total number of pixels in the image), and (bi)k, the k-th component of bi, is
the total time that the wave travels from the source of k-th seismic activity to the sensor i. Then
xl, the l-th component of x ∈ Rn, represents the unknown “slowness” (reciprocal of the velocity of

12

km

0 2 4 6 8 10

−4
−2

0
2

δt=0
δt=0

δt=0
δt=0

δt>0
δt>0

Surface Seismic Station

δt=obs − pred time

Low Vp Anomally

Seismic Waves

Earthquake
D

ep
th

, k
m

Figure 3: Seismic tomography of an active volcano using wireless sensor network. When there is
a seismic activity (e.g., an earthquake) happens underground, its acoustic waves (blue solid curves
with arrows) travel to the ground surface and are detected by the sensors (green triangles). Then
the sensors communicate wirelessly to reconstruct the entire image, where each square (tan, pink
or red) represents a pixel of the image x ∈ Rn.

the traveling wave) at that location (pixel) l. The sensors then collaboratively solve for the image x
that minimizes the sum of their objective functions, under the constraint that only neighbor nodes
may communicate during the computation process, since wireless signal transmission can only occur
within a limited geographical range. Once x is reconstructed from minx f(x) =

∑m
i=1 fi(x), the

material (e.g., rock, sand, oil, or magma) at each pixel l can be identified by the value of xl.
The first dataset consists of a simple and connected network G with m = 32 nodes where each

node has 3 neighbors, and Ai ∈ Rpi×n and bi ∈ Rpi where the number of seismic events is pi = 512
and the size of a 2D image x to be reconstructed is n = 642 = 4096. Since the matrix by stacking
all Ai is still underdetermined, we employ an objective function with Tikhonov regularization as
fi(x) = (1/2)(‖Aix− bi‖2 + µ‖x‖2) at each node i where µ is set to 0.1. Note that more adaptive
regularizers of x, such as `1 and total variation (TV) which result in a nonsmooth objective function,
will be explored in future research. We apply algorithm (3) with bound B of delays set to 5, 10,
and 20 and standard deviation σ of stochastic gradient to 0.5 and 0.05. We run our algorithm using
step size α(t) = 1/(2L + 2η

√
t) with η that minimizes the constant of 1/

√
T term in Theorem 3.

The objective function f(z(T)) and disagreement
∑m

i=1 ‖yi(T)−z(T)‖2 versus the iteration number
T are plotted in the top row of Figure 4, where convergence of both quantities can be observed.

The second seismic dataset contains a connected network G of size m = 50 where each node
has 3 neighbors, and matrices Ai ∈ Rpi×n and bi ∈ Rpi where pi = 800 and the size of 3D image
x to be reconstructed is n = 323 = 32768. We use the same objective function with Tikhonov
regularization as before with µ = 0.01. Other parameters are set the same as in the previous test
on a 2D seismic image. The settings for B and σ remain the same. The objective function f(z(T))
and disagreement

∑m
i=1 ‖yi(T) − z(T)‖2 versus the iteration number T are plotted in the middle

row of Figure 4, where similar convergence behavior can be observed.
The last seismic dataset consists of a connected network G of size m = 10 where the average

node degree is 5, and matrices Ai ∈ Rpi×n and bi ∈ Rpi where pi = 1, 816 and the size of 3D
image x to be reconstructed is n = 160 × 200 × 24 = 768, 000. In this test, we employ objective
fi(x) = (1/2)(‖Aix− bi‖2 +µ‖Dx‖2) where µ = 0.1 and D is the discrete gradient operator. Other

13

parameters are set the same as in the previous two seismic datasets. The bound B of delay is set to
4, 8, and 16, and standard deviation of stochastic gradient σ is set to 1e-4 and 5e-4. The objective
function f(z(T)) and disagreement

∑m
i=1 ‖yi(T)−z(T)‖2 versus the iteration number T are plotted

in the last row of Figure 4. The reconstructed image is displayed in the right panel of Figure 5.
By comparing with the solution obtained by centralized LSQR solver (left), we can see the image
is faithfully reconstructed on a decentralized network with delayed stochastic gradients.

5 Concluding Remarks

In this paper, we analyzed the convergence of decentralized delayed stochastic gradient descent
method as in (2) for solving the consensus optimization (1). The algorithm takes into consideration
that the nodes in the network privately hold parts of the objective function and collaboratively solve
for the consensus optimal solution of the total objective while they can only communicate with their
immediate neighbors, as well as the delays of gradient information in real-world networks where
the nodes cannot be fully synchronized. We show that, as long as the random delays are bounded
in expectation and a proper diminishing step size policy is employed, the iterates generated by the
decentralized gradient decent method converge to a consensus solution. Convergence rates of both
objective and consensus were derived. Numerical results on a number of synthetic and real data
were also presented for validation.

A Proof of Lemma 1

Proof. It suffices to show that for any fixed R > 0 and X = {x ∈ Rm : ‖x‖∞ ≤ R}, there is

‖(I − J) ΠX(x)‖ ≤ ‖(I − J)x‖ (20)

for all x ∈ Rm. Note that for x = (x1, x2, . . . , xm)> ∈ Rm, there is

‖(I − J)x‖2 =

m∑
i=1

(xi − x)2

where x := (1/m)
∑m

i=1 xi. We only need to show that if all {xi : xi < −R} are projected
to −R then ‖(I − J)x‖2 will reduce. Without loss of generality, suppose x1, . . . , x` < −R and
x`+1, . . . , xm ≥ −R, and let denote the means of these two groups by

µ1 :=
1

`

∑̀
i=1

xi < −R and µ2 :=
1

m− `

m∑
i=`+1

xi ≥ −R. (21)

14

Then we have x = (`µ1 + (m− `)µ2)/m, and

‖(I − J)x‖2

=
m∑
i=1

(xi − x)2 =
m∑
i=1

(xi −
`µ1 + (m− `)µ2

m
)2

=
∑̀
i=1

(xi −
`µ1 + (m− `)µ2

m
)2 +

m∑
i=`+1

(xi −
`µ1 + (m− `)µ2

m
)2

=
∑̀
i=1

(
(xi − µ1) +

m− `
m

(µ1 − µ2)

)2

+

m∑
i=`+1

(
(xi − µ2) +

`

m
(µ2 − µ1)

)2

(22)

=
∑̀
i=1

(xi − µ1)2 + 2
m− `
m

(µ1 − µ2)
∑̀
i=1

(xi − µ1) + `

(
m− `
m

)2

(µ1 − µ2)2

+
m∑

i=`+1

(xi − µ2)2 + 2
`

m
(µ2 − µ1)

m∑
i=`+1

(xi − µ2) + (m− `)
(
`

m

)2

(µ2 − µ1)2

After x1, · · · , x` are projected to −R (and x`+1, . . . , xm remain unchanged), their mean is updated
from µ1 to −R for all i = 1, . . . , `, and µ2 − µ1(≥ 0) reduces to µ2 + R(≥ 0). Therefore, the first,
third, and sixth terms in the right hand side of (22) are decreased, the second and fifth terms
remain zero, and the fourth term remains unchanged. Thus ‖(I − J)x‖ reduces after projection
to [−R,∞)m. A similar argument implies that projecting {xi : xi > R} to R will further reduce
‖(I−J)x‖2. Therefore projecting x to X, i.e., projecting to [−R,∞)m and then (−∞, R]m, reduces
‖(I − J)x‖2.

B Proof of Lemma 2

Proof. First, we note that

t−1∑
s=0

α(s)λt−1−s = α(0)λt−1 + α(1)λt−2 +
t−1∑
s=2

α(s)λt−1−s (23)

which means that the rate is upper bounded by the last sum on the right side above since the first
two tend to 0 at a linear rate λ ∈ (0, 1).

Note that for all w ∈ [s − 1, s] we have 1√
s
≤ 1√

w
and λ−s ≤ λ−(w+1) since λ ∈ (0, 1), and

therefore

α(s)λt−1−s =
λt−1−s

c1 + c2
√
s
≤ λt−1λ−s

c2
√
s
≤ λt−1λ−(w+1)

c2
√
w

=
λt−2−w

c2
√
w
. (24)

This inequality allows us to bound the last term on right hand side of (23) by

t−1∑
s=2

α(s)λt−1−s ≤
t−1∑
s=2

∫ s

s−1

λt−2−w

c2
√
w
dw =

∫ t−1

1

λt−2−w

c2
√
w
dw =

2λt−2

c2
It, (25)

where It is defined by

It :=
1

2

∫ t−1

1

λ−w√
w
dw. (26)

15

By changing of variable w = u2, we obtain It =
∫ √t−1

1 λ−u
2
du. Now we have that

I2
t =

∫ √t−1

1

∫ √t−1

1
λ−(u2+v2) dudv =

∫ √t−1

1

∫ √t−1

1
e−(u2+v2) log λ dudv

≤
∫ √t

0

∫ √t
0

e−(u2+v2) log λ dudv = 2

∫ π/4

0

∫ √t/ cos θ

0
e−ρ

2 log λρ dρdθ (27)

= − 1

log λ

∫ π/4

0
(e−t log λ/ cos2(θ) − 1) dθ < − 1

log λ

∫ π/4

0
e−t log λ/ cos2(θ) dθ

where the third equality comes from changing to a polar system with the substitutions u = ρ cos θ
and v = ρ sin θ. Note that cos−2(θ)− (1 + 4θ/π) ≤ 0 for all θ ∈ [0, π/4] since cos−2(θ)− 1− 4θ/π
is convex with respect to θ and vanishes at θ = 0 and θ = π/4. Therefore

I2
t ≤ −

1

log λ

∫ π/4

0
e−t log λ(1+4θ/π)dθ ≤ πλ−2t

4t(log λ)2
. (28)

Hence the sum in (25) is bounded by

t−1∑
s=2

α(s)λt−1−s ≤ 2λt−2

c2
It ≤

2λt−2

c2

√
πλ−t

2
√
t log(λ−1)

=

√
πλ−2

c2

√
t log(λ−1)

(29)

which completes the proof.

C Proof of Corollary 1

Proof. According to the update (4) or equivalently (3), we have

E[‖x(t+ 1)− x(t)‖] = E[‖ΠX [Wx(t)− α(t)g(t− τ(t))]− x(t)‖]
≤ E[‖(I −W)x(t) + α(t)g(t− τ(t)))‖] (30)

≤ E[‖(I −W)x(t)‖] + α(t)E[‖g(t− τ(t)))‖]

where we used the facts that x(t) ∈ X and that projection ΠX is non-expansive in the first inequality.
Note that WJ = J and hence I −W = (I −W)(I − J), we have

E[‖(I −W)x(t)‖] = E[‖(I −W)(I − J)x(t)‖] ≤ E[‖(I − J)x(t)‖] ≤
√
πmGλ−2

η
√
t log(λ−1)

where we used the fact that ‖I −W‖ ≤ 1 in the first inequality and applied Theorem 1 to obtain
the second inequality.

Furthermore, we have by the definition of α(t) that

‖α(t)g(t− τ(t))‖ ≤
√
mα(t)G =

√
mG

2(L+ η
√
t)
≤
√
mG

2η
√
t
. (31)

Applying the two inequalities above to (30) yields (12).

16

D Proof of Corollary 2

Proof. We first define τ̄(t) := max{τi(t) : 1 ≤ i ≤ m}. Then there is E[|τ̄(t)|2] ≤ E[
∑m

i=1 |τi(t)|2] ≤
mB2. Without loss of generality, we assume that 0 ≤ τ̄(t) ≤ t−2 for every given t, i.e., we consider
the convergence rate when every node has successfully computed their own gradient at least twice.
Then we obtain that

E[‖x(t)− x(t− τ(t))‖]

≤ E
[τ̄(t)∑
s=1

‖x(t− s+ 1)− x(t− s)‖
]
≤ C E

[τ̄(t)∑
s=1

1√
t− s

]

= C E
[t−1∑
s=t−τ̄(t)

1√
s

]
≤ C E

[∫ t−1

t−τ̄(t)−1

1√
s
ds

]
(32)

= 2C E
[√

t− 1−
√
t− τ̄(t)− 1

]
≤ 2C E

[
τ̄(t)

√
t− 1 +

√
t− τ̄(t)− 1

]
≤ C E

[
τ̄(t)√

t− τ̄(t)− 1

]
where we used triangle inequality to obtain the first inequality, applied Corollary 1 to obtain the
second inequality, and used the fact that τ̄(t) ≥ 0 to obtain the last inequality above. Note that
there is

E

[
τ̄(t)√

t− τ̄(t)− 1

]
=

bt/2c−1∑
s=0

s√
t− s− 1

P(τ̄(t) = s) +

t−2∑
s=bt/2c

s√
t− s− 1

P(τ̄(t) = s)

≤
√

2√
t

∑
s<t/2

sP(τ̄(t) = s) + (t− 2)
∑
s≥t/2

P(τ̄(t) = s) (33)

≤
√

2mB√
t

+
4mB2(t− 2)

t2
≤
√

2mB√
t

+
4mB2

t
= O

(
1√
t

)
where we used the fact that

√
t− s− 1 ≥

√
t/2 if 0 ≤ s ≤ bt/2c − 1 and s/

√
t− s− 1 ≤ t − 2 if

bt/2c ≤ s ≤ t− 2 to obtain the first inequality, and
∑

s<t/2 sP(τ̄(t) = s) ≤ E[τ̄(t)] ≤
√
E[τ̄(t)2] =

√
mB and

∑
s≥t/2 P(τ̄(t) = s) = P(τ̄(t) ≥ t/2) ≤ (4/t2)E[τ̄(t)2] ≤ 4mB2/t2 (by Chebyshev’s

inequality) in the second inequality. In particular, it is easy to verify that, when t ≥ 8mB2, there

is
√

2mB/
√
t ≥ 4mB2/t and hence E

[
τ̄(t)√

t−τ̄(t)−1

]
≤ 2

√
2mB√
t

. Combining (32) and (33) completes

the proof.

E Proof of Lemma 3

Proof. By Cauchy-Schwarz inequality, we have that

T∑
t=1

〈∇f(x(t))−∇f(x(t− τ(t))), x(t+ 1)− x∗〉

≤
T∑
t=1

‖∇f(x(t))−∇f(x(t− τ(t))‖‖x(t+ 1)− x∗‖

17

Note that ‖x(t + 1) − x∗‖2 =
∑m

i=1 ‖xi(t + 1) − x∗‖2 ≤ mn(2R)2 due to the bound of X = {x ∈
Rn : ‖x‖∞ ≤ R}, and ‖∇f(x(t)) − ∇f(x(t − τ(t))‖2 =

∑m
i=1 ‖∇fi(xi(t)) − ∇fi(xi(t − τ(t))‖2 ≤∑m

i=1 Li‖xi(t)−xi(t−τ(t))‖2 ≤ L‖x(t)−x(t−τ(t))‖2 ≤ 2
√

2mCB/
√
t due to Corollary 2. Therefore,

we obtain

T∑
t=1

〈∇f(x(t))−∇f(x(t− τ(t))), x(t+ 1)− x∗〉 ≤ 8
√

2nLTmRCB

by using the fact that
∑T

t=1 1/
√
t ≤ 2

√
T . This completes the proof.

F Proof of Theorem 2

Proof. We first note that there is

f(x(t+ 1))− f(x∗) =

m∑
i=1

(
fi(xi(t+ 1))− fi(x∗)

)
=

m∑
i=1

[
fi(xi(t+ 1))− fi(xi(t)) + fi(xi(t))− fi(x∗)

]
≤

m∑
i=1

[〈
∇fi(xi(t)), xi(t+ 1)− xi(t)

〉
+
Li
2
‖xi(t+ 1)− xi(t)‖2 (34)

+
〈
∇fi(xi(t)), xi(t)− x∗

〉]
≤

m∑
i=1

[〈
∇fi(xi(t)), xi(t+ 1)− x∗

〉
+
Li
2
‖xi(t+ 1)− xi(t)‖2

]
≤
〈
∇f(x(t)), x(t+ 1)− x∗

〉
+
L

2
‖x(t+ 1)− x(t)‖2

≤
〈
g(t− τ(t)), x(t+ 1)− x∗

〉
+
〈
∇f(x(t))− g(t− τ(t)), x(t+ 1)− x∗

〉
+
L

2
‖x(t+ 1)− x(t)‖2

where we used the Li-Lipschitz continuity of ∇fi and convexity of fi to obtain the first inequality.
Note that x(t+ 1) is obtained by (4) as

x(t+ 1) = argmin
x∈X

{
〈g(t− τ(t)), x〉+

1

2α(t)
‖x−Wx(t)‖2

}
(35)

= argmin
x∈X

{〈
g(t− τ(t)) +

1

α(t)
(I −W)x(t), x

〉
+

1

2α(t)
‖x− x(t)‖2

}

Therefore, the optimality of x(t + 1) in (4) and strong convexity of the objective function in (4)
imply that 〈

g(t− τ(t)), x(t+ 1)− x∗
〉

≤− 1

α(t)

〈
(I −W)x(t), x(t+ 1)− x∗

〉
(36)

+
1

2α(t)

[
‖x∗ − x(t)‖2 − ‖x(t+ 1)− x(t)‖2 − ‖x∗ − x(t+ 1)‖2

]
.

18

Furthermore, we note that 1 ∈ Null(I −W) and x∗ is consensual, hence we have

− 1

α(t)
〈(I −W)x(t), x(t+ 1)− x∗〉

= − 1

α(t)
〈(I −W)(x(t)− x∗), x(t+ 1)− x∗〉

=
1

2α(t)

(
‖x(t)− x(t+ 1)‖2I−W − ‖x(t)− x∗‖2I−W − ‖x(t+ 1)− x∗‖2I−W

)
(37)

≤ 1

4α(t)
‖x(t)− x(t+ 1)‖2I−W

where we have used the fact that

‖x(t)− x(t+ 1)‖2I−W ≤ 2(‖x(t)− x∗‖2I−W + ‖x(t+ 1)− x∗‖2I−W)

to obtain the inequality above. We also have that

‖x(t)− x(t+ 1)‖2I−W ≤ ‖x(t)− x(t+ 1)‖2

with which we can further bound (37) as

− 1

α(t)
〈(I −W)x(t), x(t+ 1)− x∗〉 ≤ 1

4α(t)
‖x(t)− x(t+ 1)‖2.

Now applying the inequality above and (36) to (34), and taking sum of t from 1 to T , we get

T∑
t=1

f(x(t+ 1))− Tf(x∗) ≤
T∑
t=1

1

2α(t)

(
‖x(t)− x∗‖2 − ‖x(t+ 1)− x∗‖2

)
+

T∑
t=1

(
L

2
− 1

4α(t)

)
‖x(t)− x(t+ 1)‖2 (38)

+
T∑
t=1

〈
∇f(x(t))− g(t− τ(t)), x(t+ 1)− x∗

〉
.

Note that the running average y(T) = (1/T)
∑T

t=1 x(t+1) satisfies f(y(T)) ≤ (1/T)
∑T

t=1 f(x(t+
1)) due to the convexity of all fi. Therefore, together with (38) and the definition of α(t), we have

T [f(y(T))− f(x∗)]

≤
T∑
t=1

[
1

2α(t)

(
‖x(t)− x∗‖2 − ‖x(t+ 1)− x∗‖2

)
− η
√
t

2
‖x(t)− x(t+ 1)‖2

]
(39)

+

T∑
t=1

〈
∇f(x(t))− g(x(t− τ(t))), x(t+ 1)− x∗

〉
.

Now, by taking expectation on both sides of (39), we obtain

T E[f(y(T))− f(x∗)] ≤
T∑
t=1

[
1

2α(t)

(
e(t)− e(t+ 1)

)
− η
√
t

2
E[‖x(t)− x(t+ 1)‖2]

]
+ 8
√

2nLTmRCB (40)

+

T∑
t=1

E
〈
∇f(x(t− τ(t)))− g(t− τ(t)), x(t+ 1)− x∗

〉

19

where we denoted e(t) := E[‖x(t)− x∗‖2] for notation simplicity.
Now we work on the last sum of inner products on the right side of (40). First we observe that

E
〈
∇f(x(t− τ(t)))− g(t− τ(t)), x(t+ 1)− x∗

〉
= E

〈
∇f(x(t− τ(t)))− g(t− τ(t)), x(t− τ(t))− x∗

〉
(41)

+ E
〈
∇f(x(t− τ(t)))− g(t− τ(t)), x(t+ 1)− x(t− τ(t))

〉
.

Note that gi(t− τi(t)) is the stochastic gradient of node i evaluated at iteration t− τi(t), and the
stochastic error gi(t− τi(t))−∇fi(xi(t− τi(t))) is independent of xi(t− τi(t)). Therefore, we have

E
〈
∇f(x(t− τ(t)))− g(t− τ(t)), x(t− τ(t))− x∗

〉
(42)

=
m∑
i=1

E
〈
∇fi(xi(t− τi(t)))− gi(t− τi(t)), xi(t− τi(t))− x∗

〉
= 0,

since the stochastic gradients are unbiased. Furthermore, by Young’s inequality, we have

E
〈
∇f(x(t− τ(t)))− g(t− τ(t)), x(t+ 1)− x(t− τ(t))

〉
≤ 2

η
√
t
E[‖∇f(x(t− τ(t)))− g(t− τ(t))‖2] +

η
√
t

2
E[‖x(t+ 1)− x(t)‖2] (43)

≤ 2mσ2

η
√
t

+
η
√
t

2
E[‖x(t+ 1)− x(t)‖2]

where we used the fact that E[‖∇f(x(t− τ(t)))− g(t− τ(t))‖2] ≤ mσ2 for all t. Now applying (41),
(42) and (43) in (40), we have

T E
[
f(y(T))− f(x∗)

]
≤

T∑
t=1

1

2α(t)

(
e(t)− e(t+ 1)

)
+ 8
√

2nLTmRCB +
T∑
t=1

2mσ2

η
√
t

(44)

≤ e(1)

2α(1)
+

T∑
t=2

e(t)

2

(
1

α(t)
− 1

α(t− 1)

)
+ 8
√

2nLTmRCB +
T∑
t=1

2mσ2

η
√
t

where we note that α(t) is nonincreasing, and hence 1
α(t) −

1
α(t−1) ≥ 0 and

T∑
t=2

e(t)

2

(
1

α(t)
− 1

α(t− 1)

)
≤
D2
X

2

T∑
t=2

(
1

α(t)
− 1

α(t− 1)

)
=
D2
X

2

(
1

α(T)
− 1

α(1)

)
where we used the fact that e(t) = E[‖x(t) − x∗‖2] ≤ D2

X := 4mnR2 for all t. Plugging this into

(44), dividing both sides by T , and using the fact that
∑T

t=1 1/
√
t ≤ 2

√
T , we obtain (15). This

completes the proof.

Acknowledgments

The authors would like to thank Dr. WenZhan Song and his SensorWeb Research Laboratory at
University of Georgia for sharing the illustrative Figure 3 and the three test seismic tomography
datasets in this paper.

20

References

[1] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In Advances in
Neural Information Processing Systems, pages 873–881, 2011.

[2] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione. Broadcast gossip algorithms for
consensus. Signal Processing, IEEE Transactions on, 57(7):2748–2761, 2009.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statis-
tical learning via the alternating direction method of multipliers. Foundations and Trends R©
in Machine Learning, 3(1):1–122, 2011.

[4] V. Cevher, S. Becker, and M. Schmidt. Convex optimization for big data: Scalable, ran-
domized, and parallel algorithms for big data analytics. Signal Processing Magazine, IEEE,
31(5):32–43, 2014.

[5] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang. Asynchronous distributed admm for large-
scale optimization part i: Algorithm and linear convergence analysis. IEEE Transactions on
Signal Processing, 64(12):3118–3130, 2016.

[6] T.-H. Chang, M. Hong, and X. Wang. Multi-agent distributed optimization via inexact con-
sensus admm. Signal Processing, IEEE Transactions on, 63(2):482–497, 2015.

[7] T.-H. Chang, W.-C. Liao, M. Hong, and X. Wang. Asynchronous distributed admm for large-
scale optimization part ii: Linear convergence analysis and numerical performance. IEEE
Transactions on Signal Processing, 64(12):3131–3144, 2016.

[8] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for distributed optimiza-
tion: convergence analysis and network scaling. Automatic control, IEEE Transactions on,
57(3):592–606, 2012.

[9] H. R. Feyzmahdavian, A. Aytekin, and M. Johansson. A delayed proximal gradient method
with linear convergence rate. In Machine Learning for Signal Processing (MLSP), 2014 IEEE
International Workshop on, pages 1–6. IEEE, 2014.

[10] P. A. Forero, A. Cano, and G. B. Giannakis. Consensus-based distributed support vector
machines. The Journal of Machine Learning Research, 11:1663–1707, 2010.

[11] L. Gan, U. Topcu, and S. H. Low. Optimal decentralized protocol for electric vehicle charging.
Power Systems, IEEE Transactions on, 28(2):940–951, 2013.

[12] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem. Explicit convergence rate of a dis-
tributed alternating direction method of multipliers. IEEE Transactions on Automatic Control,
61(4):892–904, 2016.

[13] F. Iutzeler, P. Ciblat, W. Hachem, and J. Jakubowicz. New broadcast based distributed
averaging algorithm over wireless sensor networks. In Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, pages 3117–3120. IEEE, 2012.

[14] D. Jakovetic, J. M. Moura, and J. Xavier. Linear convergence rate of a class of distributed
augmented lagrangian algorithms. Automatic Control, IEEE Transactions on, 60(4):922–936,
2015.

21

[15] D. Jakovetic, J. Xavier, and J. M. Moura. Fast distributed gradient methods. Automatic
Control, IEEE Transactions on, 59(5):1131–1146, 2014.

[16] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and M. I. Jordan. Mlbase:
A distributed machine-learning system. In CIDR, volume 1, pages 2–1, 2013.

[17] J. Li, G. Chen, Z. Dong, and Z. Wu. Distributed mirror descent method for multi-agent
optimization with delay. Neurocomputing, 2015.

[18] M. Li, D. G. Andersen, and A. Smola. Distributed delayed proximal gradient methods. In
NIPS Workshop on Optimization for Machine Learning, 2013.

[19] M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Communication efficient distributed machine
learning with the parameter server. In Advances in Neural Information Processing Systems,
pages 19–27, 2014.

[20] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic
coordinate descent algorithm. The Journal of Machine Learning Research, 16(1):285–322,
2015.

[21] C.-H. Lo and N. Ansari. Decentralized controls and communications for autonomous distribu-
tion networks in smart grid. Smart Grid, IEEE Transactions on, 4(1):66–77, 2013.

[22] L. Lovász. Random walks on graphs: A survey. Combinatorics, Paul Erdős is eighty, 2(1):1–46,
1993.

[23] A. Makhdoumi and A. Ozdaglar. Convergence rate of distributed admm over networks. IEEE
Transactions on Automatic Control, 2017.

[24] A. Mokhtari and A. Ribeiro. Decentralized double stochastic averaging gradient. In Signals,
Systems and Computers, 2015 49th Asilomar Conference on, pages 406–410. IEEE, 2015.

[25] A. Nedic and A. Olshevsky. Distributed optimization over time-varying directed graphs. Au-
tomatic Control, IEEE Transactions on, 60(3):601–615, 2015.

[26] A. Nedić and A. Olshevsky. Stochastic gradient-push for strongly convex functions on time-
varying directed graphs. IEEE Transactions on Automatic Control, 61(12):3936–3947, 2016.

[27] A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-agent optimization.
Automatic Control, IEEE Transactions on, 54(1):48–61, 2009.

[28] Y. Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o (1/k2). Technical Report 3, Doklady AN SSSR, 1983.

[29] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with switching
topology and time-delays. Automatic Control, IEEE Transactions on, 49(9):1520–1533, 2004.

[30] M. Rabbat and R. Nowak. Distributed optimization in sensor networks. In Proceedings of
the 3rd international symposium on Information processing in sensor networks, pages 20–27.
ACM, 2004.

[31] A. Sayed. Adaptation, learning, and optimization over networks. Foundations and Trends R©
in Machine Learning, 7(4-5):311–801, 2014.

22

[32] A. H. Sayed, S.-Y. Tu, and J. Chen. Online learning and adaptation over networks: More
information is not necessarily better. In Information Theory and Applications Workshop (ITA),
2013, pages 1–8. IEEE, 2013.

[33] O. Shamir and N. Srebro. Distributed stochastic optimization and learning. In Communication,
Control, and Computing (Allerton), 2014 52nd Annual Allerton Conference on, pages 850–857.
IEEE, 2014.

[34] W. Shi, Q. Ling, G. Wu, and W. Yin. Extra: An exact first-order algorithm for decentralized
consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

[35] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin. On the linear convergence of the admm in
decentralized consensus optimization. Signal Processing, IEEE Transactions on, 62(7):1750–
1761, 2014.

[36] W.-Z. Song, R. Huang, M. Xu, A. Ma, B. Shirazi, and R. LaHusen. Air-dropped sensor
network for real-time high-fidelity volcano monitoring. In Proceedings of the 7th international
conference on Mobile systems, applications, and services, pages 305–318. ACM, 2009.

[37] S. Sra, A. W. Yu, M. Li, and A. J. Smola. Adadelay: Delay adaptive distributed stochastic con-
vex optimization. In Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, volume 51, pages 957–965, 2016.

[38] Y.-P. Tian and C.-L. Liu. Consensus of multi-agent systems with diverse input and communi-
cation delays. Automatic Control, IEEE Transactions on, 53(9):2122–2128, 2008.

[39] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. sub-
mitted to SIAM Journal on Optimization, 2008.

[40] J. N. Tsitsiklis. Problems in decentralized decision making and computation. Technical report,
DTIC Document, 1984.

[41] H. Wang, X. Liao, T. Huang, and C. Li. Cooperative distributed optimization in multia-
gent networks with delays. Systems, Man, and Cybernetics: Systems, IEEE Transactions on,
45(2):363–369, 2015.

[42] E. Wei and A. Ozdaglar. On the o(1/k) convergence of asynchronous distributed alternating
direction method of multipliers. In Global Conference on Signal and Information Processing
(GlobalSIP), 2013 IEEE, pages 551–554. IEEE, 2013.

[43] T. Wu, K. Yuan, Q. Ling, W. Yin, and A. H. Sayed. Decentralized consensus optimization with
asynchrony and delays. In Proceedings of IEEE Asilomar Conference on Signals, Systems, and
Computers, 2016.

[44] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Systems & Control
Letters, 53(1):65–78, 2004.

[45] D. Yuan, D. W. Ho, and S. Xu. Regularized primal-dual subgradient method for distributed
constrained optimization. IEEE Transactions on Cybernetics, 2015.

[46] K. Yuan, Q. Ling, and W. Yin. On the convergence of decentralized gradient descent. SIAM
Journal on Optimization, 26(3):1835–1854, 2016.

23

[47] R. Zhang and J. Kwok. Asynchronous distributed admm for consensus optimization. In
Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 1701–
1709, 2014.

[48] W. Zhang, S. Gupta, X. Lian, and J. Liu. Staleness-aware async-sgd for distributed deep
learning. In Proceedings of the 25th International Joint Conference on Artificial Intelligence,
pages 2350–2356, 2016.

[49] L. Zhao, W.-Z. Song, L. Shi, and X. Ye. Decentralised seismic tomography computing in
cyber-physical sensor systems. Cyber-Physical Systems, pages 1–22, 2015.

[50] L. Zhao, W.-Z. Song, and X. Ye. Fast decentralized gradient descent method and applications
to in-situ seismic tomography. In Big Data (Big Data), 2015 IEEE International Conference
on, pages 908–917. IEEE, 2015.

24

Iteration
2000 4000 6000 8000 10000

O
bj

ec
tiv

e
fu

nc
tio

n

103

104

105

106

107

B=5, <=0.05
B=5, <=0.5
B=10, <=0.05
B=10, <=0.5
B=20, <=0.05
B=20, <=0.5

Iteration
2000 4000 6000 8000 10000

D
is

ag
re

em
en

t

2

3

4

5

6
7 B=5, <=0.05

B=5, <=0.5
B=10, <=0.05
B=10, <=0.5
B=20, <=0.05
B=20, <=0.5

Iteration #104
0.5 1 1.5 2

O
bj

ec
tiv

e
fu

nc
tio

n

10-2

10-1

100

101

102

B=5, <=0.01
B=5, <=0.05
B=10, <=0.01
B=10, <=0.05
B=20, <=0.01
B=20, <=0.05

Iteration #104
0.5 1 1.5 2

D
is

ag
re

em
en

t

0.4

0.6

0.8

1

1.2
B=5, <=0.01
B=5, <=0.05
B=10, <=0.01
B=10, <=0.05
B=20, <=0.01
B=20, <=0.05

Iteration #104
0.5 1 1.5 2 2.5 3

O
bj

ec
tiv

e
fu

nc
tio

n

101

102

103

B=4, <=0.0001
B=4, <=0.0005
B=8, <=0.0001
B=8, <=0.0005
B=16, <=0.0001
B=16, <=0.0005

Iteration #104
0.5 1 1.5 2 2.5 3

D
is

ag
re

em
en

t

0.15

0.2

0.25

0.3

0.35
0.4

0.45
B=4, <=0.0001
B=4, <=0.0005
B=8, <=0.0001
B=8, <=0.0005
B=16, <=0.0001
B=16, <=0.0005

Figure 4: Tests on real seismic image reconstruction problems with 2D image with n = 642 (top),
3D image with n = 323 (middle), and 3D image with n = 160×200×24 (bottom) for different levels
of delay B and standard deviation in stochastic gradient σ. Left: objective function f(z(T)) versus
iteration number T . Optimal value indicates f∗ := f(x∗). Right: disagreement

∑m
i=1 ‖yi(T) −

z(T)‖2 versus iteration number T .

25

70 80 90

X(km)

80

90

100

110

120

Y
(k

m
)

-0.15

-0.1

-0.05

0

0.05

0.1

-0.1 0 0.1

70 80 90

X(km)

80

90

100

110

120

Y
(k

m
)

-0.15

-0.1

-0.05

0

0.05

0.1

-0.1 0 0.1

Figure 5: Cross section of a reconstructed 3D seismic image generated by a centralized LSQR solver
(left) and decentralized algorithm with delayed stochastic gradient (2) with B = 4 and σ = 10−4

(right).

26

	Introduction
	Related work
	Contributions
	Notations and assumptions

	Algorithm
	Convergence Analysis
	Numerical Experiments
	Test on synthetic data
	Test on real data

	Concluding Remarks
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Lemma 3
	Proof of Theorem 2

